PredictStr: a balanced benchmark dataset for improve stroke prediction - Archive ouverte HAL
Communication Dans Un Congrès Année : 2024

PredictStr: a balanced benchmark dataset for improve stroke prediction

Résumé

Predicting strokes is essential for improving healthcare outcomes and saving lives. This paper introduces a benchmarking dataset, PredictStr, specifically developed to enhance stroke prediction. This dataset improves upon a previously unique dataset identified in the literature. Our methodology comprises two main steps: firstly, we outline a series of preprocessing and cleaning measures to enhance data quality. Secondly, we present a novel algorithm, the Dynamic Hybrid Balancing Algorithm, which builds upon the ADSYSN algorithm by integrating consistency constraints to address class imbalances. Our contribution extends to the application of sophisticated analysis techniques, including histogram and boxplot analyses, feature distribution assessments, statistical explorations, correlation evaluations, feature importance rankings, and Individual Conditional Expectation (ICE) plots. These methodologies are designed to provide valuable insights into feature significance, thereby assisting researchers in identifying the most critical attributes for effective stroke detection.
Fichier principal
Vignette du fichier
Fekih et al.pdf (659.5 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04622267 , version 1 (24-06-2024)

Licence

Identifiants

Citer

Taissir Fekih Romdhane, Mohamed Ibn Khedher, Mounim A El-Yacoubi. PredictStr: a balanced benchmark dataset for improve stroke prediction. 16th International Conference on Human System Interaction (HSI), Jul 2024, Paris, France. ⟨10.1109/HSI61632.2024.10613533⟩. ⟨hal-04622267⟩
462 Consultations
80 Téléchargements

Altmetric

Partager

More