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A mean distance between elements of same class
for rich labels

Arthur Hoarau, Constance Thierry,
Jean-Christophe Dubois, and Yolande Le Gall

Univ Rennes, CNRS, IRISA, DRUID, France

Abstract. The prevalence of imperfections in data, characterized by
uncertainty and imprecision, prompts the need for effective modeling
techniques. The theory of belief functions offers a mathematical frame-
work to address this challenge. In this paper, we tackle the problem of
calculating the mean distance between elements of the same class, es-
pecially when class membership is uncertain and imprecise. Leveraging
belief functions and a notion of similarity between elements, we propose a
solution and validate its efficacy through experimental evaluations. The
proposed method proves effective when labels exhibit low imprecision,
whereas unsupervised methods may be more effective for labels closer to
complete ignorance.
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1 Introduction

The imperfection [9] in data is now prevalent in many application domains. It
may be uncertainty (lack of knowledge, e.g. “Tomorrow it might be sunny”)
or imprecision (quantitative or completeness deficiency, e.g. “It will be sunny
tomorrow or the day after”). The possibility of representing them provides a
better way of taking them into account. The theory of belief functions [1, 8]
allows for the mathematical modeling of this uncertainty and imprecision, and
the notion of distance between multiple bodies of evidence has been extensively
studied [5] in this context. In connection with the notion of distances, there are
numerous applications in unsupervised machine learning, such as clustering [2],
notably with the evidential c-means [7]. Additionally, a related problem, which
approaches the issue we are addressing, is that of missing value imputation [6].
In all cases, the representation of imperfection is an expanding field, especially
in machine learning, and several recent works have been conducted with the aim
of collecting real uncertain and imprecise labels from actual users.

In this paper, we focus on the mean distance between elements of the same
class, which is easily calculable when the classes are known but less straight-
forward when the membership of elements to a class is defined uncertainly and
imprecisely. We propose to address this issue using the theory of belief functions
and a notion of similarity between labels. A degenerate and informal application
of this method has been practiced in an active learning setup [3] (reduced to
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the similarity of the element’s imperfect label with the labels of other elements
and not that of the true classes). Since the notions of distances and belief func-
tions are addressed, it may be interesting to note that an impossibility has been
demonstrated [10] between the conjunctive combination of beliefs and the use
of distances. However, this does not concern this case directly since the classical
definition of distance is used, which separates two points, such as the Euclidean
distance. The theory of belief functions intervenes here on the classes and not
on the explanatory variables.

The document is structured as follows: Section 2 introduces the problem by
recalling the calculation of the average distance between elements of the same
class for hard labels. Section 3 presents the method by introducing the theory of
belief functions. Section 4 proposes two experiments that help understand the
behavior of the proposed method as well as its performance in a practical case.
Finally, Section 5 concludes this article.

2 Mean distance between elements for hard classes

Let X = {xn = (xn
1 , . . . , x

n
P )|n = 1, . . . , N} represent a P features collection of

N samples, and Ω = {q1, . . . , qC} a set of C classes. Let d be a distance over
the features space, for the proofs and experiments in this paper, the Euclidean
distance will be adopted; however, any other distance can be used. It is defined
as follows:

d(xi, xj) =

√√√√ K∑
k=1

(xi
k − xj

k)
2,

= ||xi − xj ||,

(1)

with ||x|| the Euclidean norm of x, for convenience we denote d(xi, xj) = di,j .

A simple way to compute the mean distance d between all elements is to
sum all pairwise distances and divide by the total number of pairs (excluding
the distance between an element and itself):

d =

N∑
i=1

N∑
j=1

di,j

N2 −N
. (2)

This equation can be simplified for complexity reasons by computing only
half of the matrix (of dimension N ∗N), dividing the number of elements by 2.

The interest lies in accounting for the class of each observation. The mean
distance between elements of the same class dq can be calculated as follows:

dq =

Nq∑
i=1

Nq∑
j=1

di,j

N2
q −Nq

, (3)
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with q as the corresponding class, and Nq the number of elements of class q (for
the sums over Nq, we simplify notation by implying that the summed distances
di,j refer to those between xi and xj belonging to class q).

The tackled issue arises when the class assignment of an observation lacks
certainty and precision. Thus, we introduce a mean distance between elements
belonging to the same class, tailored for rich (uncertain and imprecise) label
representations.

3 Mean distance between elements for rich labels

This section presents the proposed method of mean distance between elements of
the same class when the class is known uncertainly and imprecisely. The theory
of belief functions [1, 8] is used to model these rich labels.

3.1 Mean distance for rich labels (MDRL)

The goal of the proposed method is to extend Equation (3) when the labels are
uncertain and imprecise (when Nq is unknown). For this purpose, a similarity
measure between the target class q and the rich label is used to weigh the contri-
bution of each observation in the total calculation. In this paper, we arbitrarily
choose the similarity measure 1 − dJ , where dJ is the Jousselme distance [4]
between two mass functions. The method is defined by the following equation:

MDRLq =

N∑
i=1

N∑
j=1

(1− dq,iJ )(1− dq,jJ )di,j

[

N∑
i=1

(1− dq,iJ )]2 −
N∑
i=1

(1− dq,iJ )2
, (4)

with dq,iJ the Jousselme distance between mq (the categorical mass function on
class q) and mi the mass function defining the class of xi, and with di,j the
Euclidean distance between xi and xj .

Proposition 1: This equation is equal to the classical mean distance between
all observations (2) when considering complete ignorance.
Proposition 2: Equation (4) is equal to (3) for hard labels.
Proposition 3: This mean distance is null for identical objects, positive if an
object is distinct from others, and symmetric under permutation of elements.

Propositions 1 and 2 are proven below. For Proof 1, all labels are completely igno-
rant (mi(Ω) = 1, ∀i ∈ [0, N ]), therefore dJ becomes constant, let (1−dq,iJ ) = ∆Ω .
For Proof 2, and thus in the case of hard labels, the Jousselme distance between
two elements of the same class becomes 0, and 1 otherwise for a different class.
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Proof 1:

MDRLq =

N∑
i=1

N∑
j=1

(1 − d
q,i
J )(1 − d

q,j
J )d

i,j

[
N∑

i=1

(1 − d
q,i
J )]

2 −
N∑

i=1

(1 − d
q,i
J )

2

=

N∑
i=1

N∑
j=1

(∆
Ω
)(∆

Ω
)d

i,j

[
N∑

i=1

(∆
Ω
)]

2 −
N∑

i=1

(∆
Ω
)
2

=

(∆Ω)2
N∑

i=1

N∑
j=1

d
i,j

(∆Ω)2[(
N∑

i=1

1)
2 −

N∑
i=1

1]

=

N∑
i=1

N∑
j=1

d
i,j

N2 − N
⇐⇒ (2)

(5)

Proof 2:

MDRLq =

N∑
i=1

N∑
j=1

(1 − d
q,i
J )(1 − d

q,j
J )d

i,j

[
N∑

i=1

(1 − d
q,i
J )]

2 −
N∑

i=1

(1 − d
q,i
J )

2

=

Nq∑
i=1

Nq∑
j=1

(1)(1)d
i,j

[

Nq∑
i=1

1]
2 −

Nq∑
i=1

(1)
2

=

Nq∑
i=1

Nq∑
j=1

d
i,j

Nq
2 − Nq

⇐⇒ (3)

(6)

Example: We consider students who have obtained grades in three subjects
(they belong to class 1 or class 2: Ω = {1, 2}). The goal is to determine the
homogeneity1 of the students’ level in the two classes, the mean distance between
the students (on the grades) according to their class is then calculated. This
intra-class inertia allows us to compare the homogeneity level of each class.
Students, grades, and their true class are described in left hand part of Table 1.
A numerical conversion is made (from F to A2). The mean distance is calculated
using Equation (3), and the obtained values are 11.2 for students in true class 1
and 5.5 for students in true class 2. Class 2 is thus much more homogeneous than
class 1. Now, suppose that the students’ class is partially known, this uncertainty
and imprecision are described in the right hand part of Table 1. The formula
used is no longer applicable3. With the proposed Equation (4), we obtain MDRL
values of 10.0 for class 1 and 6.78 for class 2. This also indicates that class 2 is
more homogeneous than class 1.

4 Experiments

In this section, we propose two experiments to demonstrate the usefulness of
the proposed method on several datasets presented in Table 2. These datasets
contain quantitative variables that have been processed to remove the mean and
scale to unit variance. Each draw is performed 100 times (one draw corresponds
to the selection of noised observations). Firstly, a preliminary experiment de-
scribes the behavior of the method with respect to the quality of the labels and

1 Homogeneity is represented by the mean distance between students of the same class.
2 Grades are: A,A−, B+, B,B−, C+, C, C−, D+, D,D−, F .
3 For the class that maximizes the pignistic probability, the mean distances are 9.3 for
class 1 and 7.8 for class 2.
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Table 1: Students’ grades for each course (on the left) with true class (in the
middle) and rich labels indicating class membership (on the right).

Student Course 1 Course 2 Course 3

Alice 11 8 11
Bob 6 0 11
Carol 4 2 0
Dave 1 11 5
Eve 8 4 9
Mallory 10 8 7
Oscar 8 0 3
Trudy 7 6 10

True Class

1
2
1
1
2
2
1
2

Class 1 Class 2 Ω

1 0 0
0 1 0
0.8 0 0.2
0 0.1 0.9
0 0.8 0.2
0.1 0 0.9
1 0 0
0 1 0

to its theoretical limit between the true mean distance based on classes and a
naive mean distance over the entire dataset. The second experiment compares
the performance of the proposed method with other methods, both supervised
and unsupervised. For both experiments, the mean distances are calculated based
on the noise level as follows.

Imprecision noise: An observation is randomly chosen and the
corresponding label loses one degree of precision, with another class chosen at
random in Ω (e.g. If an observation is labeled Virginica on Iris dataset, the noisy
label becomes either Virginica ∪ Setosa or Virginica ∪ Versicolor). A 50% noisy
dataset would mean that half of the labels have lost a degree of precision.

Table 2: Datasets description, with class distribution entropy.

Dataset Observations Classes Features Entropy

Ecoli 336 8 7 0.73
Glass 214 6 9 0.83
Seeds 210 3 7 1.00
Wine 178 3 13 0.99
Heart 303 2 7 1.00
Iris 150 3 4 1.00
Liver 345 2 6 0.98
Pima 768 2 8 0.93
Parkinson 195 2 22 0.81
Balance 625 3 4 0.83
Post-Operative 86 2 8 0.85
Sonar 208 2 60 1.00
Ionosphere 351 2 34 0.94
Banana 5300 2 2 0.99
Breast Cancer 569 2 30 0.95
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4.1 Experiment 1: Average behavior

(a) Ecoli (b) Glass (c) Seeds (d) Wine (e) Heart

(f) Iris (g) Liver (h) Pima (i) Parkinson (j) Balance

(k) Post-Op (l) Sonar (m) Ionosphere (n) Banana (o) Breast-Cancer

Fig. 1: Mean Distance for Rich Labels Vs. Noise. (Class 0)

This first experiment focuses on the evolution of the proposed Mean Distance
for Rich Labels (MDRL) across multiple datasets, limited by the mean distances
between elements of the same true class (3) and the global naive distance between
all elements (2), these values are thus invariant to noise. Figure 1 illustrates the
behavior of the proposed method with regard to the noise. It varies from 0 (un-
noisy dataset) to 1 (fully noised). One class4 is depicted for each dataset, and
the Ground Truth line represents the true mean distance between elements of
this class. The Global line represents the mean distance between all elements of
the dataset.

For datasets with two classes (Heart, Liver, Pima, Parkinson, Post-Operative,
Sonar, Ionosphere, Banana, and Breast Cancer), the proposed method starts, as
theoretically expected, exactly at the true mean distance and converges to the
global mean distance when the noise level reaches 100%. Indeed, the noise used
translates to total ignorance for datasets limited to two classes. For datasets
with a large number of classes (Ecoli and Glass), the proposed method remains
closer to the true value. If the noise added total ignorance instead of a degree
of imprecision, the curve would also converge to the global mean distance when
the dataset is fully noisy. Only the Breast Cancer dataset makes the task very
challenging for estimating the mean distance between elements of the same class
with respect to noise, due to the particular distribution of observations in the

4 The first class present in each dataset is always depicted.
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variables space for this dataset. The method is therefore largely capable of repre-
senting a mean distance that varies between the truth and the least informative
value (without using any labels at all). The second experiment then aims to
determine whether this method is relevant in terms of performance.

4.2 Experiment 2: Performance of the method

(a) Ecoli (b) Glass (c) Seeds (d) Wine (e) Heart

(f) Iris (g) Liver (h) Pima (i) Parkinson (j) Balance

(k) Post-Op (l) Sonar (m) Ionosphere (n) Banana (o) Breast-Cancer

Fig. 2: Error across different methods Vs. Noise. (Class 0)

In this experiment, the proposed Mean Distance for Rich Labels (MDRL)
method is compared with three other methods for estimating the mean distance
between elements of the same class on the datasets presented earlier. Once again,
only one class per dataset is being studied.

The naive Global method calculates the mean distance over all observations
without considering the class, as mentioned earlier. Another method, Noisy la-
bels, involves selecting the class that maximizes the pignistic probability for an
observation and calculating the mean distance between elements of that class.
The last compared method utilizes the unsupervised clustering algorithm of K-
means to create clusters that maximize inter-class distance and minimize intra-
class distance. The mean distance between the elements of this cluster is then
calculated. A significant advantage given to this method is that the true number
of classes is provided to the K-means algorithm to form its clusters. Moreover,
the closest mean distance to the truth, among all created clusters, is chosen for
comparison with the studied true class.

Figure 2 presents the difference between the estimated value and the true
mean distance between elements of the studied class for each level of noise. Since
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the Global and K-means methods are unsupervised, it is expected for their curves
to be constant, as they do not depend on labels and therefore not on noise. The
lower the curve, the closer the value is to the true mean distance, indicating
better performance. The least performing method is naturally the Global mean,
which does not take into account the labels of the observations. The only dataset
where this method is particularly effective is the Breast-Cancer dataset. The
proposed MDRL method is better performing than the hard Noisy Labels but
follows its trend. This phenomenon is theoretically expected since the proposed
method aims to be an improvement over it. Finally, the K-means method is much
more competitive, often close to 0. However, since the proposed method equals
the true mean value when there is no imprecision, it is always better performing
than K-means at least with little noise. Then the performance degrades with
the addition of noise. The relevance of using the proposed method therefore
depends on the noise (and more generally on the uncertainty and imprecision of
the sources).

5 Conclusion

In this paper, we propose a mean distance between elements of the same class
when classes are not known with certainty and precision but represented by a
belief function. This measure is shown to be limited by the true value of the
mean distance between elements of the same class when labels are known with
certainty and precision and the naive measure of the mean distance between all
elements in the case of complete ignorance. Two proofs and experiments are also
conducted to theoretically support these properties.

A distance and a dissimilarity measure are necessary. Therefore, the Eu-
clidean distance and the Jousselme distance have been arbitrarily chosen here,
but other distances and dissimilarity measures can be used. It has been ob-
served during our experiments that this method can be useful under moderate
noise (or imprecision), but it could be more appropriate to use unsupervised
methods (such as K-means) when noise is significant. Many issues can be ad-
dressed with such a measure, and its practical use is already ongoing in machine
learning problems, specifically in active learning.
Special thanks to Vincent Lemaire for conducting a pre-peer review.
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