A Markovian characterization of the exponential twist of probability measures - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2024

A Markovian characterization of the exponential twist of probability measures

Résumé

In this paper we study the exponential twist, i.e. a path-integral exponential change of measure, of a Markovian reference probability measure $\P$. This type of transformation naturally appears in variational representation formulae originating from the theory of large deviations and can be interpreted in some cases, as the solution of a specific stochastic control problem. Under a very general Markovian assumption on $\P$, we fully characterize the exponential twist probability measure as the solution of a martingale problem and prove that it inherits the Markov property of the reference measure. The ''generator'' of the martingale problem shows a drift depending on a "generalized gradient" of some suitable "value function" $v$.
Fichier principal
Vignette du fichier
Bourdais-Oudjane-RussoJuly2024.pdf (413.82 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04644249 , version 1 (10-07-2024)

Identifiants

Citer

Thibaut Bourdais, Nadia Oudjane, Francesco Russo. A Markovian characterization of the exponential twist of probability measures. 2024. ⟨hal-04644249⟩
31 Consultations
9 Téléchargements

Altmetric

Partager

More