A mean distance between elements of same class for rich labels - Archive ouverte HAL
Communication Dans Un Congrès Année : 2024

A mean distance between elements of same class for rich labels

Résumé

The prevalence of imperfections in data, characterized by uncertainty and imprecision, prompts the need for effective modeling techniques. The theory of belief functions offers a mathematical framework to address this challenge. In this paper, we tackle the problem of calculating the mean distance between elements of the same class, especially when class membership is uncertain and imprecise. Leveraging belief functions and a notion of similarity between elements, we propose a solution and validate its efficacy through experimental evaluations. The proposed method proves effective when labels exhibit low imprecision, whereas unsupervised methods may be more effective for labels closer to complete ignorance.
Fichier principal
Vignette du fichier
belief_2024.pdf (979.17 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04623863 , version 1 (25-06-2024)

Identifiants

  • HAL Id : hal-04623863 , version 1

Citer

Arthur Hoarau, Constance Thierry, Jean-Christophe Dubois, Yolande Le Gall. A mean distance between elements of same class for rich labels. Belief Functions : Theory and Applications, 2024, Sep 2024, Belfast, United Kingdom. ⟨hal-04623863⟩
48 Consultations
21 Téléchargements

Partager

More