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Résumé. La construction d’intervalle de confiance (asymptotiques ou non-asymptotiques)
est une étape cruciale pour comprendre la qualité de l’estimation d’une quantité d’intérêt
bâtie sur une distribution. Dans cette présentation, nous estimons un quantile qα d’une
variable aléatoire réelle Y ∼ µ dans le cas où seul un échantillon d’une autre distribution
µ0 est disponible et où µ0 domine µ. La méthode d’estimation utilisée est l’échantillonnage
préférentiel. Un TCL est connu pour l’estimateur du quantile mais la variance asymptotique
dépend du quantile qα de µ, l’inconnu, et de sa fonction de répartition Fµ. Nous levons ce
verrou en construisant un intervalle de confiance non-asymptotique pour qα qui peut être
utile lorsque l’on ne dispose que d’un échantillon de taille limitée.

Mots-clés. Echantillonnage préférentiel, estimation de quantile, inégalité de concentra-
tion, intervalles de confiance non-asymptotique.

Abstract. Building a confidence region (asymptotic or non-asymptotic) is crucial in
understanding the quality of point estimators of a distribution. In this presentation, we
estimate a quantile qα of a real random variable Y ∼ µ in the case where only a sample from
another distribution µ0 is available and where µ0 dominates µ. This estimation procedure
is known as importance sampling. A CLT is proved for the quantile estimator but the
asymptotic variance depends on the quantile qα of µ, the unknown, and on its cumulative
distribution function Fµ. We lift this barrier by building a non-asymptotic confidence interval
for qα which can be useful when only a limited sample size is available.

Keywords. Importance sampling, quantile estimation, concentration inequality, non-
asymptotic confidence intervals.

1 Introduction

In many industrial contexts, quantities of interest (QoI) are defined from real variables Y ∼
µ considered as random with underlying distribution µ, that represent the behavior of a
component or system. For instance Y is the output of a code that computes the level of a
river [7] or the cladding temperature in a nuclear vessel after an accident [4]. Typical QoIs
are the quantile qα(Y ), the superquantile Qα(Y ) [6] or a probability pT = P(Y > T ) given
some threshold T . Usually these QoIs cannot be computed explicitly if µ cannot be easily
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handled (ie., not in closed form). Hence statistical estimation is required to approximate
these quantities. In addition, confidence regions are usually built to understand how far is
the estimator to the real value.

The standard estimation method uses a Monte Carlo simulation to approximate the cu-
mulative distribution function (cdf) of Y denoted Fµ: for Y1, ..., YN an iid sample from µ, we
have that

F̂ (t) =
1

N

N∑
i=1

1Yi≤t

is a non biased estimator of the cdf of Y for all t in R. It converges a.s. and uniformly in t
to Fµ. It also verifies a functional central limit theorem ([9], Chapter 19). We can therefore
build plug-in estimators for the quantile qα(Y ), the superquantile Qα(Y ) and the probability
threshold pT :

q̂α := inf{t ∈ R | F̂ (t) ≥ α},

Q̂α :=
1

N(1− α)

N∑
i=1

Yi1Yi≥q̂α ,

p̂T := 1− F̂ (T ).

The associated presentation only focuses on the quantile qα(Y ). From [9], Chapter 21, the
estimator q̂α satisfies a central limit theorem: assuming that Fµ is differentiable at point
qα := qα(Y ) with F ′

µ(qα) > 0 then we have that

√
N
(
q̂α − qα

)
→ N (0, σ2

∞),

where

σ2
∞ =

α(1− α)

F ′
µ(qα)

2
.

The asymptotic variance depends on qα = qα(Y ), the unknown QoI, as well as on Fµ and
therefore this result cannot be used directly to construct asymptotic confidence intervals. In
addition, obtaining a large sample of Y , a requirement for asymptotic confidence intervals, can
be very time-consuming (for instance Y can be the output of a costly industrial computer
code ie., Y = G(X) and a sample of Y is obtained by evaluating G on a sample of X).
Consequently, non-asymptotic confidence intervals are more appropriate in this case, as they
provide information on the concentration of the estimator around the true value as a function
of the sample size N .

The following paper is organized as follows. Section 2 discusses how non-asymptotic confi-
dence intervals can be built for the standard quantile estimator using a uniform concentration
inequality on the empirical cdf. Section 3 explains the importance sampling method for the
quantile estimator and states a CLT for the latter. Section 4 states the main result of the
paper ie., a method for building non-asymptotic confidence intervals for importance sampling
estimators of quantiles. And lastly, Section 5 discusses the limitations of this method.
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2 Concentration inequality for the quantile estimator

The Dvoretzky–Kiefer–Wolfowitz (DKW) theorem [3, 8] shows that the estimator F̂ of Fµ

verifies the following concentration inequality:

P
(
sup
t∈R

|F̂ (t)− Fµ(t)| > η

)
≤ 2e−2Nη2 ,

for all η > 0. This concentration inequality can be used to obtain a non-asymptotic confidence
interval for the quantile estimator q̂α: for all η > 0 small enough and α ∈ (0, 1) fixed

P
(
q̂α−η ≤ qα(Y ) ≤ q̂α+η

)
≥ 1− 2e−2Nη2 , (1)

since DKW implies that with probability at least 1− 2e−2Nη2 , the functional inequality

F̂ − η ≤ Fµ ≤ F̂ + η (2)

is verified. And since F̂ and Fµ are non-decreasing functions, taking the generalized inverse
in (2) gives for all α ∈ (0, 1)

(F̂ − η)⟨−1⟩(α) ≥ F ⟨−1⟩
µ (α) = qα(Y ) ≥ (F̂ + η)⟨−1⟩(α) (3)

with probability at least 1−2e−2Nη2 , whereH⟨−1⟩ is the generalized inverse of a non-decreasing
function H defined as H⟨−1⟩(α) := inf{t ∈ R | H(t) ≥ α}. The non-asymptotic confidence
interval’s quality heavily depends on the sample size N of Y , see Table 1, as well as on the
order of the quantile α ie., for α close to 0 or 1 a very large sample will be required to
accurately approximate the quantile.

Sample size N N = 104 N = 105 N = 2× 106

Confidence level ≥ 0.75 [1.52, 1.71] [1.62, 1.68] [1.635, 1.649]

Confidence level ≥ 0.95 [1.50, 1.76] [1.61, 1.69] [1.632, 1.651]

Confidence level ≥ 0.99 [1.48, 1.79] [1.60, 1.70] [1.631, 1.654]

Table 1: Confidence intervals (1) on the 0.95-quantile of N (0, 1) in terms of the sample size
and a fixed confidence level. The value of this quantile is approximately 1.6448.

3 Importance sampling estimation procedure

Assume we do not have access to a sample of µ but rather a sample from another distribution
µ0 on R which dominates µ0 (ie., µ << µ0 meaning that µ admits a density on R with respect
to (wrt) µ0). Denote L := dµ

dµ0
the Radon-Nikodym derivative (also called the likelihood ratio).

We would like to build estimators of qα, a quantile of µ, as well as confidence intervals using
an iid sample Y1, ..., YN of µ0. To do so we can use the importance sampling (IS) method

F̂ (t) :=
1

N

N∑
i=1

L(Yi)1Yi≤t,
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which is the standard unbiased Monte Carlo estimator of Fµ(t). But F̂ is not the cdf of a

discrete measure on R since the weights L(Yi)
N

do not add up to one. Hence we favor instead
the following biased estimator

F̂is(t) :=
1∑N

i=1 L(Yi)

N∑
i=1

L(Yi)1Yi≤t,

which also converges pointwise a.s. to Fµ. It allows us to build an estimator of the quantile
of µ by plug-in:

q̂ is
α := inf{t ∈ R | F̂is(t) ≥ α}.

The asymptotic properties of this estimator are already studied in [4, 5], who showed that
if (a) L is cube-integrable wrt µ0; (b) Fµ is differentiable at qα := qα(Y ) for Y ∼ µ; (c)
F ′
µ(qα) > 0, then √

N
(
q̂ is
α − qα

)
−→
N→∞

N (0, σ2
∞),

where

σ2
∞ =

EY∼µ0

[
L(Y )2(1Y≤qα − α)2

]
F ′
µ(qα)

2
.

This asymptotic variance depends again on the unknown QoI q = qα(Y ). Hence this result
cannot be directly used to build asymptotic confidence intervals.

4 Non-asymptotic confidence intervals for the IS quan-

tile estimator

Now our goal is to build non-asymptotic confidence intervals for the quantile estimator q̂ is
α .

Assume we have a pointwise confidence interval for Fµ around F̂is ie., for each fixed t in R,
for all N ∈ N∗ there exist εN > 0 and λ−

t,N < λ+
t,N such that

P
(
Fµ(t) ∈ [λ−

t,N , λ
+
t,N ]
)
≥ 1− εN ,

where εN → 0 as N → ∞, t → λ±
t,N are non-decreasing random functions and λ−

t,N , λ
+
t,N −→

N→∞
Fµ(t) a.s.. Then we can prove the following result.

Theorem. Under the previous assumptions, by choosing a decreasing sequence (aN)N≥1 such
that aN ≤ 1 and limN→∞ aN = 0 we have:

P
(
q−α ≤ qα(Y ) ≤ q+α

)
≥ 1−

⌊
1

aN
− 1

⌋
εN ,

where q∓α are the generalized inverse of the functions t → λ±
t,N ± aN evaluated at α ∈ (0, 1).

They are random variables taking values in the original sample {Y1, ..., YN} ∪ {±∞} of µ0.
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Note that this theorem does not guaranty that the quantity 1−
⌊

1
aN

− 1
⌋
εN is positive.

This depends on the sequence aN which has to be cleverly chosen. The proof is inspired from
[2] and is based on the following two ingredients:

(i) we can convert the pointwise confidence interval into a uniform one by slightly enlarging
it by doing ⌊ 1

aN
− 1⌋ union bounds:

P
(
∩t∈R

{
Fµ(t) ∈ [λ−

t,N − aN , λ
+
t,N + aN ]

})
≥ 1−

⌊
1

aN
− 1

⌋
εN ,

(ii) we then transform the inequality

λ−
t,N − aN ≤ Fµ(t) ≤ λ+

t,N + aN , ∀t ∈ R,

into an inequality on the quantile qα(Y ) by means of taking the generalized inverse wrt
t as in (3).

Now, in order to obtain the λ±
t,N for the pointwise confidence interval of Fµ(t), for all t,

we can apply Theorem 2 of [1]: for all s > 0 take N = eD(µ|µ0)+s, then for all t ∈ R we have

P

(∣∣∣F̂is(t)− Fµ(t)
∣∣∣ ≥ 2εs

√
Fµ(t)

1− εs

)
≤ 2εs, (4)

where D is the Kulback-Leibler divergence and εs is given by

εs =

(
e−s/4 +

√
P
(
logL(Y ) > D(µ|µ0) + s/2

))1/2

,

where logL(Y ) is the log-likelihood ratio of µ and µ0 evaluated at Y ∼ µ0.

The concentration inequality (4) can be equivalently rewritten as

P
(
Fµ(t) ∈ [λ−

t,s, λ
+
t,s]
)
≥ 1− 2εs,

where

λ±
t,s :=

2F̂is(t) + η2s ± ηs

√
4F̂is(t) + η2s

2
,

and ηs :=
2εs
1−εs

. Indeed λ±
t,s verify the necessary assumptions of Theorem 4.

This method can also be used when we have a parametric family P := {µθ : θ ∈ Θ}
and µ, µ0 ∈ P and we have an iid sample Y1, ..., YN wrt µθ0 := µ0, and we want to build an
estimator of a quantile on µθ and a corresponding confidence interval for all θ ∈ Θ.
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5 Limitations

The quality of the confidence interval for the quantile qα(Y ) depends on the quality of the
initial pointwise confidence interval on Fµ, built from a sample of µ0. Indeed, the authors of
[1] specifically mention that no efforts were made to improve the concentration inequality (4)
so the pointwise confidence interval for Fµ(t) is not necessarily good. In addition, choosing
the sequence (aN)N is not obvious and requires a compromise between having a small uniform
confidence interval around Fµ and a high confidence level. Moreover, the confidence interval
obtained for the quantile is actually uniform in α ∈ (0, 1) ie.,

P
(
∩α∈(0,1)

{
q−α ≤ qα(Y ) ≤ q+α

})
≥ 1−

⌊
1

aN
− 1

⌋
εN .

This is because we inverted a uniform bound in t on the cdf. This means that if we want
a confidence interval for a specific α, for instance α = 0.95, then the confidence level 1 −⌊

1
aN

− 1
⌋
εN might be too conservative since

P
(
q−0.95 ≤ q0.95(Y ) ≤ q+0.95

)
≥ P

(
∩α∈(0,1)

{
q−α ≤ qα(Y ) ≤ q+α

})
(5)

≥ 1−
⌊

1

aN
− 1

⌋
εN .

Therefore more work is needed to understand how much is lost at (5).
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