Two arbitrary-order constraint-preserving schemes for the Yang–Mills equations on polyhedral meshes - Archive ouverte HAL
Article Dans Une Revue Mathematics in Engineering Année : 2024

Two arbitrary-order constraint-preserving schemes for the Yang–Mills equations on polyhedral meshes

Résumé

Two numerical schemes are proposed and investigated for the Yang–Mills equations, which can be seen as a nonlinear generalisation of the Maxwell equations set on Lie algebra-valued functions, with similarities to certain formulations of General Relativity. Both schemes are built on the Discrete de Rham (DDR) method, and inherit from its main features: an arbitrary order of accuracy, and applicability to generic polyhedral meshes. They make use of the complex property of the DDR, together with a Lagrange-multiplier approach, to preserve, at the discrete level, a nonlinear constraint associated with the Yang–Mills equations. We also show that the schemes satisfy a discrete energy dissipation (the dissipation coming solely from the implicit time stepping). Issues around the practical implementations of the schemes are discussed; in particular, the assembly of the local contributions in a way that minimises the price we pay in dealing with nonlinear terms, in conjunction with the tensorisation coming from the Lie algebra. Numerical tests are provided using a manufactured solution, and show that both schemes display a convergence in $ L^2 $-norm of the potential and electrical fields in $ \mathcal O(h^{k+1}) $ (provided that the time step is of that order), where $ k $ is the polynomial degree chosen for the DDR complex. We also numerically demonstrate the preservation of the constraint.
Fichier principal
Vignette du fichier
ARTICLE-lasddr-ym.pdf (648.97 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-04623147 , version 1 (25-06-2024)

Identifiants

Citer

Jérôme Droniou, Jia Jia Qian. Two arbitrary-order constraint-preserving schemes for the Yang–Mills equations on polyhedral meshes. Mathematics in Engineering, 2024, 6 (3), pp.468-493. ⟨10.3934/mine.2024019⟩. ⟨hal-04623147⟩
26 Consultations
13 Téléchargements

Altmetric

Partager

More