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Crouzeix-Raviart elements on simplicial meshes
in d dimensions

N.-E. Bohne* Patrick Ciarlet, Jr.T S. Sauter?
June 28, 2024

Abstract

In this paper we introduce Crouzeix-Raviart elements of general poly-
nomial order k and spatial dimension d > 2 for simplicial finite element
meshes. We give explicit representations of the non-conforming basis func-
tions and prove that the conforming companion space, i.e., the conforming
finite element space of polynomial order k is contained in the Crouzeix-
Raviart space. We prove a direct sum decomposition of the Crouzeix-
Raviart space into (a subspace of) the conforming companion space and
the span of the non-conforming basis functions.

Degrees of freedom are introduced which are bidual to the basis func-
tions and give rise to the definition of a local approximation/interpolation
operator. In two dimensions or for £ = 1, these freedoms can be split into
simplex and (d — 1) dimensional facet integrals in such a way that, in a
basis representation of Crouzeix-Raviart functions, all coefficients which
belong to basis functions related to lower-dimensional faces in the mesh
are determined by these facet integrals. It will also be shown that such
a set of degrees of freedom does not exist in higher space dimension and
k>1.

AMS-Classification: Primary 33C45, 33C50, 65N30; Secondary 65N12.

Keywords: finite elements; non-conforming; Crouzeix-Raviart, orthogonal poly-
nomials on simplices

1 Introduction

The Crouzeix-Raviart (CR) finite elements spaces have been introduced in the
seminal paper [7] and allow for a very economic non-conforming discretization
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of the Stokes equation. The original definition in [7] is general but implicit by
imposing certain moment conditions across interelement facets. In the original
paper, basis functions are presented for the lowest order CR elements in dimen-
sion d € {2, 3}; this is the reason that most implementations and methodological
developments of CR elements are restricted to lowest order. Explicit represen-
tations for d = 2 of the non-conforming CR functions exist in the literature, see
(1], 12], [3], [11], [4, for p = 4,6.], [5] while for spatial dimension d > 3 the lowest
order CR element has been introduced in [7]. For quadratic CR elements in 3D,
an explicit basis has been introduced in [9]. In [6], a spanning set of functions is
presented in 3D for a maximal CR space of any polynomial order k¥ € N which
allows for a local basis. However, the question of linear independence is subtle,
in particular, the definition of a basis for a minimal CR space. In [10] basis
functions of a CR space have been introduced for general space dimension d > 2
and polynomial order k which are the analoga of the 2D CR spaces. However,
the corresponding space do not always include its conforming companion space,
i.e., the conforming finite element space of degree k and suboptimal convergence
rates must be expected.

In this paper we introduce a basis for CR elements for general polynomial
degree k and space dimension d which contains the conforming companion space
and its approximation properties are inherited. We introduce degrees of freedom
which are bidual to the CR basis functions and allow to define local approxima-
tion operators.

The paper is structured as follows. In Section 2, we introduce the non-
conforming CR space in d dimension and general polynomial order k. We define
the non-conforming CR functions in such a way that the conforming companion
space is contained in the CR space. For the construction of a full set of basis
function we prove in Section 3 a direct sum decomposition of the CR space
into (a subset of) the conforming companions space and the span of the linearly
independent CR functions. This construction is given in Section 4 where a full
basis of the CR space is defined which consists of the product of orthogonal
polynomials with bubble functions on simplicial entities (vertices, edges, facets,
etc.). This choice of basis functions has impact on the construction of degrees
of freedom and an interpolation operator. In Section 5 we introduce degrees
of freedom which are bidual to the CR basis functions and (mostly) defined by
integrals over simplices for certain weight functions. In Section 6 we construct
for the two-dimensional case degrees of freedom for the edge basis functions
which are defined as integrals over the edges with appropriate weight functions.
Interestingly, such a construction is possible only in two dimensions or for k = 1;
the details and a proof will be given in Section 6.3.

2 Crouzeix-Raviart Finite Elements

In this section, we define Crouzeix-Raviart spaces in d dimensions, d = 2,3,. ..
and polynomial degree k =1,2,....
Let Q C R% be a bounded Lipschitz polytope. As usual L? (2) is the space of



measurable square-integrable functions with scalar product (u, v) L2(Q) = fQ uv

and norm [[u(72(q) = (x, u)lL/f(Q) The Sobolev space H' () contains all L? ()

functions whose weak derivatives (exist and) are square integrable. All function
spaces are considered over the field of real numbers.

Let N:={1,2,3,...} and Ny := NU{0}. We employ the multi-index notation
in the usual way: for a vector x = (x/),~, € RZ, and a € Nj*, we set

m m m
x% = Hw?, |x| := in, al = Hozg!,

=1 =1 =1
2 = {a e NI | |a| < k}.

Let 7 be a conforming finite element mesh for €2 consisting of closed simplices
K € 7. By F(K) we denote the set of (d — 1)-dimensional closed facets in 0K.
The set of vertices is denoted by V (K) and we employ this notation also for
lower dimensional simplicial entities in 0K, e.g., for F' € F (K), the set V (F')
is the set of vertices of F.

We denote by K the (closed) reference simplex with vertices

7Z0:=0, forl<i<d,z; :=e;, (1)

where e; € R? is the i-th canonical unit vector in R?. Moreover, let F (V, resp.)
be the set of all (d — 1)-dimensional facets (vertices, resp.) in the mesh and let

Foq = {F e F | F C 89}, Fa = .7:\.7:09, (2)
Vaq = {Z ey | Y AS] 89}, Vq = V\Vag.

For F' € F, z € V, we define facet and nodal patches by

T, ={KeT:z€ K}, w,=Uger K,
Fo={Fe€F:z€F}, (3)
Tp={KeT:FCK}, wr:=Uger K.

For a measurable subset D C R?, we denote by |D|, the d-dimensional vol-
ume of D and skip the index d if the dimension is clear from the context, e.g.,
|K| denotes the d-dimensional volume of a simplex K € 7, |F| the (d — 1)-
dimensional volume of a facet F' € F, etc. For a finite discrete set Z its cardi-
nality is denoted by |Z|.

For a conforming simplicial mesh 7 of the domain €2, let

Hl(T)::{ueLz(Q)WKeT: u|;{eH1(IO{>}. (4)

For k € Ny and a simplex K, we denote by P (K) the space of polynomials
of maximal degree k on K and set P_; (K) := {0}. For a (d — 1) dimensional
facet F', we denote by Py (F') the space of (d — 1)-variate polynomials in the
local variables of F'. We also we need the subspace

Py (K) :={v e Py (K) | Vy € V(K) : v (y) = 0} (5)



and employ this notation also for lower dimensional simplicial entities in K,
e.g., for F e F(K):

Py, (F) := {v € By, (F) | Yy € V(F) : v (y) = 0} (6)

For the definition of the non-conforming Crouzeix-Raviart space, the func-
tions B,SR’K, K € 7T, and B,SR’F, F € Fq, will play an important role; their
definition require some preliminaries.

Notation 1 For a simplex K and z € V (K), the affine function Ak , € Py (K)
1s the barycentric coordinate for the vertex z and characterized by

)\K7z (y) = 6y,z vy € V(K),

where 6y , denotes the Kronecker delta.

Let a,, 5 > —1 and n € Nyg. The Jacobi polynomial P,sa’ﬁ) is a polynomial of
degree n such that

/1 PP (z) g () (1-2)" (1+2) do =0 (7)
-1

for all polynomials g of degree less than n, one has (cf. [8, Table 18.6.1]):
B+1),

n!

Pt )= D e () =
n:

(8)

Here, the shifted factorial is defined by (a),, :=a(a+1)...(a+n—1)forn >0
and (a), := 1. Note that PL%9 are the Legendre polynomials (see [8, 18.7.9]). In
our application, the Jacobi polynomials with o = 0 and 8 = d — 2 are relevant.
In this case, the endpoint values are given by

— — n . n+d72
P42 (1) =1 and P4 (-1) = (-1)" p, with p, ;( )

n

(9)

Next, we define the non-conforming shape functions for the Crouzeix-Raviart

space. They differ from the definition in [10, (3.8)] and lead to a Crouzeix-

Raviart space which, in contrast to the space in [10], always contains the con-
forming space as a subspace (see Corollary 10).

Definition 2 Let 7 be a conforming simplicial finite element mesh.
1. For any K € T, the non-conforming simplex function B,SR’K e P, (7) is

given by

—1+ > PO A-2\k,) | onK,
z€V(K)
0 otherwise.

=

BORH =

(10)



The space spanned by these functions is

Vi (T) = span { B{ " K e T}

2. For any F € F, the non-conforming facet function B,SR’F € Py (7) is
given by

pgorr _ [ PO (1= 20 p) - BV for K € T, (1)
k = .
0 otherwise,

where Ak p denotes the barycentric coordinate for a simplex K adjacent
to F' corresponding to the vertex z € V (K) opposite to F. The spaces
spanned by these functions are

Vi€ (F) := span {BSR’F Fe .7:} )

Vi€ (Fa) = span {BSR’F :Fe .FQ} .

CR,F
By,

Remark 3 Note that supp = wp and supp B,SR’K =K. Since \g.r =0

on F, the value of P,go’d_z) (1- QAK’F))F in (11) is equal to P,Eo’d_z) (1)=1.

For even k, the span V?°(T) of the non-conforming shape functions B,SR’K

is the same as the one in [10, before Def. 3.6]. For k =1, the space V™ (Fq)
equals the one in [10, before Def. 3.6]. The reason is that BfR’K = 0 which
will be proved as Case 2 of Lemma 11.

For d =2 and odd k the subtraction of B,SR’K in (11) can be removed since

B,SR’K is continuous in this case. On a facet FF C 0K it holds

(péo,o) (1=2Xxr) - BISR’K> ‘F - (P’gO’O) (1- QAK’F)> ‘F - 12

Next, we introduce the relevant finite element spaces. For k € N; let S (7)
denote the space of globally continuous, piecewise polynomials of maximal de-

ree k:
; Se(T) = {UECO(§)|’U|K€P;€(K) VKE’T}

and the subspace with zero traces on the boundary:
Sko(T) =Sk (T)NHj (Q).
The space of discontinuous polynomials of maximal degree k is

Py () = {peL2<9>|p|%em<ff> w«eT},

where we employed the following notation.



Notation 4 A functionv € H' (T) may be discontinuous across simplex facets.
In this way the values on a facet are mot uniquely defined. For K € T the
function 'U|Io( is well defined and the function v|, equals 'U|Io( in the interior of

K and is defined on OK as the continuous continuation of v|;( to OK.

In a similar fashion the sum of functions vi,vo € H* (T) on some K € T is
defined by
(v1 +v2)| e = Vil + V2l

If the functions v,v1,vs belong to C° (ﬁ) these definitions coincide with the
standard restriction to K.

Next we define the non-conforming Crouzeix-Raviart space in the original
implicit way (see [7]). For a function v € H' (T), we denote by [v] the jump
across the facet F' € F. The Crouzeix-Raviart space of order k is defined
implicitly by

CR;™(T) ={velPy(T)|VF € Fa [v]pLPr1(F)}
and the subspace with (approximate) zero boundary conditions by
CRE0(T) :={v e CRY™ (T) |VF € Foa v L Py (F)}. (13)
Here the symbol “1” always refers to L? orthogonality.

Lemma 5 The functions B,SR’F and B,SR’K in Definition 2 belong to CR™ (7).

Proof. This follows from [10, Theorem 3.5] by showing that P}go,d—z) satisfies
[10, Condition (A.1)]:

PO (1= 2 ) =1 (14a)

z

VF € F(K)\ {F,} /F PO (1 2\k,)q=0 VYgePu_y(F) (14b)

forall K € T,z € V(K), where F, denotes the facet of K opposite to z.

The first condition follows from Ag |, =0 and P]go,d—z) (1) =1 (cf. (8)).
The second condition follows from [12, (2.5.21)] by choosing e = (k;, 0, ..., 0),
K1 =...= Kq41 = 1/2 therein and by using

P20 )k, — 1) = (=) PO (1 — 20k ,)

(see [8, Table 18.6.1]). Here, we present an elementary proof to give an intuition
of this specific choice of the Jacobi weights.
By using the affine equivalence of K to the reference simplex it is sufficient

to show the second condition for K, F := {x = (xj);l:l e | zq = O}, and

z = (1,0,... ,O)T: for all & = (ai)f:_ll € Ncgﬁlfl and corresponding monomials
d—1
; _ d—1
g (X) = Hx;l Vx = (xj)jzl
j=1



it holds

1
/AP,EO’H) (1—221) g (x)dx = / P (1 = 224) G (1) day,
F 0

where

1—z; l1—z1—x2 l-x1—...—x4_2
G (71) :/ / / g (x)drg_1dxg_s...dxs.
0 0 0

Let o' = (aj);l;zl. From the proof of [10, Lemma A.1] it follows

d—2+|a’ a'l
G () = cgaaf® (=) 21 or egai=

Hence,

1
/\ P]EO@*Z) (1 — 2;(;1) g (X) dx = Cd,a/ Pk(:07d72) (1 _ 25[31) :L.ill (1 _ xl)d—2+|a | day
F 0

1 . |

Cd,a (0,d—2) 1-t t+1

- HP Sl I (i
2d—1/_1w() % (U( 5 > ( 5 dt

’
||

for the weight function w (¢) = (£ +1)* 2. Since (%)al (51
Py _1, the orthogonality properties of the Jacobi polynomials imply

€ P|a| C

/A Plgo’dfz) (1—2x1)g(x)dx =0.
F

[
Next, we introduce canonical Crouzeix-Raviart functions on simplicial meshes
in d dimensions by modifying the basic space in [10].

Definition 6 The scalar canonical Crouzeix-Raviart space of order k for con-
forming simplicial finite element meshes T is given by

| S (T)+VPe(T) if k is even,
CRx (T) := { Su(T)+ V< (F) ik is odd.

and the subspace for approximating problems with zero boundary conditions by:

Sko (T)+VPe(T) if k is even,

CRk;O (T) = { Sk,O (T) + anc (.7:9) kaj 18 odd. (15)

We emphasize that the sums in (15), in general, are not direct.



3 A direct sum decomposition of the canonical
Crouzeix-Raviart space

The Lagrange interpolation points for the reference element are given by

1 =
0 (8) = { T2 gy 1o a

where 1 € R? is the vector with constant coeflicients 1. As usual they are lifted
to K € 7 via an affine map pg : K — K to obtain the interpolation points on

the mesh element K via Ny (K) := {(pK (¥):y €N (R’) } We also will need
the subset .

N (K) == N (K)\V (K) (17)
and the corresponding subspaces of Sk (7), Sk,0(7) consisting of functions
which vanish at the vertices of the mesh are given by

S (T)={veS,(T)|VzeV: wv(z)=0}, (18)
Sno(T) = {veSuo(T)|V2eV: v(z)=0}. (19)

The Lagrange interpolation points for 7" are given by Ny (7) := U N (K).
KeT
Let Nio (T) C Nj (T) be the subset, where the Lagrange points on the bound-
ary 92 are removed. Further, let Ny, (7) := Ny (T)\V and Ny o (T) := Ny o (T) \Va.
As usual, for z € Ny, (T), the corresponding Lagrange basis BZ € Sy, (7) is de-
fined implicitly by the conditions

Bi(y) =0uy Vy,2€Np(T),
The basis functions on the reference element K are denoted by BZ € Py <K )

for z € Ny, (K’), and characterized by: B2 (§) = &y 5 for all §,% € N}, <K>

Next, some useful properties of the non-conforming functions BER’K and

B,SR’F and corresponding spaces V¢ (7) V2 (F), and V¢ (Fq) are derived.

The endpoint properties of the Jacobi polynomials (cf. (9)) allow us to
compute the values of the non-conforming functions at the simplex vertices.
For K € T it holds:

BI(CJR,K’K (y) = d_l%d(_l)kpk Vy e V(K). (20a)

For F' € F, K € T it holds:

(0" o ify eV (F
BISRF’K (y) = 1+H(=1)*+pp . Y ( )7. ) (20b)
———"F(1-d) ify €V (K) is opposite to F.

U

We need the following technical lemma with regard to the vertex values in (20).



Lemma 7 Let d>2 and k > 1. It holds

d—14(=1)"pr=0 < (k=1)V(d=2Ak is odd), (21a)
d+ (-1)" pi #0, (21b)
pr=1 <= d=2. (21c)

Proof. We first prove (21a).

The direction “ <= " in (21a) follows by direct computation since pr = d—1
for k=1 and p; =1 for d = 2. In the right-hand side of (21a) & is odd so that
0(k):=d—1+(-1)"pp =0.

Next we prove “ =" in (21a). For even k, we have 0 (k) =d — 1+ p; >
d > 0. Hence 6 (k) = 0 implies & is odd and 0 (k) =d — 1 — py.

For k = 1, we have p, = d — 1 so that 6 (1) = 0 and it remains to consider
odd k > 3. It is easy to verify that (kJrZ*Q) is monotonically growing with
respect to k. For odd k > 3 it holds

Ok —d—1- (’”gQ) <d-1- (dgl) =L [@+3)([d-1)(d-2).

Since d > 2 the condition 6 (k) = 0 implies d = 2.
Next we prove (21b). For even k it holds dJr(fl)k pr =d+p, > 0. Ford =2
it holds d + (—=1)" p = 2+ (=1)" > 0 while for k = 1 we get d + (—1)* pj, = 1.
It remains to consider the case d > 3 and odd k£ > 3. A similar monotonicity
argument leads to

k+d—2)\ k=3 d+1 1,
— = — < — = — = — .
d—pp=d ( . )d (3) s (=7) <0

Hence, (21a) is proved. The equivalence (21c) is trivial. m

Lemma 8 Let k € N. Forz €V, the function
g Y B )
FeF,
satisfies

IZJZG{S;‘.(T) foranyz eV,
k Sko(T) ifz € Va, (23)

vy €V UE(y) = Vi () = (1+ (=1 o) by

Proof. Let z € V. The function %7 has support in w, and for any F' € F, and
adjacent simplex K € 7 it holds

Vil = Z B’SRF’K - Z (Pé07d72) (1-2Xky)— BISRK)’

PR yEVE {2} K



For K, K' € Tr and y € V(F) it holds Ak y|. = Ax/y|p so that the
function 1% is continuous across F' so that 97|, is continuous.
On the facet F, in K opposite to z it holds

Vel = > PO (1-2xmylp) — [ 1m+ X PO (1- 20kl )
yEV(F2) yEV(K)
= X A (-2xmln) - | X AT (1-22ksls) | =0
yEV(F2) YEV(Fy)

Hence, in general ¢7 € Sy, (7)) with supp 7 C w, and for inner vertices z € Vg
it follows ¢% € Sk (7).

We use the vertex values of the non-conforming function (20) to evaluate 97,
at the simplex vertices. m

Lemma 9 For any k € N, it holds

Ry (1) = | S (D) + Vi< (F) & odd (24)
Sp(T)+VPe(T) Fk even,

and

CRyo(7) = Sk:,o (T) + Ve (}"Q) k odd, (25)
’ Sko (T)+ VR (T)  k even.

Proof. The second statements in (24) and (25) are simply repetitions of the
definition.

We only prove the first statement in (25); the first one in (24) follows by the
same arguments. We employ the function 7 as in Lemma 8. The combination
of (21b) and (23) implies ¥f (z) # 0 so that the scaled version ¢ = ¥f/¥F (z)
is well defined, belongs to Sk, (7), and satisfies for z € Va:

V() =dye Yy eV
Any v € CRg,0 (7) can be written in the form
v=w+wy for w®eSpo(T), wyr € Vi (Fa).
Then,

- °
w® = wi +w§ foruf= Y w(2)df and w§e Spo(T).
z€Vq

Since ¢% € V2 (Fq) it follows w§ € V*° (Fq) and we have derived the repre-

L]
sentation v = wf + wi + Wi with w§ € Sk (7) and w§ + Wi € V*°(Fq).
|

10



Corollary 10 The conforming finite element space are contained in the Crouzeix-
Raviart spaces for k > 1:

S C CRg (T) and Sk,() C CRk,o (T) .

Lemma 11 Fork > 2, a basis for V2 (T) is given by By (T) := {BSR’K, K e T}
while for k =1 it holds V{** (T) = {0}.

Forodd k > 1, a basis for V** (Fq) is given by By (Fa) = {B,SR’F, Fe ]-"Q}
and a basts for V¢ (F) by By¢ (F) := {BSR’F,F € .7:},
Proof. From the definition of V¢ (7') and V};»° (Fq) it follows that it is sufficient
to prove that each of the sets By° (T), Bp® (Fq) consists of linearly independent
functions.

Case 1, the space V¢ (Fq).
It is sufficient to prove that

(0 = > aFB,SR’F> — (VFeFq ap=0). (26)
FeFaq

To simplify the notation in the sequel we define ap := 0 for F' € Fyq so that
S apBRF = 3 apBORF.
FeFq FeF
Let K € T and note that

(5 )

FeFq

= > ap B . (27)
K FeF(K) K

The vertex values in (20) combined with the assumption in (26) and (27) imply
the following vertex conditions:

—dap, + Y ap=0 VyeV(K), (28)
FeF(K)

where Fy, is the facet of K opposite to y. We collect the coefficients in o« =
(ap) per(x) and define the matrix

Qu (S) = ' ' e S RdXd7 (29)

so that (28) becomes equivalent to

Qut1(d—1)a=0. (30)

11



In Appendix A we will prove that the determinant is given by
detQq(s) = (1) 1+ (d-1-5) (31)
so that 4
det Qa1 (d—1) = (=d)" # 0. (32)
Hence, the system (30) has the unique solution & = 0. Since K € 7 was
arbitrary we conclude that (26) holds.
The proof that the functions in B;° (F) are linearly independent is verbatim.
Case 2, the space V" (7).
The supports of the functions BSR’K have pairwise disjoint interior and so
the functions in B¢ (T) are L? (Q)-orthogonal. Hence, it suffices to show that

B,SR’K is not the zero function for £ > 2 and BlC RKE — 0. For the reference

element, it holds

R d
4B o) = (Z PO (1 - m)) +P (—(L—2 )1 Vx= (@), € K.
=1

We employ the representation (see [8, 18.5.7]):

PO (12 = 3 (1) ()

£=0

Péo,dfz) (= (1-29)) (8, Table 18.6.1] (—1)k Pédfz,o) (1—2s)

N e R [

=0

to obtain

$BH| () = _1+§;(_1)e (1;) <k+€—;d—2> :xf (33)

! :O (T () e

_ <2k: +kd—2> 1) i

where pr_1 € Pr_1. It is easy to see that for k > 2 the highest order term
<((—1)k ijl x’@> + |x|k> is not the zero function and BER’K 2 # 0.

, k
x;‘ + %" | +pr-1 (%),
1

J

j
For k = 1, we obtain from (33)

dBfR’f(‘f((x):—1+d—d|x|—(d—1)+d|x| ~0.

12



Lemma 12 With the Notation as in Lemma 11, a basis for CRy (T) is given

by
{BZ |Vz e N, (T)}UB(T')  k even,
where T' C T is any submesh with |T'| = |T| — 1.
A basis for the subspace CRy0 (T) is given by
{BZ |Vz € Nio (T)}UBRe(T) k even.

Proof. Case 1: k£ > 1 is odd.

For this case, we only prove that BYR (7) is a basis of CRy (7') while the
proof of (36) is verbatim. From (25) and the definition of V}?* (F) and V;*° (7))
we conclude that it is sufficient to prove

> wWBi+ Y arB M =0

ZGJ\./;C(T) Fer (37)
- =wE
= all coefficients v,, ar are zero.
Let K € 7 and CRF
Wi = Z ar B )K. (38)

FEF(K)
Since w. (y) = 0 for all y € V, condition (37) implies the vertex condition
wg (y) = 0 for all y € V(K). Reasoning as in Case 1 of the proof of Lemma
11 we conclude that all coefficients o are zero. It is well known that the con-
forming basis functions B} are linearly independent so that also all coeflicients
vz in (37) are zero.

Case 2: k > 2is even.

Part 1: We first prove that BSR (7)) in (35) defines a basis of CRy (7). The
statement is trivial if 7 contains only a single simplex since then CRy (7) =
Sk (7) and B{R(T) = {B% | Vz € N} (T)} is the standard Lagrange basis. It
remains to consider the case |7 > 2.

1st step: We show

VEC(T) NSk (T) =span {W;}  with Uy := > B (39)
KeT
Let w € V»°(7). For any K € 7 it holds w|, = Bk BSR’K’K. Let K’ be
an adjacent simplex: F' := KN K' € Fo. From (20a) and (21a) it follows
BJRE = B,SR’KI‘K # 0 so that the condition w € Sy (7) implies
an

that g = Bk. By iterating this argument over adjacent simplices we obtain
Brn = Pk for all K" € T and (39) follows.
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2nd step: Since ¥y ¢ V;*°(7’) we conclude that V;** (77) NSk (7) = {0}
and the sum in CRy, := Ve (T")®Sy, (T) is direct. From Lemma 11 and the well-
known fact that the functions in {BZ | Vz € N}, (T)} are linearly independent we
conclude that B{R (7) is a basis of CRy. It remains to show CR; = CRy, (7).
Since CRy C CRy, (7)) it is sufficient to prove B,SR’K € CRy, for {K}=T\T'.
Let ), := Y oKreT B,SR’K/ € GEC Then

U, = BORE 10y, € 8, (7)),

ie., BOWE — W, — U with ¥y, € 5) (T) C CRy and ¥, € CRy,.

Part 2: It remains to prove that B,S% (7) in (36) defines a basis of CRy o (7).
We generalize the proof [5, Thm. 22] in 2D to general dimension d. It is sufficient
to prove the conclusion

> wBE+ Y BB =0

zEN,0(T) KeT
N———

=W, =wT

= all coefficients ~,, B are zero.

Consider some K € 7 which has at least one facet, say F', on 0. Then

C
(wc+w7)|F - wT|F =Bk Bk-R7K

From (10), (20), and (21a) we conclude that for y € V (F) :

d—1+ flkp.
g (y) = EHE e 4

so that (w. + wr)|r = 0 implies fx = 0 and, in turn
((we +wr)| ) = We| g =0) = (12=0 VzeN;NK). (41)

This argument allows us to set up an induction step. We set ' := Q\K
and 7’ := T\ {K}. Then, the function (w; + wr),, vanishes on 9€Y; we again
choose some K’ € 7’ with one facet on 9" and conclude as before that the
corresponding coefficients Sx+ and v,, z € K’ are zero. ®

These findings are collected as the following theorem.

Theorem 13 The sums in (25) are direct: For any k € N, it holds

CRx (T) = ‘§k (T)® V2 (F) k odd,
Sp(T)@ VP (T') k even,

where T' C T is any submesh with |T'| =|7T| —1 and

CRyo (T) = { Sk0(T) @V (Fa) k odd,
7 Spo(T)e Ve (T) k even.

14



For odd k > 1, a basis for V;* (F) is given by Bp¢ (F) = {B,SR’F,F € .7:}
and for V;*¢ (Fq) by By (Fa) = {B,SR’F, F e .7:9} while, for k > 2, a basis for
Vire (T) is given by By (T) = {B,SR’K, K e T}, For k =1 it holds V**(T) =
{0}

It holds

Sk (T) C CRg (7) C CRY™ (T) (42)

and
Sk,0(T) C CRyyo (7) C CREY (7). (43)

The first inclusion in (43) is strict if k is even or if k is odd and T consists
of more than a single simplex. The second inclusion in (43) is strict, e.g., for
d=3and k> 2.

Proof. The first claims are direct consequences of the previous lemmata. The
first inclusion in (43) is strict if CRy o (7)) contains at least one non-conforming
shape function. This is always the case if £k > 2 is even and for odd k if 7
contains at least one inner facet, i.e., if 7 consists of more than a single simplex.
The second inclusion is strict, e.g., for d = 3 and any k > 2 (see [6, Sec. 5.3.1,
Table 5.3.2]). For d = 2 however, the second inclusion becomes an equality (see

2], [5]). m

4 A basis for Crouzeix-Raviart spaces CRy (7)
and CRy o (7)

In this section we will present a basis for the Crouzeix-Raviart space which is
composed of orthogonal polynomials multiplied by face bubble functions. This
allows for a simple construction of the degrees of freedom for the face basis
functions as facet and simplex integrals with weight functions such they are
well defined on CRy o (7).

Theorem 13 directly give guidelines for a construction: any (standard) basis

L[] L]
for S (T), Sk,0 (7) appended by non conforming facet functions BSR’F for odd
k and by non-conforming simplex functions BkC,R’K form a basis of the Crouzeix-
Raviart spaces. However, the construction of the local bidual degrees of freedom
is a non-trivial task and depends on the choice of basis for the conforming
parts. Since the functions in CRy o (7) are in general discontinuous across
facets while their moments up to a polynomial degree k — 1 are continuous, the
degrees of freedom associated to the inner facets must be moments of the form
J f (u) = [ F gi u for polynomial weights gf up to a degree k— 1. Orthogonality
relations on facets will become important for the choice of gi and this is the
reason to define a basis based on the products of face bubbles with orthogonal
polynomials on the simplicial entities (edges, facets, etc.).

15



4.1 The simplicial complex of a simplicial finite element
mesh

Let 7 be a conforming finite element mesh for €2 consisting of closed sim-

plices K € 7. Let S denote the associate simplicial complex, i.e., the set of

(-(dimensional) simplices (faces), ¢ € {0,1,...,d}, that satisfies the following
conditions:

1. Every face! of a simplex 7 € S is also in S.

2. The non-empty intersection of any two simplices 71,75 € S is a face of
both, 7 and 7.

We distinguish between the boundary faces Spo := {7 € S| 7 € 902} and
the inner faces Sq := S\Saq. The subset of S which contains all ¢-simplices
in § is Sy. Specifically, the set of vertices V is Sy, the set of edges £ is Sy
and the set of facets F equals Sg_1. The subset of S; which contains all those
f-simplices which are not a subset of the boundary 02 is denoted by S¢ . The
corresponding skeletons X, Xy are given by

Yy = UT and Y= U T. (44)

TES, TESL 0
In analogy to (3) we define for 7 € Sy the adjacent simplex patch by

T, ={KeT|rCK} and w;:=gr K

4.2 The face bubble functions

For z € V, let ) € S1(7) be the “hat function” for the vertex z characterized
by the condition ¢} (y) = d,y for all z,y € V. For a face 7, the set of vertices
is denoted by V (7), the face bubble W, € Sy o (7) is given by

W, = H ol and satisfies supp W, = 7.
z€V(T)

4.3 Orthogonal polynomials on the reference simplex

In [12, §2.5.2] orthogonal polynomials on the ¢-dimensional reference element

N V. L
Ky = {X = (23);1 € RS | iy < 1}

are defined which are generalizations of the univariate Jacobi polynomials as
we will explain in the following. Let Zg := 0, Z; := e;, 1 < j < /£ denote the
vertices of K, (see (1)), where e; denotes the j-th canonical unit vector in R,

LA face of a simplex is the convex hull of a non-empty subset of the simplex vertices. The
facets of a simplex are the (d — 1 dimensional) faces with exactly d vertices.
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and let j\j denote the barycentric coordinate in K, for the vertex z;. In [12,
§2.5.2], the polynomials P, are defined for o € N§, by first introducing the
formal expression for y = (yj)fzo € RH!

¢ ¢ *
. 2y
PEY () =TT [wo+ D wm | PV <—e - 1)
H Z ’ Yo + Zm:j Ym
with

si=2( Y am|+2(0—j)+1
m=j+1

~ RN
and then inserting the barycentric coordinates A = <)\j> o
J:

Py (%) := PP (X (x)) vk € K.

They are orthogonal with respect to the scalar product
d ~
(u,v)g, = | Wgk,uv with weight function Wy = H)\g,

K, =0

ie.,
(Paapﬁ)f(z = 5a,ﬁca

for some constants ¢, # 0 (the value of ¢, is given in [12, §2.5.2]). In this
way, the set {Po | @ € N&, | forms an orthogonal basis of the space Py, <K z)

of {—variate polynomials on K, of maximal total degree m.

Remark 14 Let £ € {1,2,...,d}. Let m > £+ 1. The set

{WKZPQ lae Ngm,(w)}
forms a basis of
P (Kg) = {v eP,, (Kg) | vk, = o}. (45)
Example 15 The orthogonal polynomials Py, (X) have the explicit form

1. forl=1:
P, (#) = P(LD (2&1 (&) — 1)

2. and for £ = 2:

. N < R 2o (X
P(Oél,az) (X) = Po(t? 0 (2)\1 (X) N 1) (1 N )\1 (X)> P(Ec;l) < ZA( ()A) - 1) .
X

17



4.4 Basis functions associated with simplex faces

To define basis functions associated to a face 7 € Sy we fix a numbering of its
vertices A; (1), 0 < j < £. For any adjacent simplex K € 7., we choose an
affine pullback yx : Kqg — K such that the restriction to K, satisfies

B (Aj (1) = Ag (1)) V&= ()7, € Kq with (z,)7_,,

-

Xk (R) = Ao (1)+ ,=0.

Jj=1

It is important to note that the restrictions y | K, coincide for all K € 7. due
to the chosen fixed numbering of vertices in 7, i.e., 7 is parametrized in the
same way for all adjacent simplices. According to Remark 14 basis functions
associated to a face 7 € Sy exist only if £ > ¢ + 1 which we assume for the
following. We employ the index sets

Ikyg = {(T, a) T E Sg [0 RS Nif(l+1)} , Ik%g = {(T, a) S Ilal T E Sgﬂ},

min{k—1,d} min{k—1,d}
U  Zre ifkisodd, U  TZreo ifkisodd,
.f = .7 =
Iy = min{k‘—ll,d} Ika T min{k‘—ll,d}
U Tie if k is even, U T if kis even,
£=0 £=0

Ti,00 = Ti\Zk,0-

Definition 16 Let k € N>q. For ¢ € {0,1,...,k — 1}, the conforming basis
functions associated to a face T € Sp are given for

1. £=0 by
Boa =9 VZEV ac N%k_l :={0},
2.0>1 by
[ WiPyoxy KeT, ¢
Bro = { 0 otherwise Vo &€ Neg— () (46)

and collected in

By (T) = {Bﬂa | V(T, a) S Ik:l} s
Beo(T) :={Bra |V (1,0) € T p0} -

Remark 17 The function B; o in (46) can be expressed without the pullback
¢
X by setting pt = (50}&1:(7)> . and

Bro = W-PJ™ (4}).
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4.5 A basis for CR; (7) and CRy (7)

In this section, we will prove that the union of the basis functions in By (7)
with the non-conforming facet/simplex functions yields a basis of the Crouzeix-
Raviart spaces.

Definition 18 Let k € N>q. A basis for CRy (T) is given by

min{k—1,d}
U B(D|u {B,SR’F L Fe }"} if k is odd,
=1
BSR (T) = min{k—1,d} (47)
U Be(T) | U {B,SR’K K e T} if k is even
£=0

and for CRy,0 (7) by
min{k—1,d}

U Buwo(T)|u {B,SRvF Fe fg} if k is odd,
=1
min{k—1,d}
U Beo(T) | U {B;SR’K K e T} if k is even.
=0
(48)

The following lemma states that the notion “basis” in Definition 18 indeed
is justified.

Lemma 19 The set B (T) forms a basis of CR (T) and Bi§ (T) of CRy0 (7).

Proof. We only prove the first statement. Due to Theorem 13 it is sufficient
to prove that

min{k—1,d}
U Be(7) ifkisodd,
/=1

min{k—1,d}

U Be(T) if kis even
=0

is a basis for 5’;@ (7) for odd k and for Sy (7) for even k. We start with the
linear independence and assume 0 < ¢ < min{k — 1,d}. The construction of
the basis functions B, o via the face bubbles W, imply that

BT,Q|T,:O VTESg VT/GSg/ Vélﬁé

Since B; ol is not the zero function the direct sum representation follows

min{k—1,d} min{k—1,d}
Z Z span {BT,Q o€ Nf;f(zﬂ)} = @ @ span {Br,a e AS Nif(ul)} :
£=0 TESY £=0 TES)
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Remark 14 implies via a simple counting argument:

) k-1
dim Py _(¢41),0 (1) = ( ¢ ) = )Ni_(5+1))

so that the functions B, o, a € Nif(e 41y are also linearly independent and, in

min{k—1,d} . . . .
turn, the set U By (T) consists of linearly independent functions. It

=0
remains to show that any function in Sk (7), Sk (7) can be represented as a
linear combination of BER (7).

Case 1: k is even.

We employ the Lagrange basis as in Lemma 12. Recall the definition of the
skeleton X as in (44) and note that Ny (7) Ny = V. Any function u € S (T)
can be written in the form

u=wug+vy foruy= Z u(z) Bf (49)
zENL(T)NZg

and v; vanishes in all simplex vertices. Remark 14 implies that there is a
function wg € span BYR (T) such that

ug (z) = wo (z) Vz €V.

Hence, the difference u — wg vanish in all simplex vertices and v — wg has the
representation?

U —wy =u, +vy for vy = Z u(z) Bf.
z2ENK(T)N(Z1\X0)

Again Remark 14 implies that the restriction of u; to an edge can be represented
by some w; € span BLR (7)) :

U1|E = 'lU1|E VEGSl (T)

and u—wo—w; vanishes on 1. In this way, an induction argument with respect
to the dimension ¢ implies

u € span B (T).

Case 2: k is odd.
This case can be concluded by the same arguments as before by observing

the ug = 0 in (49) foruES’;€ (7). m

2Note that N} (7) N (Z1\Z0) is the set of nodal points which lie in the interiors of the
edges E € £.

20



5 Degrees of freedom for the case d > 2 and £ is
odd

In this section, we will define degrees of freedom for the Crouzeix-Raviart space
for general dimension d € {2,3,...} and odd k¥ which form a dual basis. We
recall the formal definition.

Definition 20 Let {b; : i € {1,2,...,N}} be a basis of a finite dimensional vec-
tor space Viy. A bidual basis is a set of functionals J;, i € {1,2,..., N}, in the
dual space V§; such that

Ji (bJ) = 61'71‘ Vi, j € {1,2,...,N}.
As a very mild assumption on the mesh we require that
7 contains more than only one tetrahedron. (50)

The construction starts with some preliminaries for a single simplex K € 7.
We set

L2(Q)| = {flx: f € L* ()}

and use this notation also for subspaces of L? (Q). We introduce index sets for
KeT and F € F by

d
Se(K):={reS|TtCK}, S(K)::USg(K),

/=1

d
S¢(F):={reS|rCF}, S(F) =S (F),

/=1

d
Tie (K) = {(ra) i T € S (K) aeNy by TulK) = (T (K),
(=1

d—1
Toe(F)i={(r.) : 7 € S (F) @eNLy oy} T (F)i= e_Ulzk.,g (F),

BER(K) = { Br.aly : (r,a) € T (K)} U {BER’F)K L Fe ]—"(K)} .
(51)
Since Sk (T) C CRy (7) it holds

Py (K) = Sk (T)|,x = CRy, ()| = span {B{F (K)} . (52)

Since the number d + 1 of vertices of a simplex equals the number of facets it
follows from the well known fact (cf. (16), (51))

. (4) -

d
UZw.e (K)' = dim Py, (K)
=0

that |BS™ (K)| = dim Py, (K) and the combination with Theorem 13 yields that
the functions in BSR (K) are linearly independent. From elementary linear
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algebra we conclude that there exists a bidual basis for BER (K), induced by
95y € L*(K), (1,0) € T} (K) and g™ € [2(K), F € F(K) so that the
associated functionals

K = CR,K_ ._ CR,K
Jq—7au = (gT’O"u)H(K) and JF u = (gF ,u> )
satisfy
J"{(a (Bt7ﬁ|K) = 6T,t6a,ﬁ, Jfa <BISR7F)K> = 0,
T (Bugli) =0, I (BT ) = bne

A second ingredient for the definition of degrees of freedom is the selection
of an assignment function marky : S — 7 U Fyq which satisfies

marky (7) € 7 and 7 C marky (1) V7 € Sq, (53a)
marky (7) € Faq and 7 C marky (1) V7 € Spa. (53b)

For the final definition of the degrees of freedom for Crouzeix-Raviart spaces
we need the following lemma. For K € 7 and F, F’ € F (K), the restrictions of
the basis functions in BYR (K) (see (51)) to a simplex facet are denoted by

CR,F' . p»CR,F’
By = By

K —
BF,T,a B BF,a|K|F and K‘F.

Lemma 21 Let k be odd. For K € T and F € F (K), leti—'(K) C F(K) be a
strict subset, i.e., '%(K)‘ <|F(K)|, and F € ‘7.-'(K) Then the functions in

«CR , .
B, (K,F):={Bf, o:(r,0) €L, (F)}U {B?}Z»F A= }"(K)} (54)
are linearly independent in L? (F).

Proof. We first prove that the sum of the spans of the two sets in (54) is direct
while in the second part of the proof we show the functions in each of the two
sets of (54) are linearly independent.

CR

Let u € spanB, (K, F). Then, there is a splitting v = wg + u; with

U1 € span {BS}Z’F/ :F' e ]:(K)} and

ug € span {Bp, o (T, @) € Ty (F)}.

First, we prove v = 0 = wup = u; = 0. Since ug vanishes in all simplex
vertices, the condition v = 0 implies

u(z)= > pBey’ (2)=0 VzaeV(F). (55)

FIeF(K)
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In a similar fashion as in (30) this condition can be formulated as a linear system

for the coefficients vy = (’YF/)F’GJ.-‘(K)- We choose a numbering of the facets

in F (K) such that Fy = F' and number the vertices in V (K) such that z; is
opposite to the facet F;. From F' € F (K) and Bg}z’F = 1 we conclude that the
implication “condition (55) = ~yj = 0” is equivalent to the condition

detRg(d—1)#0 (56)
with Ry as in (77). The relation (56) is proved in the appendix (Lemma 36).
and v, = 0 follows. Hence, u; = 0 which implies ug = 0.

From (56) it follows that the functions Bg}Z’F,, F' € F(K), are linearly in-

d—1
dependent. Finally, we show that the functions Bl{ﬂ{ma () € UIM (K)}
=1

are linearly independent. The proof is standard and follows by induction over
{=1,2,..., from

K
Fra

1. the support properties of B{{T’a, ie: B =0forall 7 € § (K) and

¢
T € (US,» (K)) \ {7} and

2. the linear independence of <B1{f T»a}r> ; see the proof of Lemma

aeN
19. m

T/

<k—£—1

For F' € Fyq and adjacent K € T, let
F(K) = {F' € F(K) N Foa} . (57)

Clearly, F' € .;-'(K) and assumption (50) imply ‘J’-‘(K)‘ < |F(K)| so that

Lemma 21 becomes applicable. Elementary linear algebra tells us that there
o CR

exists a bidual basis for the functions in B, (K, F) (see (54)), induced by

gf:a € L% (F), (1,a) € I, (F) and gg/R’F € L?(F), F' € F(K) such that the
associated functionals

CR,F . ( CR,F
ijau = (gﬁa,u)ﬂ(m and Jp T ui= (gF, ,u)Lz(F) (58)
satisfy
Jf:a <B§7'{,t“3> - 5T,t6a,lﬁ, :].Il_;:a (Bg}:};]f(> = O7 (59)
T (BEg) =0, IR (BENE) = dp e

for all (1, ), (t,8) € Ty (F) and F', F" € F (K).
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Definition 22 Let k be odd and an assignment function marky : S — T be
chosen which satisfies (53). The degrees of freedom for the Crouzeix-Raviart
spaces are given

1. for CRy (7) by

Ti = {J a|V (r,a) € Iyo  with marky (1) =K € T} (60a)
{ 1V 7’ Oé c I .00 with markT( ) F e fag} (60b)

U {JngK \VF € Fo  with marky (F) = K € T} (60c)

U {JgR»F VF € faQ} (60d)

2. and for CRy,0 (T) by
jk()—{,[.a|v (r,a) € Tro  with marky (1) =K € T} (61a)
U {JngK \VF € Fo  with marky (F) = K € T} . (61D)
Theorem 23 Let k be odd and assume that T contains more than one simplez.

Then, the degrees of freedom (60) are bidual to the basis in (47) and the set of
freedoms (61) are bidual to set of basis function (48).

Proof. We prove the statement only for the space CRy (7)) more concretely we
show first that for any w € CRy, (7') the implication

(J(uw)=0 VJeT) = (u=0) (62)
holds. Let J (u) = 0 for all J € J. Then,
ul = Z ’Y(Kt,g) By gl + Z Sp BISR’F p
(t,8)ELk(K) F'eF(K)

The biduality property of JX, imply
'y{ia) =0 and 6p =0

for all (7, @) € Iy o with K = marky (7) and F' € Fq with K = marky (F)). By
applying this argument for all K € 7T it follows that u has the representation

CR,
u= Y igBlg+ Y BT (63)
(t,B)E€Zk,00 FeFarqa

Now, let F' € Fpq and K € T be the adjacent simplex. As stated after (57),
F e .;-'(K) and .7.-"(K) < |F (K)| so that Lemma 21 is applicable and we can
use the bidual properties (59) and

CR,F'
up= Y, WeBlsgt Y. wBp
(t,B)E€Tx(F) FreF(K)NFoq
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to see that all the coefficients in (63) are zero.

Since the number of basis functions and the number of degrees of freedom
assigned to the same geometric entity 7 € S are the same, it follows | Ji| =
|BY® (T)| and Jy is well-defined as set of degrees of freedom for CRy, (7). The
biduality follows by construction. m

The dual basis directly gives rise to the definition of a (quasi-)interpolation
operator.

Definition 24 Let k be odd and assume that T contains more than one simplez.
A quasi-interpolation operator I : H' () + CRy (7) — CRy, (T) is given by

It pu = Z (JEqu) Bra + Z (JSR’KU> B™F

(1,a0) €Ly 0 FeFq
+ > (Eaw)Brat Y (M) BV
(T,a)GIkyag FeFan

with the convention that K = marky (1) for 7 € Fq and F = marky (1) for
T € Faq.

Lemma 25 Let k be odd and assume that T contains more than one sim-
plex. The quasi-interpolation operator It j, is a projection and the restriction to
H} (Q) + CRy0 (T) satisfies

I g Hy (Q) + CRyo (7) — CRipo (7). (64)
For u € H} (Q) + CRy0 (T) it holds
Irpu= > (JEu) Bra+ Y. (70 ) BEVE.
(T,OL)EIK-J) FeFaq

Proof. The projection property of I7  is a direct consequence of the biduality
of the degrees of freedom. The property (64) of the restriction simply follows
since all functionals related to geometric entities on the boundary 052 are defined
via integrals over facets on the boundary and hence vanish for functions in
H} (Q). The boundary facet functionals JZ,, (7,a) € Ty 00, and JgR’F, F e
Faq, vanish for functions u € CRy o (©2) due to their biduality. m

The following remark explains why, in general, local degrees of freedom do
not exist for even polynomial degree k.

Remark 26 Let k be even. From Lemma 12 it follows that a basis for CRy, (T)
s given by

BER(T) = {B? | Vz € N, (T)} U {B,SR»K VK € T’} ,

where T' C T is any submesh with |T'| = |T| — 1. Let T C T' and set
Q:= | J K. Let
KeT

BN = { B | vz € Nio(T) with Bilg #0}u{B{™ | vK € T}
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be the set of basis functions whose restrictions to Q are non-trivial. By con-

—_

tradiction, assume that there is a set j,SR of basis functions for the dual space
—\/ - —
<span BER> with local support property: suppJ C Q for all J € JE®. Then

the corresponding Gram’s matriz (J (B)) is reqular. However, as in the

Jegcm
BeBR
proof (Case 2, Part 1, 1st step) of Lemma 12 it follows that

Sk (T)|g Nspan {BkC,R’K | VK € %} = span { ¥y |5 }

with Uy, as in (89). This implies that for the space CRy (7) and even k there
exists no basis of the dual space which has the local support property. m

6 Degrees of freedom and an approximation op-
erator for the case d =2 and £ is odd

The degrees of freedom associated to the inner faces for general dimension d >
2 are defined by integrals over adjacent volume simplices K € 7. For the
important case of two spatial dimensions d = 2, these degrees of freedom can
be defined alternatively by facet (edge) integrals with weight functions which
are polynomials of maximal degree £k — 1. In this section we present their
construction.

6.1 Degrees of freedom

For the following construction we assume that & > 1 is odd and that 7 is a
triangulation of a two-dimensional polygonal domain. Recall the ¥; denotes
the mesh skeleton (the union of all edges). We will need the space

Shoo (T) = {u € Sno(T) | uly, = o} (65)

which is non-trivial for £ > 3 and then consists of polynomial triangle bubbles.
We present a partial basis along degrees of freedom for CRy (7)) which
consists of conforming and non-conforming edge functions and the direct sum

of their spans with Sy o (7) yields CRy o (7).

This needs some notation. For d = 2 the set of edges and the set of facets
coincide and we write &, for Fq (cf. (2)). For E € &g, we fix a numbering
of the endpoints of E: Aj (F), A2 (FE) and define the edge bubble by br =
wkl(E)wkz(E) which belongs to Sa o (7).

The edge basis functions are given by

VE € 5{2 } BE — bEPlslyl) (250}§2(E) _ 1) I < k— 27
Ve {0,1,....k—1} w B}SR,E p=k—1.
(66)
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Corollary 27 The basis functions have the following support properties
SupprCTE Ve {0,1,...,k—1}.

Next we define the degrees of freedom for these functions. Since the jumps
of v € CRy,o (7) satisfy moment conditions up to an order k — 1 across each
edge, edge functionals of the type JF (u) := [, B gPu defined via polynomials
gf € P (E) are well-defined for Crouzeix-Raviart functions.

Definition 28 The edge functionals JF are given for any E € £q and v €
{1,2,...,k—1} by

2
JEy = E/ngu (67a)

with weight function

9 = (Pﬁl’l) (20a) — 1) = cor Py (20m00m) — 1)) (67b)
and constants’

2 2 1= kgl _
o AN LSS ve {0l k-2,

8 (V + 1) ’ m v=~Fk—1.

(67¢c)

Lemma 29 Let k > 1 be odd. Forv,pu € {0,1,....,k—1} and E,E’ € £ and
u € Sko(T) it holds

JE(BE) = buudemr, JE (w)=0. (68)

Proof. First we consider the case pn € {0,1,...,k — 2}.
The support properties (Corollary 27) imply that for E' € £\ {E} it holds

BY ,, = 0and hence JE <Bf/> = 0 for such E'. Next, let E = E’. We choose

an affine bijection ¢ : [-1,1] — E such that pg (—1) = A; (F). Then
((2easm) —1)|povp) (@) = 2.

For € {0,1,...,k — 2} we get

7B = |

-1

1

1-2)(1+2) (P,Sl’l) () — o, PLD (x)) P (2)da = 6, .

It remains to consider the case p = k — 1. Note that the function Bf_l } = is
zero for all edges E’ C &g which are not subset of the edge patch wg and hence
JF (BE_,) = 0 for those edges.

3The constant -y, takes into account the relation (cf. [8, Table 18.3.1]):

/711 (1) (1 42) (P (:p))2 e
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For E' = E, it holds

2
7 (Bia) = 1 /E% (P (20a0) — 1) = e PLY (20a,0m — 1)) PO (1)

1
= /1% (Pu(l’l) (@) — ¢, 1 PY (a:)) da.

/
From [8, 18.9.15] it follows that VLH (P,Eg_’(l])) — P{"Y so that

1 1 2(1— (=)
9 /
[ P @ar= 25 [ (R0) - 2o

1 v+ 2 1 v+ 2

! (1,1) kodd 4
The coefficient ¢, ; in (67c) is chosen such that

2 (1 - (—1)”“) A
E (pE
B =T - % - —1,v 5 1, ey - 1 .

J, (Bil1) =~ 5 Copr—T | = 1w WE{0 k—1}

It remains to consider those edges E’ € £, with E' C dwg. Then,
/ 2
17 (Bia) = 1 /E (P (2eaun = 1) = P (20ms0n = 1)) POV (1= 20ip)

Since Péo’o) (1- QAK’E))E' is the (lifted) Legendre polynomial of degree k, the
orthogonality properties of Legendre polynomials imply that this integral is zero.

The second statement in (68) simply follows from u|, = 0 for u € Sk (7T)
and any edge E € £. 1
The linearly independent functions BE are collected in the set

Be(T):={BJ:VEc& VYpe{0,1,... k—-1}}
and span the interelement space
Slf,o (7) :=spanB¢ (7).
Corollary 30 Let k > 1 be odd. Then

CRiyo (T) = Sk (T) & Sk (T).

6.2 An approximation operator

In this section, we will introduce a class of local approximation operators Iz j :
H{ (Q) + CRy (7) — CRy,0 (7). The construction starts by defining the edge
related interpolation

k—1
Ifju= Y > (JPu)BE. (69)

Ee&qv=0
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Next, one chooses a bounded linear operator Iz : Hg (Q) + CRio (7) —
Sk,0 (T) which is local in the sense that for all K € T

(i)

for given local projections Hifo : L2 (K) — Sk, (K). A typical choice of Hifo is

= Hifo (ulg) Yue H& (Q) 4+ CRi,o (7),
K
the L? (K)-orthogonal projection onto Sk o (K).

Definition 31 A class of local approximation operators I7 ; : H} (2)4+CRy0 (7) —
CRyg.,0 (T) is given by

I7 pu = I%ku + 7 (u— ngu) . (70)

Remark 32 A basis and bidual basis for the Crouzeix-Raviart space CRy, (T)
for d = 2 and odd k is obtained by defining basis functions and degrees of
freedom for the boundary edges analogously as in (66), (28) for inner edges. A
local approzimation operator in CRy (T) is then obtained by summing in (69)
over all E € € and using the resulting edge interpolation operator in (70).

6.3 Non-existence of split facet/simplex degrees of free-
dom for d >3 and k # 1

We have already explained in Remark 26 that there exists no set of local degrees
of freedom for even k. In this section we will prove that a construction as in
Section 6.1 is possible only for k =1 or d = 2 and k odd.

First, we consider the case k = 1.
Lemma 33 Ford > 2 and k = 1 the Crouzeiz-Raviart basis functions are given
by (cf. Definition 2, Remark 3):

porr _ [ PP (1-20kp) for K € T,
! 0 otherwise,

and the degrees of freedom by

JE (u) ﬁ/Fu

They form a bidual basis:
g (BSR’F/> —pp VEF €€,

Proof. It holds

1 _ 1
r BCR’F>:—/P(0’d D(1-2 :—/1:1.
H(B) =y [ RO 02 = gy )
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For Fe &, K € Tp, and F’ C(‘?K\I% we get

/ 1 _
J(BE) = [ PO (- 20er) 0
[E"] Jer
If F” is outside wp the functional JI (BICR’F> vanishes since supp BICR’F = wr.

|

Next, we consider the case that d > 3 and k£ > 1 is odd. Section 6 introduces
a construction for a bidual basis for CRy (7)) (CRg, (7) resp.), where for all
(Tya0) € Iy, L € {1,2,...,d — 1}, the functionals J; o are of the form

J‘r,a = (g'r,aa ')LQ(F) Jra € Pr_1 (F) , TCF

In this section we prove that this is not possible for d > 3 and k£ > 3 odd. Let
the assignement function marky : S — 7 U F satisfy

marky (K)=K VKeT (71a)
marky (1) € F and 7 C marky (7) VreS\T. (71b)

Further let J; o, JE& : H' (7) — R be given by

L? (marky (1)) marky (1) € T,
JT,Cxu = (gTya7u)L2(mark7(T)) Ir.a €
Pr_1 (marky (7)) marks (1) € F,

(72a)

JEtu = (gr,0) 2py g7 € Pro1 (F), (72b)
and collect them in the sets

T(T) = {Jra | (o) €T} U{JFR | Fe F}, (73a)

T (T) ={Jra | (1,0) € Lo} U{JF™ | F € Fa}. (73b)

Theorem 34 Let d > 3 and k > 3 odd. If the assignment function marky :
S — T UF satisfies (71), then there exists no set of functionals of the form
(72) such that

1. j,fntity (T) is a bidual basis for CRy, (7).

2. Jlff(l)tity (T) is a bidual basis for CRyo (T) if there exists K € T such that
Knog=0.

Proof. @1. Let us assume by contradiction that there exists a choice of
functionals of the form (72), such that 7™ (T') is a bidual basis. First observe
that, due to the inclusion (42), the constant function 1 € CRy (7). Hence for

any functional J € J™"% (T), J (1) is well defined. Thus we choose any simplex
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K € T and define the set Zj (0K) := 21;11 Tk, (K) as well as

Yo = >, Jra()Brat+ > JEN(1) BT,
(1) €T (OK) FeF(K)
dox =1vox — »_ Byl (74)
FeF(K)

Following the arguments of the proof of Lemma 19, we deduce that the functions
{Bral| (1,a) € I}, (OK) }U { BER’F ‘ FeF (K)} are linearly independent on
OK. Thus using the biduality property of Jj (7)) we deduce that vox |y, = 1.
This and Definition 2 implies that ¢ax|y; = BSR’K‘aK and hence

or L Pr_1 (F) VF € F(K)

by construction. Hence it follows that JF, (dox) = J5* (¢ox) = 0 for all
F € F(K) and all (1,) € ZJ7! (K) with marks (1) = F. Therefore ¢px can
be written as

¢8K = Z Jr,a (1) Br,av

(r,a) ERK(OK)
where Ry (0K) = {(1,a) € T, (0K) | marky (1) € F\ F(K)}. As a conse-
quence of Lemma 19 this yields that ¢ox € Sk (7) and, in turn,
okl (2)=0 zeV(K). (75)

However the combination of (21a) and (74) gives ¢ar|yx (2) # 0, which con-
tradicts (75).
@2. Set 7 := {K € T | KN =0}. By assumption |Tg| > 1. By taking
some K € T and repeating the previous construction the second claim follows.
|

[

Remark 35 The reason why this proof does not apply for k =1 or d = 2 is
that then (74) and (75) do not contradict each other as a consequence of (21a).

A Proof of the determinant formula (31)

In this section, we prove formula (31).
Lemma 36 The determinant of the matriz Qg (s) in (29) is given by

detQq(s) = (1) (145" (d-1-5) (76)
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Proof. We define the auxiliary matrix

11 ... 1
Ry (s) := 1 o (77)
1 1 —s
and claim
det Ry (s) = (=1 —s)%7 1. (78)

We prove (76) and (78) simultaneously by induction.
The Laplace expansion of the determinant of Qg with respect to the first
row yields

d—1

det Qq (s) = —sdet Qa1 (s) + »_ (—1) det Rg_1,¢(s),
=1

where the matrix Rgy_1 ¢ (s) arises by moving the first row of R4_1 (s) to the ¢-th
column and shifting all rows 2,...,¢— 1 one row up. In other word, an (£ — 1)-
fold interchange of appropriate rows of Rg_1 ¢ (s) yields the matrix Rq_; (s).
Then, well-known properties of determinants imply

det Qg (s) = —sdet Qg—1 (s) — (d—1)det Ry_1 (s) .

We employ the same reasoning for Ry (s) and obtain

d—1
det Ry (s) =det Qq—1 (s)+z (fl)z detRy_1.¢(s) =det Qg_1 (s)—(d —1)det Rgq_1 (s) .
=1

For the induction start we explicitly compute
detQp (s) = —s, detRy(s)=1

and for the induction step we assume that (76) and (78) hold up to d — 1. We
then get

det Qq (s) = —sdet Qa1 (s) — (d— 1) det Rg_1.¢ (s)
= s () (149" d=2-5)) = ([d—1) (-1 - )"
= (D' +9)"(s+1)(s—d+1)

and this is (76). In a similar way we get
det Ry (s) = det Qu_1 () — (d — 1) det Ry_1 (s)
= (D' (1 +8)* (A2 5)— (d—1) (-1 - 5)"
= (149" ()" (=5~ 1)
and this is (78). m
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