
HAL Id: hal-04623147
https://hal.science/hal-04623147v1

Submitted on 25 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Two arbitrary-order constraint-preserving schemes for
the Yang–Mills equations on polyhedral meshes

Jérôme Droniou, Jia Jia Qian

To cite this version:
Jérôme Droniou, Jia Jia Qian. Two arbitrary-order constraint-preserving schemes for the Yang–
Mills equations on polyhedral meshes. Mathematics in Engineering, 2024, 6 (3), pp.468-493.
�10.3934/mine.2024019�. �hal-04623147�

https://hal.science/hal-04623147v1
https://hal.archives-ouvertes.fr

https://www.aimspress.com/journal/mine

Mathematics in Engineering, 6(3): 468–493.
DOI:10.3934/mine.2024019
Received: 15 June 2023
Revised: 10 May 2024
Accepted: 17 June 2024
Published: 24 June 2024

Research article

Two arbitrary-order constraint-preserving schemes for the Yang–Mills
equations on polyhedral meshes†

Jérôme Droniou1,2,∗ and Jia Jia Qian2

1 IMAG, Univ. Montpellier, CNRS, Montpellier, France
2 School of Mathematics, Monash University, Melbourne, Australia; jerome.droniou@monash.edu,
jia.qian@monash.edu

† This contribution is part of the Special Issue: Advancements in Polytopal Element Methods
Guest Editors: Michele Botti; Franco Dassi; Lorenzo Mascotto; Ilario Mazzieri
Link: www.aimspress.com/mine/article/6538/special-articles

* Correspondence: Email: jerome.droniou@umontpellier.fr.

Abstract: Two numerical schemes are proposed and investigated for the Yang–Mills equations,
which can be seen as a nonlinear generalisation of the Maxwell equations set on Lie algebra-valued
functions, with similarities to certain formulations of General Relativity. Both schemes are built
on the Discrete de Rham (DDR) method, and inherit from its main features: an arbitrary order of
accuracy, and applicability to generic polyhedral meshes. They make use of the complex property of
the DDR, together with a Lagrange-multiplier approach, to preserve, at the discrete level, a nonlinear
constraint associated with the Yang–Mills equations. We also show that the schemes satisfy a discrete
energy dissipation (the dissipation coming solely from the implicit time stepping). Issues around
the practical implementations of the schemes are discussed; in particular, the assembly of the local
contributions in a way that minimises the price we pay in dealing with nonlinear terms, in conjunction
with the tensorisation coming from the Lie algebra. Numerical tests are provided using a manufactured
solution, and show that both schemes display a convergence in !2-norm of the potential and electrical
fields in O(ℎ:+1) (provided that the time step is of that order), where : is the polynomial degree chosen
for the DDR complex. We also numerically demonstrate the preservation of the constraint.

Keywords: discrete de Rham method; Yang–Mills equations; polytopal method; constraint-preserving
scheme; energy estimate; 3D numerical tests

https://www.aimspress.com/journal/mine
https://dx.doi.org/10.3934/mine.2024019
www.aimspress.com/mine/article/6538/special-articles

469

1. Introduction

In this paper we investigate two arbitrary-order numerical methods for the Yang–Mills equations
on general polyhedral meshes, based on the fully discrete serendipity Discrete de Rham (SDDR)
complex [1]. The first method was proposed (but not tested) in [2] for the non-serendipity version
of the Discrete de Rham (DDR) sequence, while the second method is novel to this paper. The two
discretisations differ in the treatment of one of the nonlinearities present in these equations. In contrast
to conforming methods, the discrete structure of the SDDR spaces means that there is no obvious
construction of the nonlinear terms, and this can be problematic when specific algebraic manipulations
need to be reproduced, for instance to prove consistency estimates. The implementation cost is another
important factor to the viability of each approach, which is explored with accompanying numerical
results on the convergence and discrete conservation properties of each scheme.

The classical Yang–Mills equations come from a class of non-abelian gauge theories, generalising
the abelian* (1) group of electromagnetism to certain non-abelian gauge groups. Once quantised, this
theory forms the foundation of the current Standard Model of particle physics. In the classical setting,
the non-commutativity of the group manifests as the appearance of nonlinear quantities in addition to
the linear Maxwell terms. Analogous to Maxwell, the Yang–Mills equations can be formulated as a set
of evolution equations preserving particular constraints (e.g., the conservation of charge), given that the
initial data satisfies these constraints. In the linear case, the preservation of these constraints is a direct
consequence of the calculus formula div curl = 0, which is linked to the complex property of the de
Rham sequence. Designing numerical methods that replicate this property is essential to maintaining
constraint preservation at the discrete level, and thus to obtaining stable schemes. Much work has
been done in the Finite Element framework to design discrete versions of the de Rham complex, see,
e.g., [3–8] and references therein. Finite Element methods are, however, limited to meshes made
of specific elements (mostly tetrahedra and hexahedra in 3D), which limits their flexibility in terms
of mesh refinement or agglomeration. Recently, discrete polytopal complexes – discrete versions of
continuous complexes, that are applicable onmeshesmade of generic polyhedra – have been introduced,
see, e.g., [9–12]. The discrete complex property enabled the design of stable and robust schemes, in
particular for magnetostatics [10, 13], plate problems [14–17], and the Stokes equations [18, 19]).

Given the importance, for the stability of schemes, of preserving constraints at the discrete level,
similar techniques have been explored for the Yang–Mills equations, using either Finite Element or
polytopal approaches [2, 20, 21]. For these equations, however, the nonlinearity has proven to be
troublesome, and required additional techniques (e.g., the introduction of Lagrange multipliers) beyond
a discrete version of the formula div curl = 0. The interest in developing our understanding of such
methods is in the application to numerical schemes for Einstein’s equations, where the absence of this
constraint propagation can cause disastrous error growth [22–24] in the numerical simulations. Current
techniques to control this error include constraint damping [22,23,25], where specific terms are added
to the evolution equations to suppress the growth of the constraint violations, but methods for exact
preservation remain limited. The link with the Yang–Mills equations is that in certain formulations of
General Relativity (GR), such as the Einstein-Bianchi system [26, 27], these equations can resemble
greatly those of electromagnetism with additional nonlinear terms. Therefore it is natural to expect
that these ideas will aid in designing a constraint preserving scheme for GR based on the framework of
discrete polytopal complexes.

Mathematics in Engineering Volume 6, Issue 3, 468–493.

470

An equally important aspect of the design of numerical methods is the feasibility of the
implementation and testing under real world conditions. We find more commonly, for the Yang–Mills
equations, numerical tests run in only low-order 2D settings [20,21]. Any increase in the dimension or
the order of the approximation generally leads to schemes that are vastly more expensive to run, and this
is compounded by the nonlinearity of the model. Hence working with spaces that are smaller and more
refined is an effective way to cut the cost of the simulations. The SDDR complex, introduced in [1],
is a variant of the DDR complex [11, 12], where the spaces have undergone a serendipity reduction,
eliminating many unknowns, while retaining the complex and consistency properties of the original
sequence. This enables the seamless transfer of any DDR scheme and results to the SDDR version,
with all the flexibility of the general-order polytopal method at a lower cost. Additionally, this can be
combined with other reduction techniques such as static condensation to further increase the efficiency.

The issue with the nonlinearity in the practical implementation is the computations involving ‘high
dimensional’ arrays that are required to deal with all the coefficients. This number grows exponentially
with the degree of the multilinearity, and thus takes up majority of the time in the assembly phase of
the runtime. For matrices (2-dimensional arrays), there exists many specialised algorithms to speed
up calculations, as well as efficient storage structures in the case that it is sparse. The libraries for
higher dimensional arrays are less advanced, and often incomplete in their features; as a consequence,
operations need to be done manually, introducing another source of possible inefficiencies. Simply
rearranging the order of calculations can lead to sizeable differences in the space and time complexities,
therefore finding the optimal trade-off is key to measuring the actual performance of the scheme.

The paper is organised as follows: In Section 2, we give a presentation of the SDDR complex
and its Lie algebra extension, that is independent of the DDR framework. Section 3 starts with the
constrained formulation of the continuous Yang–Mills equations. Based on that, we introduce the two
schemes that are considered in the paper and the differing approaches on the nonlinear terms. This is
followed by a proof of the preservation of a discrete constraint functional, as well as energy estimates.
Section 4 covers the major steps in the implementation of the scheme, showing the impact of Lie algebra
tensorisation on the physical data structures, and also highlighting how the trilinear and quadrilinear
forms and sums are managed in the tensorised situation. Numerical results for these implementations
are found in Section 5, where we test both the convergence and the discrete constraint preservation on
three different mesh families in the 3D setting. Expected convergence rates of : + 1 are mostly seen,
as well as the preservation of the initial constraint up to machine precision. We also report on the
differences in the results and runtimes, which turned out to be very minor between the two methods. A
brief conclusion is provided in Section 6.

2. Lie Algebra-valued serendipity Discrete de Rham complex

We present here the serendipity version of the arbitrary-order Lie Algebra-valued DDR complex,
originally sketched in [2, Section 6]. This complex consists in tensorising the SDDR complex of [1],
which is built in this reference from the (regular) DDR complex; such a presentation relies on a
complete description of the latter complex, together with “extension” and “reduction” maps that link
the two complexes. In the following, we adopt a stand-alone description of the SDDR complex, directly
translating the formulas resulting from the links with the DDR complex. For this reason, the notations
adopted below differ slightly from [1]: there, the serendipity spaces and operators are denoted using a

Mathematics in Engineering Volume 6, Issue 3, 468–493.

471

hat (the non-hat version referring to the regular DDR spaces and operators, which are not needed here).

2.1. Mesh notations

We use the same mesh and polynomial space notations as in [12]. Let * be a polygonal domain
of R3. A meshMℎ = Tℎ ∪ Fℎ ∪ Eℎ ∪ Vℎ is a collection of polyhedral elements (gathered in Tℎ, and
partitioning*), of polygonal faces (gathered in Fℎ), of edges (gathered in Eℎ) and vertices (gathered in
Vℎ). Each P ∈ Mℎ is assumed to be topologically trivial (simply connected with connected boundary),
and we denote by ℎP the diameter of P; we set ℎ = max)∈Tℎ ℎ) . When applicable, the sets FP (resp. EP,
resp.VP) gather the faces (resp. edges, resp. vertices) of P. Each face � ∈ Fℎ is oriented by the choice
of a unit normal n� , and each edge � ∈ Eℎ is oriented by the choice of a unit tangent t� . If) ∈ Tℎ
and � ∈ F) , l)� is the relative orientation of � with respect to) : l)� = +1 if n� points outside) ,
l)� = −1 otherwise. For � ∈ Fℎ and � ∈ E� , l�� denotes the relative orientation of � with respect
to �: l�� = +1 if, along m�, t� points counter-clockwise with respect to the orientation of � induced
by n� , and l�� = −1 otherwise; we also denote by n�� the unit vector such that (t� , n�� , n�) defines
a right-handed system in R3. The final orientation is that of the vertices of each edge: for � ∈ Eℎ and
+ ∈ V� , l�+ = +1 if t� points towards + on � , and l�+ = −1 otherwise.

We assume that Tℎ ∪ Fℎ satisfies the regularity assumption of [28, Definition 1.9] with regularity
parameter r, and we write � . � when � ≤ �� for some � depending only on *, r and the possible
polynomial degrees involved in �, �.

For any mesh face � ∈ Fℎ and smooth enough function A : � → R, grad� A is the gradient of A on
� and rot� A its 2-dimensional vector curl (rotation of grad� A by −c/2 in the plane spanned by �).
For a smooth function z on � with values in the tangent plane of �, the divergence of z on � is div� z,
and its scalar curl (divergence of the rotated by −c/2 of z) is rot� z.

If P ∈ Mℎ and ℓ ≥ 0 is an integer, Pℓ (P) denotes the space of restrictions to P of three-variate
polynomials on R3 of total degree ≤ ℓ, and P0,ℓ (P) is its subspace of polynomials with vanishing
integral over P. We adopt the convention Pℓ (P) = {0} if ℓ < 0. If) ∈ Tℎ, we set Pℓ ()) = Pℓ ())3
and, for � ∈ Fℎ, Pℓ (�) is the subspace of Pℓ (�)3 which take value in the tangent space of �. The
!2-orthogonal projector on Pℓ (P) is denoted by cℓP ,P. Selecting, for each P ∈ Tℎ ∪ Fℎ, a point xP ∈ P
such that P contains a ball centered at xP and of radius & ℎP, we recall the following decompositions
of vector-valued polynomial spaces: For all � ∈ Fℎ,

P
ℓ (�) = R

ℓ (�) ⊕ R
c,ℓ (�) with R

ℓ (�) = rot� Pℓ+1(�) and Rc,ℓ (�) = (x − x�)Pℓ−1(�)
and, for) ∈ Tℎ,

P
ℓ ()) = R

ℓ ()) ⊕ R
c,ℓ ()) with R

ℓ ()) = curlPℓ+1()) and Rc,ℓ ()) = (x − x))Pℓ−1()),
P
ℓ ()) = G

ℓ ()) ⊕ G
c,ℓ ()) with G

ℓ ()) = gradPℓ+1()) and Gc,ℓ ()) = (x − x)) ×Pℓ−1()),
(here and in the following, when used between two vectors or a vector and a space, × denotes the cross
product in R3). The !2-orthogonal projectors on these spaces are, with obvious notations, 0ℓ

R,�
, 0c,ℓ

R,�
,

0ℓ
R,)

, 0c,ℓ
R,)

, 0ℓ
G,)

and 0c,ℓ
G,)

.

2.2. Serendipity DDR complex

For each element or face P ∈ Tℎ ∪ Fℎ, we select on the boundary of the element (resp. face) a set
BP of [P ≥ 2 faces (resp. edges) that are not pairwise coplanar (resp. aligned) and such that, for each

Mathematics in Engineering Volume 6, Issue 3, 468–493.

472

b ∈ BP, P lies entirely on one side of the affine space spanned by b. From here on, we fix a polynomial
degree : ≥ 0, measuring the accuracy of the discrete complex, and we set

ℓP = : + 1 − [P, ∀P ∈ Tℎ ∪ Fℎ.

2.2.1. Spaces and serendipity operators

The SDDR versions of the �1(*), N(curl;*), N(div;*) and !2(*) spaces appearing in the
continuous de Rham complex are the following spaces.

- :grad,ℎ ≔
{
@
ℎ
= ((@)))∈Tℎ , (@�)�∈Fℎ , (@�)�∈Eℎ , (@+)+∈Vℎ) :

@) ∈ Pℓ) ()) for all) ∈ Tℎ, @� ∈ Pℓ� (�) for all � ∈ Fℎ,

@� ∈ P:−1(�) for all � ∈ Eℎ, and @+ ∈ R for all + ∈ Vℎ
}
,

^:
curl,ℎ ≔

{
v
ℎ
= ((vR,) , vcR,)))∈Tℎ , (vR,� , v

c
R,�
)�∈Fℎ , (E�)�∈Eℎ) :

vR,) ∈ R:−1()) and vc
R,)
∈ Rc,ℓ) +1()) for all) ∈ Tℎ,

vR,� ∈ R:−1(�) and vc
R,�
∈ Rc,ℓ�+1(�) for all � ∈ Fℎ,

and E� ∈ P: (�) for all � ∈ Eℎ
}
,

^:
div,ℎ ≔

{
w
ℎ
= ((wG,) , w

c
G,)
))∈Tℎ , (F�)�∈Fℎ) :

wG,) ∈ G:−1()) and wc
G,)
∈ Gc,: ()) for all) ∈ Tℎ,

and E� ∈ P: (�) for all � ∈ Fℎ
}
,

P: (Tℎ) ≔
{
Aℎ ∈ !2(*) : (Aℎ) |) ∈ P: ()) for all) ∈ Tℎ

}
.

The interpolators on these spaces consist in projecting continuous scalar/vector fields (or some of their
traces) onto the polynomial components of the spaces. Specifically,

� :grad,ℎ : � (*) → - :grad,ℎ,

O:curl,ℎ : I (*) → ^:
curl,ℎ

and
O:div,ℎ : I (*) → ^:

div,ℎ

are defined as:

� :grad,ℎ@ = ((cℓ)P ,)@))∈Tℎ , (c
ℓ�
P ,�@)�∈Fℎ , (c

:−1
P ,�@)�∈Eℎ , (@(x+))+∈Vℎ), ∀@ ∈ � (*),

O:curl,ℎv = ((0:−1
R,)

v, 0c,ℓ) +1
R,)

v))∈Tℎ , (0:−1R,�
vt,� , 0

c,ℓ�+1
R,�

vt,�)�∈Fℎ , (c:P ,� (v · t�))�∈Eℎ), ∀v ∈ I (*),

O:div,ℎw = ((0:−1
G,)

w, 0c,:
G,)

w))∈Tℎ , (c:P ,� (w · n�))�∈Eℎ), ∀w ∈ I (*),

where vt,� = n� × (v |� × n�) is the tangential trace of v on �.
As usual in fully discrete complexes, we adopt the underlined notation for vectors of polynomial

components, and we replace the index ℎ with P to denote the restriction of these spaces (and the

Mathematics in Engineering Volume 6, Issue 3, 468–493.

473

operators defined on them) to a mesh entity P ∈ Tℎ∪Fℎ∪Eℎ and its boundary entities. So, for example,
a vector v

�
∈ ^:

curl,� corresponds to v
�
= (vR,� , vcR,� , (E�)�∈E�).

TheDDRspaces correspond to the spaces abovewith the choice ℓ� = ℓ) = :−1 (that is, [� = [% = 2).
This implies in particular that, for : = 0 (which forces ℓP < 0 for all P ∈ Tℎ ∪ Fℎ), the standard and
serendipity DDR spaces are identical. However, as soon as : ≥ 1, the SDDR spaces have lower
dimensions, while still encoding the same level of polynomial consistency as the DDR spaces. This
is due to the existence of two families of key operators, the serendipity gradient and curl operators.
Specifically, for P ∈ Tℎ ∪ Fℎ, the role of the gradient serendipity operator Y:grad,P : -

:
grad,P → P

: (P)
is to reconstruct a consistent gradient, while the curl serendipity operator Y:curl,P : ^

:
curl,P → P

: (P)
reconstructs a consistent vector potential. The consistencies in questions are expressed by the following
relations (see [1, Proposition 18]):

Y:grad,P�
:
grad,P@ = gradP @, ∀@ ∈ P:+1(P)

Y:curl,PO
:
curl,Pv = v, ∀v ∈ P: (P).

We do not present the precise definitions of these operators, which are not essential to describe the
SDDR complex, and refer the reader to [1].

In the next three sections we define operators acting on these spaces, with values in full polynomial
spaces, mimicking the gradient, curl, and divergence. It should be noted that, in the original presentation
of the SDDR complex in [1], these operators were not explicitly defined – only the discrete operators
(projections on the complex spaces, see Section 2.2.5) and discrete inner products were detailed, based
on those of the DDR complex. The polynomial operators below correspond to those of the DDR
complex composed with the extension operators linking the DDR and SDDR complex; for ease of
reference, we indicate which formulas from [1] yield the definitions presented here.

2.2.2. Operators on the gradient space

For each edge � ∈ Eℎ we define the edge gradient �:
�
: - :grad,� → P: (�) and potential

reconstruction W:+1
�
: - :grad,� → P

:+1(�) by: For all @
�
= (@� , (@+)+∈V�) ∈ - :grad,� ,∫

�

�:
�@�

A� = −
∫
�

@�A
′
� +

∑
+∈V�

l�+@+A� (x+), ∀A� ∈ P: (�),

W:+1� @
�
(x+) = @+ ∀+ ∈ V� and c:−1P ,� (W

:+1
� @

�
) = @� .

The definition of �:
�
@
�
, in which the derivative A′

�
is taken in the direction t� , mimics an integration-

by-parts formula; it can be checked that

�:
�@�

= (W:+1� @
�
)′.

For each � ∈ Fℎ, combining [1, Eqs (4.2), (5.18) and (6.6)] together with div� rot� = 0 yields the
following definition of the face gradient G:

�
: - :grad,� → P

: (�): For all @
�
∈ - :grad,� ,∫

�

G:
�@�
· (w + 3) =

∑
�∈E�

l��

∫
�

W:+1� @
�
(w · n��) +

∫
�

Y:grad,�@�
· 3, ∀(w, 3) ∈ R: (�) ×Rc,: (�).

Mathematics in Engineering Volume 6, Issue 3, 468–493.

474

Using this face gradient and [1, Eqs (4.3) and (5.18)], the scalar potential reconstruction on � ∈ Fℎ is
then W:+1

�
: - :grad,� → P

:+1(�) defined by: For all @
�
∈ - :grad,� ,∫

�

W:+1� @
�
div� w = −

∫
�

G:
�@�
· w +

∑
�∈E�

l��

∫
�

W:+1� @
�
(w · n��), ∀w ∈ Rc,:+2(�).

Finally, for) ∈ Tℎ, we use [1, Eqs (4.4), (5.32) and (6.6)] to write the element gradient G:
)
:

- :grad,) → P
: ()) as: For all @

)
∈ - :grad,) ,∫

)

G:
)@)
· (w + 3) =

∑
�∈F)

l)�

∫
�

W:+1� @
�
(w · n)�) +

∫
)

Y:grad,)@)
· 3, ∀(w, 3) ∈ R: ()) ×Rc,: ()).

The potential reconstruction %:+1grad,) : -
:
grad,) → P

:+1()) is such that: For all @
)
∈ - :grad,) ,∫

)

%:+1grad,)@)
divw = −

∫
)

G:
)@)
· w +

∑
�∈F)

l)�

∫
�

W:+1� @
�
(w · n)�), ∀w ∈ Rc,:+2()).

Remark 1 (Approximation properties of the potential reconstructions in - :grad,)). As demonstrated
by [12, Theorem 6], the potential reconstructions on the space - :grad,) have optimal approximation
properties of degree :+1. This is however an exception to the rule of spaces and potential reconstructions
in the DDR complex; the reasons for this exception are better understood when translating this complex
in the language of differential forms (see [29], especially Remarks 7 and 18 therein).

2.2.3. Operators on the curl space

For � ∈ Fℎ, using [1, Eqs (4.6), (5.19) and (6.7)] we define the face curl �:� : ^
:
curl,� → P: (�) by:

For all v
�
∈ ^:

curl,� ,∫
�

�:�v�A =

∫
�

vR,� rot� A −
∑
�∈E�

l��

∫
�

E�A, ∀A ∈ P: (�).

This definition is actually identical to the face curl in the DDR complex and does not invoke Y:curl,� ,
as the extension operators between the SDDR and DDR curl face space do not modify the components
on R:−1(�) and on >

�∈E� P: (�). The curl serendipity operator is however involved in the definition
of the component on Rc,: (�) of the extension (see [1, Eq (5.19)]), and therefore in the vector potential
reconstruction $:t,� : ^

:
curl,� → P

: (�) on �, defined as: For all v
�
∈ ^:

curl,� ,∫
�

$:t,�v� · (rot� A + 3) =
∫
�

�:�v�A +
∑
�∈E�

l��

∫
�

E�A +
∫
�

Y:curl,�v� · 3,

∀(A, 3) ∈ P0,:+1(�) ×Rc,: (�).

Similar considerations apply to the element curl and vector potential. For) ∈ Tℎ, the element curl
C:
)
: ^:

curl,) → P
: ()) is defined by: For all v

)
∈ ^:

curl,) ,∫
)

C:
)v) · w =

∫
)

vR,) · curlw +
∑
�∈F)

l)�

∫
�

$:t,�v� · (w × n�), ∀w ∈ P: ()).

Mathematics in Engineering Volume 6, Issue 3, 468–493.

475

The vector potential V:curl,) : ^
:
curl,) → P

: ()) is given by: For all v
)
∈ ^:

curl,) ,∫
)

V:curl,)v) · (curlw + 3) =
∫
)

C:
)v) · w −

∑
�∈F)

l)�

∫
�

$:t,�v� · (w × n�) +
∫
)

Y:curl,)v) · 3,

∀(w, 3) ∈ Gc,:+1()) ×Rc,: ()).

2.2.4. Operators on the divergence space

The discrete divergence and potential on ^:
div,) , for) ∈ Tℎ, are identical to those of the DDR

complex since no serendipity reduction is actually possible on this space (see [1, Section 6.5]): �:
)
:

^:
div,) → P

: ()) and V:div,) : ^
:
div,) → P

: ()) are such that, for all w
)
∈ ^:

div,) ,∫
)

�:
)w)@ = −

∫
)

wG,) · grad @ +
∑
�∈F)

l)�

∫
�

F�@, ∀@ ∈ P: ()),∫
)

V:div,)w) · (grad A + 3) = −
∫
)

�:
)w)A +

∑
�∈F)

l)�

∫
�

F�A +
∫
)

wc
G,)
· 3,

∀(A, 3) ∈ P0,:+1()) ×Gc,: ()).

2.2.5. Serendipity DDR complex

The serendipity DDR complex is

R - :grad,ℎ ^:
curl,ℎ ^:

div,ℎ P: (Tℎ) {0},
�:grad,ℎ M:

ℎ
I:
ℎ

�:
ℎ 0

where the discrete differential operators M:
ℎ
, I:

ℎ
and �:

ℎ
are obtained projecting the edge/face/element

operators onto the proper spaces (dictated by the co-domains):

M:
ℎ
@
ℎ
≔

(
(0:−1

R,)
G:
)@)

, 0c,ℓ) +1
R,)

G:
)@)
))∈Tℎ , (0:−1R,�

G:
�@�

, 0c,ℓ�+1
R,�

G:
�@�
)�∈Fℎ , (�:

�@�
)�∈Eℎ

)
,

I:
ℎ
v
ℎ
≔

(
(0:−1

G,)
C:
)v) , 0

c,:
G,)

C:
)v)))∈Tℎ , (�

:
�v�)�∈Fℎ

)
,

�:
ℎwℎ

≔
(
�:
)w)

)
)∈Tℎ .

It was proved that this sequence is indeed a complex [11, 12], and has the same cohomology as the de
Rham complex [30].

2.2.6. Discrete !2-inner products

To design numerical schemes based on the SDDR complex, an essential ingredient, besides the
discrete differential operators, are consistent !2-inner products on the spaces of the complex. A scheme
can then be designed by replacing, in the weak formulation of the PDE, the continuous differential
operators and !2-products by the discrete operators of the complex and the !2-inner products on its
spaces.

The design of these discrete !2-inner products rely on the element potential reconstructions defined
in the previous sections. Specifically, if - :•,ℎ is one of the space -

:
grad,ℎ, ^

:
curl,ℎ or ^

:
div,ℎ and %

:
•,) is

Mathematics in Engineering Volume 6, Issue 3, 468–493.

476

the associated potential in the element) , the discrete !2-product on - :•,ℎ is defined by

(G
ℎ
, H
ℎ
)•,ℎ ≔

∑
)∈Tℎ
(G
)
, H
)
)•,) with (G

)
, H
)
)•,) ≔

[∫
)

%:•,)G) · %
:
•,) H)

+ s•,) (G) , H))
]
,

where the dot product in the integral is replaced by a multiplication if • = grad, and the stabilisation
term s•,) penalises the difference between traces of the element potential and potential reconstructions
on the face/edges (where relevant). The precise definition of the stabilisation term therefore depends
on the space, and the available traces:

sgrad,) (A) , @)) ≔
∑
�∈F)

ℎ�

∫
�

(
%:+1grad,)A) − W

:+1
� A�

) (
%:+1grad,)@)

− W:+1� @
�

)
+

∑
�∈E)

ℎ2�

∫
�

(
%:+1grad,)A) − W

:+1
� A�

) (
%:+1grad,)@)

− W:+1� @
�

)
, ∀A) , @) ∈ -

:
grad,) ,

scurl,) (w) , v)) ≔
∑
�∈F)

ℎ�

∫
�

(
(V:curl,)w))t,� − $

:
t,�w�

)
·
(
(V:curl,)v))t,� − $

:
t,�v�

)
+

∑
�∈E)

ℎ2�

∫
�

(
V:curl,)w) · t� − F�

) (
V:curl,)v) · t� − E�

)
, ∀w

)
, v
)
∈ ^:

curl,) ,

sdiv,) (w) , v)) ≔
∑
�∈F)

ℎ�

∫
�

(
V:div,)w) · n� − F�

) (
V:div,)v) · n� − E�

)
, ∀w

)
, v
)
∈ ^:

div,) . (2.1)

An important property of the potential reconstruction on each mesh entity is their polynomial
consistency: Applied to interpolates of polynomials of the correct degree ℓ (ℓ = : + 1 for the gradient
space, ℓ = : for the curl and divergence spaces), they return the polynomial itself. This translates into
the following polynomial consistency of the !2-inner products:

(� :•,) 5 , �
:
•,)6)•,) =

∫
)

5 · 6, ∀ 5 , 6 ∈ Pℓ ()).

2.3. Lie algebra-valued serendipity DDR complex

Since the Yang–Mills equations involve Lie algebra-valued functions, a Lie algebra-valued complex
is required to discretise them. This complex is simply obtained by tensorisation of the real-valued
complex, as in [2]: the spaces are made of Lie algebra-valued polynomials, and the operators of the
complex act component by component on the Lie algebra.

In the following, we consider a Lie algebra g, that is, a finite-dimensional vector space endowed
with a bilinear bracket [·, ·] : g× g→ g and an inner product 〈·, ·〉 : g× g→ R which satisfy the Jacobi
identity

[0, [1, 2]] + [1, [2, 0]] + [2, [0, 1]] = 0, ∀0, 1, 2 ∈ g

and the Ad-invariance property, which implies

〈[0, 1], 2〉 = 〈0, [1, 2]〉, ∀0, 1, 2 ∈ g.

Mathematics in Engineering Volume 6, Issue 3, 468–493.

477

We denote the Lie algebra-valued SDDR spaces by appending an exponent g after the degree : . So,
for example, the gradient space in the LASDDR (Lie algebra SDDR) complex is

-
:,g

grad,ℎ ≔ (-
:
grad,ℎ ⊗ g) ≡

{
@
ℎ
= ((@)))∈Tℎ , (@�)�∈Fℎ , (@�)�∈Eℎ , (@+)+∈Vℎ) :

@) ∈ Pℓ) ()) ⊗ g for all) ∈ Tℎ, @� ∈ Pℓ� (�) ⊗ g for all � ∈ Fℎ,

@� ∈ P:−1(�) ⊗ g for all � ∈ Eℎ, and @+ ∈ R ⊗ g for all + ∈ Vℎ
}
.

We note that, selecting a basis (4�)� of g, for any P ∈ Mℎ we have

Pℓ (P) ⊗ g ≡ Pℓ (P; g) ≔ {q�4� : q� ∈ Pℓ (P)}.

Here and in the following we use the implicit summation convention so, for example, q�4� =
∑
� q

�4� .
For a general space - , an element E ∈ - ⊗ g can be uniquely decomposed as E = E � ⊗ 4� . Any linear
operator ! : - → . acting between two SDDR spaces -,. (or an SDDR space and a polynomial
space) – such as a discrete differential operator, a potential reconstruction, etc. – then gives rise to the
corresponding LASDDR operator !g : - ⊗ g→ . ⊗ g defined as !g(E) = (! (E �)) ⊗ 4� ∈ . ⊗ g; this
definition is independent of the choice of the basis in g. With these notations, the LASDDR complex is

R ⊗ g -
:,g

grad,ℎ ^:,g

curl,ℎ ^:,g

div,ℎ P: (Tℎ) ⊗ g {0}.
�
:,g

grad,ℎ M:,g
ℎ

I:,g
ℎ

�
:,g

ℎ 0

In each space an inner product is obtained by tensorising the inner product of the corresponding SDDR
space and of the Lie algebra. So, if • ∈ {grad, curl, div},

(G
ℎ
, H
ℎ
)•,g,ℎ = (G �ℎ, H

�

ℎ
)•,ℎ〈4� , 4�〉, ∀G

ℎ
= G �

ℎ
⊗ 4� ∈ - :,g•,ℎ , ∀Hℎ = H

�

ℎ
⊗ 4� ∈ - :,g•,ℎ .

Practical implementations of theLASDDRcomplex and related schemes can be easily done, in principle,
by tensorising the operators and inner products of an SDDR implementation. Early tensorisation can
however lead to unduly expensive calculations, especially when nonlinear terms are involved. We
discuss in Section 4 the main considerations that must be taken into account to limit the assembly cost
in implementations of LASDDR-based schemes.

3. Two DDR-based schemes for the Yang–Mills equations

We propose two schemes for the Yang–Mills equations, which only differ in the handling of the
nonlinear terms appearing in the equations. The first was introduced at the lowest order in [2], in which
a discrete ‘bracket’ was constructed to approximate the value in the ^:,g

div,ℎ space. This term is used in
the discrete !2-products, and the exact preservation of a discrete constraint, as well as energy estimates,
are proven. Numerical tests in [2] however only considered the lowest-order : = 0 of the method.

The second method we present here is new, and leverages instead the continuous !2-product and
nonlinear bracket, as well as the elemental potential reconstructions, to achieve the same goal.

Mathematics in Engineering Volume 6, Issue 3, 468–493.

478

3.1. Weak constrained form of the equations

Deriving from the bracket on the Lie algebra, the following two bilinear maps are defined:

[·, ·] : (X(*) ⊗ g) × (�∞(*) ⊗ g) → X(*) ⊗ g, [v, @] ↦→ v �@� ⊗ [4� , 4�], (3.1)
★[·, ·] : (X(*) ⊗ g) × (X(*) ⊗ g) → X(*) ⊗ g, ★[v, w] ↦→ (v � × w�) ⊗ [4� , 4�] . (3.2)

We use in the discretisation a weak constrained formulation of the Yang–Mills equations, appearing
previously in [20]: Find (G, K, _) : [0,)] → (N(curl;*) ⊗ g)2 × (�1(*) ⊗ g) such that

mCG = − K, (3.3a)∫
*

〈mCK, v〉 +
∫
*

〈grad_ + [G, _], v〉 =
∫
*

〈curl G, curl v〉 +
∫
*

〈curl G, ★[G, v]〉

+
∫
*

〈
1
2
★[G, G] , curl v +★[G, v]

〉
, ∀v ∈ N(curl;*) ⊗ g, (3.3b)∫

*

〈mCK, grad @ + [G, @]〉 = 0, ∀@ ∈ �1(*) ⊗ g. (3.3c)

Note that the right-hand side of (3.3b) is equal to
∫
*
〈H, curl v +★[G, v]〉, where the magnetic field is

defined as H ≔ curl G+ 12★[G, G] . We have developed this expression as it will drive different choices
of discretisations. Solutions to these equations preserve the quantity∫

*

〈K, grad @ + [G, @]〉, ∀@ ∈ �1(*) ⊗ g. (3.4)

The use of this particular constrained form facilitates the preservation of a discrete counterpart in the
numerical scheme; discussions on the derivation and implications of these continuous equations can be
found in [2, 20].

3.2. Schemes

We consider a time discretisation 0 = C0 < C1 < . . . < C# =) of [0,)] and denote the step in time
between = and = + 1 as XC=+ 12 ≔ C=+1 − C=. Then define for a family E = (E=)=, X=+1C E = E=+1−E=

XC
=+ 12

.

Starting from initial conditions (G0
ℎ
, K0

ℎ
) ∈ (^:,g

curl,ℎ)
2, the constrained scheme based on (3.3) is:

Find families (G=
ℎ
)=, (K=ℎ)=, (_

=
ℎ
)= such that for all =, (G=ℎ, K

=
ℎ
, _=

ℎ
) ∈ (^:,g

curl,ℎ)
2 × (- :,ggrad,ℎ) and

X=+1C Gℎ = −K
=+1
ℎ , (3.5a)

(X=+1C Kℎ, vℎ)curl,g,ℎ + (M:,g

ℎ
_=+1
ℎ
, v
ℎ
)curl,g,ℎ +

∫
*

〈[V:,gcurl,ℎG
=+1
ℎ , %

:+1,g
grad,ℎ_

=+1
ℎ
], V:,gcurl,ℎvℎ〉

= (I:,g

ℎ
G=+1ℎ ,I:,g

ℎ
v
ℎ
)div,g,ℎ +N(G=ℎ, G

=+1
ℎ ; vℎ), ∀v

ℎ
∈ ^:,g

curl,ℎ, (3.5b)

(X=+1C Kℎ,M
:,g

ℎ
@
ℎ
)curl,g,ℎ +

∫
*

〈V:,gcurl,ℎ (X
=+1
C Kℎ), [V

:,g

curl,ℎG
=
ℎ, %

:+1,g
grad,ℎ@ℎ

]〉 = 0,

∀@
ℎ
∈ - :,ggrad,ℎ. (3.5c)

Mathematics in Engineering Volume 6, Issue 3, 468–493.

479

We refer the reader to [2, Section 4] for a discussion on the choice of the initial conditions (G0
ℎ
, K0

ℎ
),

and also for alternative choices to the fully implicit time stepping selected here.
In (3.5b), N ∈ {N1,N2} is one of the following two discretisations of the nonlinear terms in the

right-hand side of (3.3b):

N1(G=ℎ, G
=+1
ℎ ; vℎ) ≔ (I

:,g

ℎ
G=+1ℎ , ★[G=+

1
2

ℎ
, v
ℎ
]div,:,ℎ)div,g,ℎ

+
(
1
2
★[G=+1ℎ , G=+1ℎ]

div,:,ℎ,I:,g

ℎ
v
ℎ
+★[G=+

1
2

ℎ
, v
ℎ
]div,:,ℎ

)
div,g,ℎ

, (3.6)

N2(G=ℎ, G
=+1
ℎ ; vℎ) ≔

∫
*

〈C:,g

ℎ
G=+1ℎ , ★[V:,gcurl,ℎG

=+ 12
ℎ
, V:,gcurl,ℎvℎ]〉

+
∫
*

〈1
2
★[V:,gcurl,ℎG

=+1
ℎ , V:,gcurl,ℎG

=+1
ℎ] ,C

:,g

ℎ
v
ℎ
+★[V:,gcurl,ℎG

=+ 12
ℎ
, V:,gcurl,ℎvℎ]

〉
. (3.7)

Above, we have set G
=+ 12
ℎ

= 1
2 (G

=
ℎ
+ G=+1

ℎ
). Moreover, in N1, we have made use of the discrete

version ★[·, ·]div,:,ℎ : (^:,g

curl,ℎ)
2 → ^:,g

div,ℎ of the map (3.2), defined for all v
ℎ
, w

ℎ
∈ ^:,g

curl,ℎ through its
components by:(

★[v
ℎ
, w

ℎ
]div,:,ℎ

)
�
= c:P ,�

(
★[$:,gt,� v� , $

:,g

t,�w�] · n�
)
∈ P: (�) ⊗ g, ∀� ∈ Fℎ, (3.8a)(

★[v
ℎ
, w

ℎ
]div,:,ℎ

)
G,)

= 0:−1
G,)

(
★[V:,gcurl,)v) , V

:,g

curl,)w)]
)
∈ G:−1()) ⊗ g, ∀) ∈ Tℎ, (3.8b)(

★[v
ℎ
, w

ℎ
]div,:,ℎ

)c
G,)

= 0c,:
G,)

(
★[V:,gcurl,)v) , V

:,g

curl,)w)]
)
∈ Gc,: ()) ⊗ g, ∀) ∈ Tℎ. (3.8c)

In N2 we have used the global piecewise polynomial curl C:,g

ℎ
defined by patching the element curls:

(C:,g

ℎ
v
ℎ
) |) = C:,g

)
v
)
for all) ∈ Tℎ and v

ℎ
∈ ^:,g

curl,ℎ.
Remark 2 (Motivation for the discretisation of the nonlinear terms). The nonlinear terms in the right-
hand side of (3.3b) are∫

*

〈curl G, ★[G, v]〉 +
∫
*

〈
1
2
★[G, G] , curl v +★[G, v]

〉
. (3.9)

When discretising these terms, the continuous fields G, v ∈ N(curl;*) ⊗g are replaced by fully discrete
objects Gℎ, vℎ ∈ ^:,g

curl,ℎ, and we have to give meaning to the terms in (3.9) after this substitution –
which is not straightforward since ^:,g

curl,ℎ is not a subspace of N(curl;*) ⊗ g.
Applying the standard DDR procedure on (3.9), we build these terms by replacing the inner product∫

*
〈·, ·〉 and differential curl by the corresponding discrete notions found in the LASDDR complex.

The only missing element is a discrete version of the bracket★[·, ·] on ^:,g

curl,ℎ × ^
:,g

curl,ℎ which produces
consistent discrete approximations in ^:,g

div,ℎ. This is what (3.8) provides, and this approach leads toN1.
Another approach to discretising (3.9) is in a sense more straightforward (but only works because

none of these terms, in the weak formulation, comes from integrating-by-parts the strong form of the
model): Since we can reconstruct piecewise polynomial reconstructions and curls from elements in
^:,g

curl,ℎ, we can decide to simply substitute all the terms G, v by these polynomial reconstruction based
on Gℎ, vℎ and keep the other elements (integrals, brackets) exactly the same. This idea leads to N2.

Mathematics in Engineering Volume 6, Issue 3, 468–493.

480

Remark 3 (Discretisation of the linear terms). The same way we used, inN2, the piecewise polynomial
potentials and element curl, we could consider replacing, in (3.5b), the term (I:,g

ℎ
G=+1
ℎ
,I:,g

ℎ
v
ℎ
)div,g,ℎ

with
∫
*
〈C:,g

ℎ
G=+1
ℎ
,C:,g

ℎ
v
ℎ
〉. This would however not lead to a suitable scheme, for the following reason.

Consider the pure Maxwell model, discretised using a linear unconstrained scheme (that is, (3.5a)–
(3.5b) without the terms involving _

ℎ
, without the nonlinear terms and with g = R with the trivial Lie

bracket):

X=+1C Gℎ = −K
=+1
ℎ , (3.10a)

(X=+1C Kℎ, vℎ)curl,g,ℎ = (I:,g

ℎ
G=+1ℎ ,I:,g

ℎ
v
ℎ
)div,g,ℎ. (3.10b)

Using the results in [12, Section 6] it can easily be shown that, for a smooth enough potential G, solution
of the continuous model, the consistency error (as defined in [31]) of the scheme satisfies

Eℎ (G; vℎ) ≤ �G(XC + ℎ:+1)
(
‖v

ℎ
‖curl,g,ℎ + ‖I:

ℎ
v
ℎ
‖div,g,ℎ

)
, (3.11)

where ‖·‖curl,g,ℎ and ‖·‖div,g,ℎ denote the norms respectively associated with the inner products
(·, ·)curl,g,ℎ and (·, ·)div,g,ℎ. The scheme (3.10) is stable for the norm ‖·‖curl,g,ℎ + ‖I:

ℎ
·‖div,g,ℎ, so (3.11)

and the 3rd Strang Lemma [31] provide an O(XC + ℎ:+1) error estimate.
However, replacing (I:,g

ℎ
G=+1
ℎ
,I:,g

ℎ
v
ℎ
)div,g,ℎwith

∫
*
〈C:,g

ℎ
G=+1
ℎ
,C:,g

ℎ
v
ℎ
〉 in (3.10b) results in a scheme

that is stable for the weaker norm ‖·‖curl,g,ℎ + ‖C:,g

ℎ
· ‖!2 (*) (which does not control, in particular, the

face curls). On the other hand, the consistency estimate remains (3.11), in the stronger norm. As
a consequence, this estimate and the weaker stability cannot be combined together to obtain error
estimates on the scheme. As a matter of fact, numerical tests (not reported in this paper) show that,
on some mesh families, this alternative scheme does not converge as the mesh size and time step are
refined.

3.3. Discrete energy and constraint preservation

We define the discrete conserved quantity through the constraint functional ℭ= : - :,ggrad,ℎ → R:

ℭ= (@
ℎ
) ≔ (K=ℎ,M

:,g

ℎ
@
ℎ
)curl,g,ℎ +

∫
*

〈V:,gcurl,ℎK
=
ℎ, [V

:,g

curl,ℎG
=
ℎ, %

:+1,g
grad,ℎ@ℎ

]〉,

∀@
ℎ
∈ - :,ggrad,ℎ.

(3.12)

Proposition 4 (Constraint preservation). For any choice of N, if (G=
ℎ
, K=

ℎ
, _=

ℎ
) solve (3.5) then, for all

@
ℎ
∈ - :,ggrad,ℎ, the quantity ℭ

= (@
ℎ
) is independent of =.

Proof. Wenote that the proof for the preservation of constraint in [2, Proposition 7] is in fact independent
of the discretisation of the second equation (3.5b), and also applies in the case for general : (see [2,
Section 6.2]). �

To state the energy dissipation property, we introduce the discrete magnetic fields based on H. Their
nature depends on the chosen discretisation of the nonlinear terms in (3.3b). If N = N1, exploiting the
discrete bracket ★[·, ·]div,:,ℎ we can define the discrete magnetic field as an element of ^:,g

curl,ℎ:

H=ℎ,1 ≔ I:,g

ℎ
G=ℎ +

1
2
★[G=ℎ, G

=
ℎ]
div,:,ℎ ∈ ^:,g

curl,ℎ.

Mathematics in Engineering Volume 6, Issue 3, 468–493.

481

If N = N2, the nonlinear terms being discretised as piecewise polynomial functions, the discrete
magnetic field has the same nature:

H=ℎ,2 ≔ C:,g

ℎ
G=ℎ +

1
2
★[V:,gcurl,ℎG

=
ℎ, V

:,g

curl,ℎG
=
ℎ] ∈ P

: (Tℎ) ⊗ g. (3.13)

Proposition 5 (Energy dissipation). If the initial conditions (G0
ℎ
, K0

ℎ
) are such that ℭ0 ≡ 0, then we

have the decay of energy in the sense that, for all =,

1
2
‖K=+1ℎ ‖

2
curl,g,ℎ +B

=+1 ≤ 1
2
‖K=ℎ‖

2
curl,g,ℎ +B

=, (3.14)

where

B= ≔

1
2
‖H=ℎ,1‖

2
div,g,ℎ if N = N1,

1
2
‖H=ℎ,2‖

2
!2 (*)⊗g +

1
2
sgdiv,ℎ (I

:,g

ℎ
G=ℎ,I

:,g

ℎ
G=ℎ) if N = N2,

where sgdiv,ℎ is the stabilisation form involved in the definition of the inner product (·, ·)div,g,ℎ (that is,
the tensorisation of sdiv,ℎ defined by (2.1)).

Proof. The proof for N = N1 is identical to the one for : = 0 done in [2, Proposition 8] (see
also [2, Section 6.2]).

Let us consider the case N = N2. Choosing v
ℎ
= K=+1

ℎ
in (3.5b) and multiplying by XC=+ 12 , the first

term in the LHS is

(K=+1ℎ − K=ℎ, K
=+1
ℎ)curl,g,ℎ =

1
2
‖K=+1ℎ ‖

2
curl,g,ℎ −

1
2
‖K=ℎ‖

2
curl,g,ℎ +

1
2
‖K=+1ℎ − K=ℎ‖

2
curl,g,ℎ,

while the remaining two form the constraint ℭ=+1(_=+1
ℎ
), that vanishes by Proposition 4 and the

assumption that ℭ0 ≡ 0.
On the RHS, we use (3.5a) to substitute instead v

ℎ
= −X=+1C Gℎ, noting the cancellation of XC=+ 12

after multiplying. Expanding the discrete !2-product by its definition and invoking [12, Proposition 7]
(which can easily be extended to the SDDR complex using [1, Eq (2.2)]) to write V:,gdiv,ℎI

:,g

ℎ
= C:,g

ℎ
, the

first term is

(I:,g

ℎ
G=+1ℎ ,I:,g

ℎ
(G=ℎ − G=+1ℎ))div,g,ℎ

=

∫
*

〈C:,g

ℎ
G=+1ℎ ,C:,g

ℎ
(G=ℎ − G=+1ℎ)〉 + s

g

div,ℎ (I
:,g

ℎ
G=ℎ,I

:,g

ℎ
(G=ℎ − G=+1ℎ)).

Combining with the integrals in N2 (see (3.7)), expanding G
=+ 12
ℎ

= 1
2 (G

=
ℎ
+ G=+1

ℎ
), recalling the

definition (3.13) of Hℎ,2, then using the symmetry and bilinearity of the bracket (3.2), the RHS
becomes

(I:,g

ℎ
G=+1ℎ ,I:,g

ℎ
(G=ℎ − G=+1ℎ))div,g,ℎ +N2(G

=
ℎ, G

=+1
ℎ ; G

=
ℎ − G=+1ℎ)

=

∫
*

〈
H=+1ℎ ,C:,g

ℎ
(G=ℎ − G=+1ℎ) +★[V

:,g

curl,ℎ
1
2
(G=ℎ + G=+1ℎ), V

:,g

curl,ℎ (G
=
ℎ − G=+1ℎ)]

〉
Mathematics in Engineering Volume 6, Issue 3, 468–493.

482

+ sgdiv,ℎ (I
:,g

ℎ
G=+1ℎ ,I:,g

ℎ
(G=ℎ − G=+1ℎ))

=

∫
*

〈
H=+1ℎ ,C:,g

ℎ
G=ℎ +

1
2
★[V:,gcurl,ℎG

=
ℎ, V

:,g

curl,ℎG
=
ℎ] − C:,g

ℎ
G=+1ℎ −

1
2
★[V:,gcurl,ℎG

=+1
ℎ , V:,gcurl,ℎG

=+1
ℎ]

〉
+ sgdiv,ℎ (I

:,g

ℎ
G=+1ℎ ,I:,g

ℎ
(G=ℎ − G=+1ℎ))

=

∫
*

〈
H=+1ℎ , H=ℎ − H=+1ℎ

〉
+ sgdiv,ℎ (I

:,g

ℎ
G=+1ℎ ,I:,g

ℎ
(G=ℎ − G=+1ℎ))

=
1
2

(
‖H=ℎ‖

2
!2 (*)⊗g − ‖H

=+1
ℎ ‖

2
!2 (*)⊗g − ‖H

=+1
ℎ − H=ℎ‖

2
!2 (*)⊗g + s

g

div,ℎ (I
:,g

ℎ
G=ℎ,I

:,g

ℎ
G=ℎ)

− sgdiv,ℎ (I
:,g

ℎ
G=+1ℎ ,I:,g

ℎ
G=+1ℎ) − s

g

div,ℎ (I
:,g

ℎ
G=+1ℎ − I

:,g

ℎ
G=ℎ,I

:,g

ℎ
G=+1ℎ − I

:,g

ℎ
G=ℎ)

)
,

where the conclusion follows by applying the relation 1(G, H−G) = 1
21(H, H)−

1
21(G, G)−

1
21(H−G, H−G)

to the symmetric bilinear forms 1 = (·, ·)!2 (*)⊗g and 1 = sgdiv,ℎ.
Finally arranging both side of the equation, moving the pure = + 1 terms to the left and the rest to

the right, we get

1
2
‖K=+1ℎ ‖

2
curl,g,ℎ +B

=+1 =
1
2
‖K=ℎ‖

2
curl,g,ℎ +B

=

− 1
2
‖K=+1ℎ − K=ℎ‖

2
curl,g,ℎ −

1
2
‖H=+1ℎ − H=ℎ‖

2
!2 (*)⊗g

− 1
2
sgdiv,ℎ (I

:,g

ℎ
G=+1ℎ − I

:,g

ℎ
G=ℎ,I

:,g

ℎ
G=+1ℎ − I

:,g

ℎ
G=ℎ),

proving the statement, since the norm and sgdiv,ℎ are both positive semidefinite. �

4. Implementation

We cover in this section the broad mechanisms of how the schemes are implemented. For our
numerical simulations, this implementation was done in the HArDCore3D library (see https://
github.com/jdroniou/HArDCore) starting from the serendipityDDRspaces and operators described
in Section 2. This library contains a fully automated construction of these objects, including the
computation of the degree depletions ℓP defined at the start of Section 2.2.

We first eliminate G=+1
ℎ

by using the first equation (3.5a) to write G=+1
ℎ

= G=
ℎ
− XC=+ 12K=+1

ℎ
. Denoting

the resulting equation by � (^=+1) = b, where ^=+1 represents the combined vector of K=+1
ℎ
, _=+1

ℎ
, we

then employ the iterative Newton method to find a solution up to an accuracy of n . The quantity G=+1
ℎ

,
which is required at the next time step, is finally recovered via back substitution.

At a single time step =, themost costly part of this process lies in the repeated assembly and resolution
of the linear Newton problem: Find vectors (^=+1,8+1)8∈N such that

��^=+1,8 (^
=+1,8+1 − ^=+1,8) = b − � (^=+1,8) until

‖� (^=+1,8+1) − b‖;2
‖b‖;2

≤ n .

Although the derivative matrix ��^=+1,8 is simple to determine because � is multilinear, it must be
rebuilt at every iteration, with terms stemming from bilinear, trilinear, and even quadrilinear forms (see
the product of bilinear brackets in the last terms of (3.6) and (3.7)). In the rest of this section, we

Mathematics in Engineering Volume 6, Issue 3, 468–493.

https://github.com/jdroniou/HArDCore
https://github.com/jdroniou/HArDCore

483

discuss how to perform these calculations without it becoming too expensive in either memory space
or computational time.

The other major expense is resolving the linear system, for which we use the Intel MKL PARADISO
library (see https://software.intel.com/en-us/mkl), which provides a multi-threaded direct
solver. An efficient technique to reduce this solver cost is to apply to the linear systems the static
condensation process, which eliminates all elemental unknowns of the system prior to solving. This is
made possible by the specific stencil resulting from a hybrid method like (S)DDR, which couples the
unknowns inside one element only with the unknowns on the faces, edges and vertices of that element
(inter-element unknowns are never directly coupled). We emphasize here the difference between static
condensation and the serendipity DDR process. Both reduce the number of degrees of freedom, but the
SDDR spaces and operators are leaner from the start; as a result, any scheme built from it will see an
improved performance in every aspect of the implementation at no additional cost. In contrast, static
condensation reduces the number of unknowns only after all contributions are assembled, and thus its
effect is more limited as it only reduces the cost of solving the global system, not the cost of assembling
that system. Additionally, it must be repeated every iteration, with some overhead (solving a smaller
linear system in each element) each time. Finally, we should highlight that, since static condensation
only eliminates unknowns in the elements while serendipity also eliminates degrees of freedom on
the edges/faces, the linear systems resulting from a statically condensed DDR scheme remain larger in
general than the linear systems resulting from a statically condensed SDDR scheme.

4.1. LASDDR tensorisation

The numerical construction of the LASDDR complex primarily consists of wrapping a layer of
matrix tensorisation around the existing SDDR code. For a code like HArDCore3D based on the Eigen3
library (see http://eigen.tuxfamily.org), this is easily achieved using the KroneckerProduct
functionality.

Fixing a basis (4�)� of the 3-dimensional Lie algebra g, each Lie algebra-valued degree of freedom
can by expressed by 3 real values. In other words, we can think of an element of an LASDDR space as
being made up of 3 SDDR vectors, one for each basis 4� ; i.e., vℎ ≡ v �

ℎ
⊗ 4� . Fixing an ordering that

combines everything into a single vector fixes the physical interpretation of all the remaining operators.
We choose to store the values associated to each mesh entity (vertex, edge, face, element) sequentially,
but for ease of distinguishing the significance of each entry, they are doubly indexed: (v8

ℎ
) � . The

lowercase letter numbers the mesh entity it originates from, and the capital letter labels the Lie algebra
basis it is attached to. As an example, if 3 = 3, we have the following structures:

v
ℎ
=

(v1
ℎ
)1

(v1
ℎ
)2

(v1
ℎ
)3

(v2
ℎ
)1
...

, v8

ℎ
=

(v8
ℎ
)1

(v8
ℎ
)2

(v8
ℎ
)3

 , v �
ℎ
=

(v1
ℎ
) �

(v2
ℎ
) �

(v3
ℎ
) �

(v4
ℎ
) �
...

.

Then, considering a linear LASDDR operator !g, the matrix representation Lg must by definition
act as Lg(v

ℎ
) ≡ L(v �

ℎ
) ⊗ 4� , where L is the corresponding SDDR matrix operator. From some basic

Mathematics in Engineering Volume 6, Issue 3, 468–493.

https://software.intel.com/en-us/mkl
http://eigen.tuxfamily.org

484

arithmetic, we can conclude that Lg has the form

Lg = L ⊗ I3 =

!11I3 !12I3 · · ·
!21I3 !22I3
...

. . .

 ,
where I3 is the 3 × 3 identity matrix. For bilinear operators such as the discrete inner products (·, ·)•,g,ℎ,
and the bracket terms which we deal with in the next section, the idea is very much the same; the
difference lies in the usage of a more general 3 × 3 matrix M in place of I3 , indicating an interaction of
the Lie algebra bases. For example, denoting the LASDDR (resp. SDDR) product matrix by Bg (resp.
B), with action previously defined as (v

ℎ
))Bg(w

ℎ
) = ((v �

ℎ
))B(w�

ℎ
))〈4� , 4�〉, the M becomes evidently

the mass matrix of the Lie algebra:

M =

〈41, 41〉 〈41, 42〉 · · ·
〈42, 41〉 〈42, 42〉

...
. . .

 , Bg = B ⊗ M =

�11M �12M · · ·
�21M �22M
...

. . .

 . (4.1)

4.2. Bracket terms

The nonlinear terms in both schemes create operators which can not be encoded by a single matrix,
but rather (local or global) 3 or 4-dimensional arrays:∫

)

〈V:,gcurl,) ·, [V
:,g

curl,) ·, %
:+1,g
grad,) ·]〉,

(·, ★[·, ·]div,:,ℎ)div,g,ℎ, (★[·, ·]div,:,ℎ, ★[·, ·]div,:,ℎ)div,g,ℎ,∫
)

〈C:,g

)
·, ★[V:,gcurl,) ·, V

:,g

curl,) ·] 〉,
∫
)

〈★[V:,gcurl,) ·, V
:,g

curl,) ·] , ★[V
:,g

curl,) ·, V
:,g

curl,) ·] 〉.

The tools available in Eigen3 for dealing with these objects are not nearly as developed as the ones for
matrices. In most cases, the multidimensional storage is done using the Boost.MultiArray library
(see https://www.boost.org/doc/libs/1_61_0/libs/multi_array/doc/index.html), but
the Eigen::Map function is used to interpret the data, so that we can still perform the usual matrix
operations.

These generic objects are independent of time, so seemingly the most time efficient method would
be to pre-compute them once and for all, and recall them when necessary. Unfortunately, the extra
dimensionalities mean these operators are much larger than the (bi)linear ones appearing in LASDDR;
in fact the memory usage to store these terms grows exponentially with the number of entries. The
Lie algebra tensorisation only exacerbates this problem, even accounting for the many symmetries that
could be exploited. This memory issue is particularly sensitive in an implementation – such as ours
(which follows the HArDCore general strategy) – that assumes that each element can have its own
geometry, which forces the local arrays to be computed/stored independently for each element (in a
situation where the mesh elements can be classified using a few reference elements, all memory issues
disappear as only local multilinear maps in reference elements need to be stored). In this context, the
immense amount of memory required to store just a single one of these global maps means that there is
no choice but to recalculate them at each time step and locally (mesh entity by mesh entity) as needed.

Mathematics in Engineering Volume 6, Issue 3, 468–493.

https://www.boost.org/doc/libs/1_61_0/libs/multi_array/doc/index.html

485

Another important effect on the runtime lies in the order in which some tensorisation-related
computations are performed. Taking the sum of smaller matrices multiple times is sometimes preferable
to doing it once with larger matrices (which often have lots of zeros). Therefore, delaying the
tensorisation until after the vectors have been evaluated can improve both the memory usage and
the speed, even though some calculations and the tensorisation have to be repeated.

We furnish these ideas with an example for the nonlinear terms of the form∫
)

〈V:,gcurl,) ·, [V
:,g

curl,)v) , %
:+1,g
grad,) ·]〉,

in which v
)
is a given vector in ^:,g

curl,) . This term is represented by a coefficient matrix with entries
(doubly indexed by ((8, �), (:,))) given by:∫

)

〈V:,gcurl,) (q8)� , [V
:,g

curl,)v) , %
:+1,g
grad,) (k:)]〉,

where the rows and columns range over the basis vectors, that are defined as (q8)� ≡ q8 ⊗ 4� (resp.
(k:)) where (q8)8 is a basis for ^:

curl,) (resp. (k:): a basis of - :grad,)). Pulling the vector out (recall
that we use implicit summation), and using the definition of the !2-product, this can be viewed as

(v 9
)
)�︸︷︷︸

vector

(∫
)

V:curl,)q8 · V
:
curl,)q 9 %

:+1
grad,)k:

)
〈4� , [4� , 4]〉︸ ︷︷ ︸

trilinear form "(8,�) , (9 ,�) , (:,)

,

where " is indeed a trilinear form (indices ((8, �), (9 , �), (:,))), represented by a 3-dimension block
of 33×(dim(^:

curl,)))×(dim(^
:
curl,)))×(dim(- :grad,))) coefficients. Asmentioned, although" would

be useful to calculate in itself, since it can then be used to find other terms in the scheme, performing
the contraction with each vector v

)
is actually quite slow because of the large matrix sums.

Instead we do something less intuitive, by combining the vector with the integral portion of the
product first:

(v 9
)
)�

(∫
)

V:curl,)q8 · V
:
curl,)q 9 %

:+1
grad,)k:

)
︸ ︷︷ ︸

" �
8,:

〈4� , [4� , 4]〉︸ ︷︷ ︸
#� ,� ,

. (4.2)

These integral coefficients represent the smaller SDDR trilinear form
∫
)
(V:curl,) ·) · (V

:
curl,) ·) (%:+1grad,) ·);

this term is first combined (through the sum over 9) with the vector (v
)
)� , before performing the

tensorisation with #�,�, (on (8, �), (:,)), and finally taking the much shorter matrix sum over �. This
delay in combining the Lie algebra indices initially seems like extra work, as this "�

8,:
sum is unique

to each vector (v
)
)� , and so the tensorisation must be re-done each time, but testing showed that the

tradeoff for smaller matrix sums is worth it in this case.
The ★[·, ·] bracket is dealt with differently because it can appear twice in a single product. In this

double bracket case, if we use the same summation methods as in (4.2), then we have the appearance
of quadrilinear forms instead of trilinear forms, that would require the computation of a 4-dimensional
array. To avoid the extra dimension, we treat the bracket terms as independent objects, that can be

Mathematics in Engineering Volume 6, Issue 3, 468–493.

486

manipulated separately to the product matrix. For example, in the first discretisation N1 described
in (3.6), two terms involve this bracket, which we compute the following way (underbrace denotes the
dimension of the array representation with the implied transposition, and we write formal products to
show how the calculation could be decomposed in the code):

(★[v
ℎ
, ·]div,:,ℎ, ★[w

ℎ
, ·]div,:,ℎ)div,g,ℎ = ★[v

ℎ
, ·]div,:,ℎ︸ ︷︷ ︸
matrix

(·, ·)div,g,ℎ︸ ︷︷ ︸
matrix

★[w
ℎ
, ·]div,:,ℎ︸ ︷︷ ︸

matrix

, (4.3)

(★[v
ℎ
, w

ℎ
]div,:,ℎ, ★[·, ·]div,:,ℎ)div,g,ℎ = ★[v

ℎ
, w

ℎ
]div,:,ℎ︸ ︷︷ ︸

vector

(·, ·)div,g,ℎ︸ ︷︷ ︸
matrix

★[·, ·]div,:,ℎ︸ ︷︷ ︸
3-dim array

. (4.4)

We note that themap★[·, ·]div,:,ℎ : (^:,g

curl,ℎ)
2 → ^:,g

div,ℎ is bilinear, but requires an extra dimension in the
corresponding array to represent the output in ^:,g

div,ℎ. Thus the terms ★[v
ℎ
, ·]div,:,ℎ and ★[w

ℎ
, ·]div,:,ℎ

are indeed represented by matrices, calculated using the same principle (described in (4.2)) of avoiding
the tensorisation until the last step. The order of operations is also crucial in (4.4); the vector-matrix
multiplication must come first, to ensure that the 3-dimensional array is only contracted with a vector.
We stress again however, that the full set of ★[·, ·]div,:,ℎ coefficients is never constructed, and all
calculations are done in the way of (4.2).

The same idea is implemented in the second discretisation N2 (see (3.7)), by introducing a basis for
P
2: ()), and working with the map

★[V:,gcurl,) ·, V
:,g

curl,) ·] : (^
:,g

curl,))
2 → P

2: ()) ⊗ g.

The numerical decomposition of the term analogous to (4.3) is

★[V:,gcurl,)v, V
:,g

curl,) ·]︸ ︷︷ ︸
matrix

(∫
)

〈·, ·〉
)

︸ ︷︷ ︸
matrix

★[V:,gcurl,)w, V
:,g

curl,) ·]︸ ︷︷ ︸
matrix

, (4.5)

where the integral is realised by the tensorisation of the mass matrix of the basis on P
2: ()), and the

mass matrix of the Lie algebra (see (4.1)). With orthonormal choices of bases of P2: ()) and g (which
is the default in the HArDCore library), the calculations here are greatly simplified; the components
of ★[V:,gcurl,) ·, V

:,g

curl,) ·] can be found using only the triple integrals of the bases of P: ()) and P
2: ())

(without requiring to solve a linear system afterwards), and the integral in (4.5) is just given by the
identity matrix

I3 (2:+1) = I2:+1 ⊗ I3 .

5. Numerical tests

We present a numerical comparison of the convergence of the two schemes, as well as the exact
constraint preservation that is expected. The tests were performed on a Dell Precision 5820 desktop
with a 14-core Intel Xeon processor (W-2275) clocked at 3.3 GHz and equipped with 128 GB of DDR4
RAM, running Ubuntu 22.04.1 LTS. The discretisation setting is identical to that of [2, Section 5],
which only contained tests for : = 0 of the scheme pertaining to N1. Here we expand on these results
for higher orders (: = 0, 1, 2), and also consider the performance in relation to the second discretisation.

Mathematics in Engineering Volume 6, Issue 3, 468–493.

487

Let us recall the setting of these tests. The Lie algebra is g = su(2), with basis

41 = −
8

2

[
0 1
1 0

]
, 42 = −

8

2

[
0 −8
8 0

]
, 43 = −

8

2

[
1 0
0 −1

]
.

The time interval is [0, 1] and the space domain is the unit cube (0, 1)3; the spatial discretisation is
based on three families of Voronoi, tetrahedral, and cubic cell meshes. For each mesh of size ℎ, the
time interval is uniformly divided intomax{10,

⌈
5/ℎ:+1

⌉
} time steps; given that we use an implicit time

discretisation, the expected rate of convergence is in XC + ℎ:+1, and the choice of time step is designed
so that, when plotted against ℎ, the errors should decay as ℎ:+1. To set non-zero initial conditions, and
to assess the convergence properties of the schemes, we select a manufactured solution based on

G(C) =

−0.5 cos(C) sin(cG) cos(cH) cos(cI)
cos(C) cos(cG) sin(cH) cos(cI)

−0.5 cos(C) cos(cG) cos(cH) sin(cI)

 ⊗ 41
+

−0.5 sin(C) sin(cG) cos(cH) cos(cI)
sin(C) cos(cG) sin(cH) cos(cI)

−0.5 sin(C) cos(cG) cos(cH) sin(cI)

 ⊗ 42
+

−0.5 sin(C) sin2(cH)
cos(C) cos2(cI)
−0.5 sin(C) cos2(cG)

 ⊗ 43,
(5.1)

from which K (C) is calculated using (3.3a). Then for all tests in this section, the initial conditions are
assumed to be G0

ℎ
= O:,gcurl,ℎG(0), K

0
ℎ
= O:,gcurl,ℎK (0).

Remark 6 (Convergence results for _
ℎ
). Although the fields G, K of a solution to the constrained

formulation (3.3) solve the Yang–Mills equations, there is no proof that the _ obtained is unique.
Testing performed in [2, Section 5] suggest indeed that there are infinitely many solutions; the values
obtained for _=

ℎ
are therefore not very instructive, and have been omitted from the graphs. Discussion

around the solvability of the linear system deriving from such a scheme can also be found in the cited
section; we experienced a similar success, with a worst residual for the linear solver of the order 1e−09.

5.1. Convergence tests

In addition, appropriate boundary conditions and forcing terms are introduced to balance the
equations (see [2, Section 5.1] for details). The errors for both schemes are measured by calculating
the difference ‖K=+1

ℎ
− O:,gcurl,ℎK (1)‖curl,g,ℎ (resp. G=+1

ℎ
, G) at the final time, and dividing by the norm

of K=+1
ℎ

(resp. G=+1
ℎ

). These relative errors are plotted in Figure 1 for K, and Figure 2 for G.
We remark immediately that for G, the errors are indistinguishable from the figure alone. The

precise difference for the Voronoi and cubic sequences are calculated in Table 1, with the trend applying
identically to the tetrahedral family. As either : increases or ℎ decreases, the difference between the
errors shrink accordingly, and this is seen also in the errors for K for : = 1, 2. However for the electric
field, there is a more visible separation when : = 0, with theN1-based discretisation performing slightly
better. These tests seem to indicate that, overall, both choices N1,N2 lead to acceptable and similar
results.

Mathematics in Engineering Volume 6, Issue 3, 468–493.

488

The schemes converge on the Voronoi and cubic meshes at the expected rate of : + 1 for both K
and G, but this behaviour was not as stable for K on the tetrahedral line, where we see a rate that
jumps around 3 for every : . This might be due to the asymptotic regime not been reached yet on these
meshes (we note that, for : = 0 for example, the simulation on the finest mesh seem to indicate that
the convergence rate slows down). The magnitude of these errors are still ordered in the expected way,
except for the coarsest cubic mesh in Figure 1, where it is corrected after the first refinement.

K (N1, : = 0); K (N1, : = 1); K (N1, : = 2);
K (N2, : = 0); K (N2, : = 1); K (N2, : = 2);

10−0.8 10−0.6 10−0.4 10−0.2
10−3

10−2

10−1

1

1

1

2

1

3

(a) “Voro-small-0” mesh

10−0.6 10−0.5 10−0.4 10−0.3

10−2

10−1

1

1

1

2

1

3

(b) “Tetgen-Cube-0” mesh

10−1 100
10−3

10−2

10−1

100

1

1

1

2

1

3

(c) “Cubic-Cells” mesh

Figure 1. Relative errors on K for N1 and N2: Voronoi, tetrahedral and cubic meshes.

Mathematics in Engineering Volume 6, Issue 3, 468–493.

489

G (N1, : = 0); G (N1, : = 1); G (N1, : = 2);
G (N2, : = 0); G (N2, : = 1); G (N2, : = 2);

10−0.8 10−0.6 10−0.4 10−0.2

10−3

10−2

10−1

1

1

1

2

1

3

(a) “Voro-small-0” mesh

10−0.6 10−0.5 10−0.4 10−0.3
10−3

10−2

10−1

1

1

1

2

1

3

(b) “Tetgen-Cube-0” mesh

10−1 100

10−3

10−2

10−1

1

1

1

2

1

3

(c) “Cubic-Cells” mesh

Figure 2. Relative errors on G for N1 and N2: Voronoi, tetrahedral and cubic meshes.

Table 1. Difference between the errors of G (N1) and G (N2) for various degrees : on the
Voronoi and Cubic meshes.

Voronoi mesh Cubic mesh
1 2 3 4 5 1 2 3 4

: = 0 4.36e-3 5.98e-4 5.02e-4 1.67e-5 1.43e-5 1.05e-2 9.97e-4 8.98e-5 1.11e-5
: = 1 1.41e-3 8.93e-5 1.47e-5 6.23e-6 2.57e-6 9.99e-4 1.05e-4 7.04e-6 4.35e-7
: = 2 9.16e-5 3.46e-6 3.4e-7 6e-8 - 1.01e-4 4.97e-6 1.96e-7 -

5.2. Constraint preservation

The tests for the preservation of constraint are run with the same initial conditions as the convergence
tests. For proper solutions to the Yang–Mills equations, and for Proposition 5, it is expected that these
discrete fields prescribe a small or vanishing initial constraint ℭ0. This can be achieved by projecting

Mathematics in Engineering Volume 6, Issue 3, 468–493.

490

the initial conditions (see [2]), however for the purpose of testing Proposition 4, which does not depend
on the initial values, it suffices to measure the maximum change in the functional ℭ= − ℭ0 over all
times. The differences are presented in Table 2 for selected meshes from each sequence. We see for
both methods that the constraint is stationary up to machine precision, with the small drift coming from
rounding errors present at each iteration.

For reference, we also provide in Table 3 a comparison of the runtimes for the two different choices
of discretisation of the nonlinear tests. The performances of both schemes are very comparable on a
variety of meshes and degrees : , with the exception of a 10% difference in favour of N1 for : = 2 on
the Tetrahedral meshes, that shows up consistently through our tests. This difference is likely due to the
nontrivial calculation attached to each face component (3.8a) in the definition of the discrete bracket
of N1. These calculations are necessary because the face values also contribute to the !2-product,
but they result in a larger dependency of the runtime on the number of faces in a particular mesh. In
comparison, the N2 discretisation is less affected by the shape of the elements; numerically, an extra
face only represents an increase in size of the SDDR operators (which equally affects N1) used in the
integrals. This is supported by the results for the Voronoi sequence, that has a higher face to element
ratio than the tetrahedral sequence, where N2 starts to slightly outperform N1.

Table 2. Maximum over = of the difference ℭ= − ℭ0 measured in the dual norm.
Voronoi mesh Tetrahedral mesh Cubic mesh

N1 1 3 2 4 1 3
: = 0 8.47329e-15 3.05676e-14 2.06362e-14 4.75412e-14 3.52318e-15 2.16527e-14
: = 1 1.4144e-13 8.93075e-13 3.67781e-13 1.81426e-12 2.33678e-14 6.44019e-13
: = 2 3.69918e-12 1.18207e-10 3.82037e-12 2.77407e-11 4.45312e-14 6.48608e-12
N2 1 3 2 4 1 3
: = 0 8.16124e-15 3.13617e-14 2.01667e-14 4.77633e-14 4.22851e-15 2.11083e-14
: = 1 9.8531e-14 8.83056e-13 3.69107e-13 1.81787e-12 2.52977e-14 6.48934e-13
: = 2 4.16428e-12 7.99416e-11 3.81537e-12 2.77391e-11 4.51672e-14 6.48285e-12

Table 3. Total runtime for each test in seconds.
Voronoi mesh Tetrahedral mesh Cubic mesh

N1 1 3 2 4 1 3
: = 0 5.00865 145.77 4.70017 21.1378 0.564665 35.2541
: = 1 35.9231 2836.36 50.997 360.943 3.58296 588.679
: = 2 198.435 43303.9 578.499 5732.1 14.6638 14337.4
N2 1 3 2 4 1 3
: = 0 4.57515 135.231 4.16998 19.7708 0.53204 32.879
: = 1 34.2036 2814.14 51.3249 340.817 3.62877 631.546
: = 2 190.447 42083.9 634.162 6421.87 13.8524 14414.9

Mathematics in Engineering Volume 6, Issue 3, 468–493.

491

6. Conclusions

We designed two schemes for the Yang–Mills equations based on the DDR method, both displaying
arbitrary orders of accuracy and applications on generic polyhedral meshes. Thanks to the complex
property of DDR and to the usage of a Lagrange multiplier, both schemes also preserve a discrete
nonlinear constraint deriving from the Yang–Mills equations, and satisfy energy bounds. The schemes
only differ in their treatment of the nonlinearity akin to a cross product combinedwith the Lie bracket for
Lie algebra-valued vector functions. The first scheme reconstructs a discrete version of the continuous
product bracket, that can then be used in the discrete !2-products of the DDR complex. The second
scheme uses the DDR potential reconstructions to get polynomials in each element, on which the
continuous product bracket can be applied. We show how a clever ordering of the algebraic operations
in the assembly of the schemes can help keep the computational cost at a reasonable level, despite
needing to deal with multidimensional arrays and high system sizes due to the Lie algebra components.
Numerical results are presented which show a good behaviour and an expected rate of convergence,
with respect to the mesh size, in ℎ:+1.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

Funded by the European Union (ERC, NEMESIS, No. 101115663). Views and opinions expressed
are however those of the authors only and do not necessarily reflect those of the European Union or the
European Research Council Executive Agency. Neither the European Union nor the granting authority
can be held responsible for them.

Conflict of interest

The authors declare no conflicts of interest.

References

1. D. A. Di Pietro, J. Droniou, Homological- and analytical-preserving serendipity framework for
polytopal complexes, with application to the DDR method, ESAIM: M2AN, 57 (2023), 191–225.
https://doi.org/10.1051/m2an/2022067

2. J. Droniou, T. A. Oliynyk, J. J. Qian, A polyhedral discrete de rham numerical scheme for the Yang–
Mills equations, J. Comput. Phys., 478 (2023), 111955. https://doi.org/10.1016/j.jcp.2023.111955

3. D. N. Arnold, R. S. Falk, R. Winther, Finite element exterior calculus, homological techniques, and
applications, Acta Numer., 15 (2006), 1–155. https://doi.org/10.1017/S0962492906210018

4. D. Arnold, Finite element exterior calculus, Society for Industrial and Applied Mathematics, 2018.
https://doi.org/10.1137/1.9781611975543

Mathematics in Engineering Volume 6, Issue 3, 468–493.

https://dx.doi.org/https://doi.org/10.1051/m2an/2022067
https://dx.doi.org/https://doi.org/10.1016/j.jcp.2023.111955
https://dx.doi.org/https://doi.org/10.1017/S0962492906210018
https://dx.doi.org/https://doi.org/10.1137/1.9781611975543

492

5. D. N. Arnold, R. S. Falk, R. Winther, Finite element exterior calculus: from Hodge theory to
numerical stability, Bull. Amer. Math. Soc., 47 (2010), 281–354. https://doi.org/10.1090/S0273-
0979-10-01278-4

6. A. Gillette, K. Hu, S. Zhang, Nonstandard finite element de Rham complexes on cubical meshes,
Bit Numer. Math., 60 (2020), 373–409. https://doi.org/10.1007/s10543-019-00779-y

7. D. Arnold, K. Hu, Complexes from complexes, Found. Comput. Math., 21 (2021), 1739–1774.
https://doi.org/10.1007/s10208-021-09498-9

8. D. Di Pietro, M. Hanot, A discrete three-dimensional divdiv complex on polyhedral
meshes with application to a mixed formulation of the biharmonic problem, arXiv, 2023.
https://doi.org/10.48550/arXiv.2305.05729

9. L. Beirão da Veiga, F. Brezzi, L. D. Marini, A. Russo, � (div) and � (curl)-conforming VEM,
Numer. Math., 133 (2016), 303–332. https://doi.org/10.1007/s00211-015-0746-1

10. L. Beirão da Veiga, F. Brezzi, F. Dassi, L. D. Marini, A. Russo, A family of three-dimensional
virtual elements with applications to magnetostatics, SIAM J. Numer. Anal., 56 (2018), 2940–2962.
https://doi.org/10.1137/18M1169886

11. D. A. Di Pietro, J. Droniou, F. Rapetti, Fully discrete polynomial de Rham sequences of arbitrary
degree on polygons and polyhedra, Math. Models Methods Appl. Sci., 30 (2020), 1809–1855.
https://doi.org/10.1142/S0218202520500372

12. D. A. Di Pietro, J. Droniou, An arbitrary-order discrete de Rham complex on polyhedral meshes:
exactness, Poincaré inequalities, and consistency, Found. Comput. Math., 23 (2023), 85–164.
https://doi.org/10.1007/s10208-021-09542-8

13. D. A. Di Pietro, J. Droniou, An arbitrary-order method for magnetostatics on polyhedral
meshes based on a discrete de Rham sequence, J. Comput. Phys., 429 (2021), 109991.
https://doi.org/10.1016/j.jcp.2020.109991

14. D. A. Di Pietro, J. Droniou, A discrete de Rham method for the Reissner-Mindlin plate bending
problem on polygonal meshes, arXiv, 2021. https://doi.org/10.48550/arXiv.2105.11773

15. D. A. Di Pietro, J. Droniou, A fully discrete plates complex on polygonal meshes with application to
the Kirchhoff–Love problem,Math. Comp., 92 (2023), 51–77. https://doi.org/10.1090/mcom/3765

16. L. Chen, X. Huang, Decoupling of mixedmethods based on generalized Helmholtz decompositions,
SIAM J. Numer. Anal., 56 (2018), 2796–2825. https://doi.org/10.1137/17M1145872

17. L. Chen, X. Huang, Finite elements for div- and divdiv-conforming symmetric tensors in arbitrary
dimension, SIAM J. Numer. Anal., 60 (2022), 1932–1961. https://doi.org/10.1137/21M1433708

18. L. Beirão da Veiga, F. Dassi, D. A. Di Pietro, J. Droniou, Arbitrary-order pressure-robust DDR and
VEMmethods for the Stokes problem on polyhedral meshes, Comput. Meth. Appl. Mech. Eng., 397
(2022), 115061. https://doi.org/10.1016/j.cma.2022.115061

19. L. Beirão da Veiga, F. Dassi, G. Vacca, The stokes complex for virtual elements
in three dimensions, Math. Models Methods Appl. Sci., 30 (2020), 477–512.
https://doi.org/10.1142/S0218202520500128

20. S. H. Christiansen, R. Winther, On constraint preservation in numerical simulations of Yang–Mills
equations, SIAM J. Sci. Comput., 28 (2006), 75–101. https://doi.org/10.1137/040616887

Mathematics in Engineering Volume 6, Issue 3, 468–493.

https://dx.doi.org/https://doi.org/10.1090/S0273-0979-10-01278-4
https://dx.doi.org/https://doi.org/10.1090/S0273-0979-10-01278-4
https://dx.doi.org/https://doi.org/10.1007/s10543-019-00779-y
https://dx.doi.org/https://doi.org/10.1007/s10208-021-09498-9
https://dx.doi.org/https://doi.org/10.48550/arXiv.2305.05729
https://dx.doi.org/https://doi.org/10.1007/s00211-015-0746-1
https://dx.doi.org/https://doi.org/10.1137/18M1169886
https://dx.doi.org/https://doi.org/10.1142/S0218202520500372
https://dx.doi.org/https://doi.org/10.1007/s10208-021-09542-8
https://dx.doi.org/https://doi.org/10.1016/j.jcp.2020.109991
https://dx.doi.org/https://doi.org/10.48550/arXiv.2105.11773
https://dx.doi.org/https://doi.org/10.1090/mcom/3765
https://dx.doi.org/https://doi.org/10.1137/17M1145872
https://dx.doi.org/https://doi.org/10.1137/21M1433708
https://dx.doi.org/https://doi.org/10.1016/j.cma.2022.115061
https://dx.doi.org/https://doi.org/10.1142/S0218202520500128
https://dx.doi.org/https://doi.org/10.1137/040616887

493

21. Y. Berchenko-Kogan, A. Stern, Charge-conserving hybrid methods for the Yang–Mills equations,
SMAI J. Comput. Math., 7 (2021), 97–119. https://doi.org/10.5802/smai-jcm.73

22. D. Alic, C. Bona-Casas, C. Bona, L. Rezzolla, C. Palenzuela, Conformal and covariant
formulation of the Z4 system with constraint-violation damping, Phys. Rev. D, 85 (2012), 064040.
https://doi.org/10.1103/PhysRevD.85.064040

23. O. Brodbeck, S. Frittelli, P. Hübner, O. A. Reula, Einstein’s equations with asymptotically stable
constraint propagation, J. Math. Phys., 40 (1999), 909–923. https://doi.org/10.1063/1.532694

24. J. Frauendiener, T. Vogel, Algebraic stability analysis of constraint propagation, Class. Quantum
Grav., 22 (2005), 1769. https://doi.org/10.1088/0264-9381/22/9/019

25. C.Gundlach, G.Calabrese, I. Hinder, J.M.Martín-García, Constraint damping in theZ4 formulation
and harmonic gauge, Class. Quantum Grav., 22 (2005), 3767. https://doi.org/10.1088/0264-
9381/22/17/025

26. H. Friedrich, Hyperbolic reductions for Einstein’s equations, Class. Quantum Grav., 13 (1996),
1451. https://doi.org/10.1088/0264-9381/13/6/014

27. A. Anderson, Y. Choquet-Bruhat, J. W. York Jr., Einstein-Bianchi hyperbolic
system for general relativity, Topol. Methods Nonlinear Anal., 10 (1997), 353–373.
https://doi.org/10.12775/TMNA.1997.037

28. D. A. Di Pietro, J. Droniou, The Hybrid High-Order method for polytopal meshes: design, analysis,
and applications, Springer Cham, 2020. https://doi.org/10.1007/978-3-030-37203-3

29. F. Bonaldi, D. A. Di Pietro, J. Droniou, K. Hu, An exterior calculus framework for polytopal
methods, arXiv, 2023. https://doi.org/10.48550/arXiv.2303.11093

30. D. A. Di Pietro, J. Droniou, S. Pitassi, Cohomology of the discrete de Rham complex on domains
of general topology, Calcolo, 60 (2023), 32. https://doi.org/10.1007/s10092-023-00523-7

31. D. A. Di Pietro, J. Droniou, A third Strang lemma and an Aubin-Nitsche trick for schemes in fully
discrete formulationn, Calcolo, 55 (2018), 40. https://doi.org/10.1007/s10092-018-0282-3

© 2024 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0)

Mathematics in Engineering Volume 6, Issue 3, 468–493.

https://dx.doi.org/https://doi.org/10.5802/smai-jcm.73
https://dx.doi.org/https://doi.org/10.1103/PhysRevD.85.064040
https://dx.doi.org/https://doi.org/10.1063/1.532694
https://dx.doi.org/https://doi.org/10.1088/0264-9381/22/9/019
https://dx.doi.org/https://doi.org/10.1088/0264-9381/22/17/025
https://dx.doi.org/https://doi.org/10.1088/0264-9381/22/17/025
https://dx.doi.org/https://doi.org/10.1088/0264-9381/13/6/014
https://dx.doi.org/https://doi.org/10.12775/TMNA.1997.037
https://dx.doi.org/https://doi.org/10.1007/978-3-030-37203-3
https://dx.doi.org/https://doi.org/10.48550/arXiv.2303.11093
https://dx.doi.org/https://doi.org/10.1007/s10092-023-00523-7
https://dx.doi.org/https://doi.org/10.1007/s10092-018-0282-3
https://creativecommons.org/licenses/by/4.0

	Introduction
	Lie Algebra-valued serendipity Discrete de Rham complex
	Mesh notations
	Serendipity DDR complex
	Spaces and serendipity operators
	Operators on the gradient space
	Operators on the curl space
	Operators on the divergence space
	Serendipity DDR complex
	Discrete L2-inner products

	Lie algebra-valued serendipity DDR complex

	Two DDR-based schemes for the Yang–Mills equations
	Weak constrained form of the equations
	Schemes
	Discrete energy and constraint preservation

	Implementation
	LASDDR tensorisation
	Bracket terms

	Numerical tests
	Convergence tests
	Constraint preservation

	Conclusions

