Non-asymptotic confidence intervals for importance sampling estimators of quantiles - Archive ouverte HAL
Communication Dans Un Congrès Année : 2024

Non-asymptotic confidence intervals for importance sampling estimators of quantiles

Résumé

Building a confidence region (asymptotic or non-asymptotic) is crucial in understanding the quality of point estimators of a distribution. In this presentation, we estimate a quantile of a real random variable in the case where only a sample from another dominating distribution is available. This estimation procedure is known as importance sampling. A CLT is proved for the quantile estimator but the asymptotic variance depends on the true quantile, the unknown, and on its cumulative distribution function. We lift this barrier by building a non-asymptotic confidence interval for the true quantile which can be useful when only a limited sample size is available.
Fichier principal
Vignette du fichier
Non-asymptotic confidence intervals for importance sampling estimators of quantiles.pdf (217 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04660378 , version 1 (23-07-2024)

Identifiants

  • HAL Id : hal-04660378 , version 1

Citer

Baalu Belay Ketema, Nicolas Bousquet, Francesco Costantino, Fabrice Gamboa, Bertrand Iooss, et al.. Non-asymptotic confidence intervals for importance sampling estimators of quantiles. 55ème Journées de statistique de la SFdS, May 2024, Bordeaux, France. ⟨hal-04660378⟩
69 Consultations
67 Téléchargements

Partager

More