Genus theory, governing field, ramification and Frobenius - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2024

Genus theory, governing field, ramification and Frobenius

Résumé

In this work we develop, through a governing field, genus theory for a number field $\K$ with tame ramification in $T$ and splitting in $S$, where $T$ and $S$ are finite disjoint sets of primes of $\K$. This approach extends that initiated by the second author in the case of the class group. It allows expressing the $S$-$T$ genus number of a cyclic extension $\L/\K$ of degree $p$ in terms of the rank of a matrix constructed from the Frobenius elements of the primes ramified in $\L/\K$, in the Galois group of the underlying governing extension. For quadratic extensions $\L/\Q$, the matrices in question are constructed from the Legendre symbols between the primes ramified in $\L/\Q$ and the primes in $S$.
Fichier principal
Vignette du fichier
S-T genus_number_June_30_2024.pdf (251.57 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04632773 , version 1 (03-07-2024)

Identifiants

Citer

Roslan Ibara Ngiza Mfumu, Christian Maire. Genus theory, governing field, ramification and Frobenius. 2024. ⟨hal-04632773⟩
53 Consultations
36 Téléchargements

Altmetric

Partager

More