Crouzeix-Raviart elements on simplicial meshes in $d$ dimensions - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2024

Crouzeix-Raviart elements on simplicial meshes in $d$ dimensions

Résumé

In this paper we introduce Crouzeix-Raviart elements of general polynomial order $k$ and spatial dimension $d\geq2$ for simplicial finite element meshes. We give explicit representations of the non-conforming basis functions and prove that the conforming companion space, i.e., the conforming finite element space of polynomial order $k$ is contained in the Crouzeix-Raviart space. We prove a direct sum decomposition of the Crouzeix-Raviart space into (a subspace of) the conforming companion space and the span of the non-conforming basis functions. Degrees of freedom are introduced which are bidual to the basis functions and give rise to the definition of a local approximation/interpolation operator. In two dimensions or for $k=1$, these freedoms can be split into simplex and $(d-1)$ dimensional facet integrals in such a way that, in a basis representation of Crouzeix-Raviart functions, all coefficients which belong to basis functions related to lower-dimensional faces in the mesh are determined by these facet integrals. It will also be shown that such a set of degrees of freedom does not exist in higher space dimension and $k>1$.
Fichier principal
Vignette du fichier
BoCS2x_FinalVersion.pdf (359.38 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04629919 , version 1 (01-07-2024)

Licence

Identifiants

  • HAL Id : hal-04629919 , version 1

Citer

Nis-Erik Bohne, Patrick Ciarlet, Stefan Sauter. Crouzeix-Raviart elements on simplicial meshes in $d$ dimensions. 2024. ⟨hal-04629919⟩
32 Consultations
20 Téléchargements

Partager

More