Asymptotic Analysis of a bi-monomeric nonlinear Becker-D\"oring system - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2024

Asymptotic Analysis of a bi-monomeric nonlinear Becker-D\"oring system

Résumé

To provide a mechanistic explanation of sustained then damped oscillations observed in a depolymerisation experiment, a bi-monomeric variant of the seminal Becker-D\"oring system has been proposed in~(Doumic, Fellner, Mezache, Rezaei, J. of Theor. Biol., 2019). When all reaction rates are constant, the equations are the following: \begin{align*} \frac{dv}{dt} & =-vw+v\sum_{j=2}^{\infty}c_{j}, \qquad \frac{dw}{dt} =vw-w\sum_{j=1}^{\infty}c_{j}, \\ \frac{dc_{j}}{dt} & =J_{j-1}-J_{j}\ \ ,\ \ j\geq1\ \ ,\ \ \ J_{j}=wc_{j}-vc_{j+1}\ \ ,\ \ j\geq1\ \ ,\ J_{0}=0, \end{align*} where $v$ and $w$ are two distinct unit species, and $c_i$ represents the concentration of clusters containing $i$ units. We study in detail the mechanisms leading to such oscillations and characterise the different phases of the dynamics, from the initial high-amplitude oscillations to the progressive damping leading to the convergence towards the unique positive stationary solution. We give quantitative approximations for the main quantities of interest: period of the oscillations, size of the damping (corresponding to a loss of energy), number of oscillations characterising each phase. We illustrate these results by numerical simulation, in line with the theoretical results, and provide numerical methods to solve the system.
Fichier principal
Vignette du fichier
main.pdf (2.9 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04635659 , version 1 (04-07-2024)

Identifiants

  • HAL Id : hal-04635659 , version 1

Citer

Marie Doumic, Klemens Fellner, Mathieu Mezache, Juan J L Velázquez. Asymptotic Analysis of a bi-monomeric nonlinear Becker-D\"oring system. 2024. ⟨hal-04635659⟩
185 Consultations
58 Téléchargements

Partager

More