Robust Boundary Stabilization of Stochastic Hyperbolic PDEs - Archive ouverte HAL
Communication Dans Un Congrès Année : 2024

Robust Boundary Stabilization of Stochastic Hyperbolic PDEs

Résumé

This paper proposes a backstepping boundary control design for robust stabilization of linear first-order coupled hyperbolic partial differential equations (PDEs) with Markov-jumping parameters. The PDE system consists of 4 × 4 coupled hyperbolic PDEs whose first three characteristic speeds are positive and the last one is negative. We first design a full-state feedback boundary control law for a nominal, deterministic system using the backstepping method. Then, by applying Lyapunov analysis methods, we prove that the nominal backstepping control law can stabilize the PDE system with Markov jumping parameters if the nominal parameters are sufficiently close to the stochastic ones on average. The mean- square exponential stability conditions are theoretically derived and then validated via numerical simulations.
Fichier principal
Vignette du fichier
Robust_Stabilization_Control_ACC.pdf (1.06 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04621487 , version 1 (24-06-2024)

Identifiants

  • HAL Id : hal-04621487 , version 1

Citer

Yihuai Zhang, Jean Auriol, Huan Yu. Robust Boundary Stabilization of Stochastic Hyperbolic PDEs. American Control Conference, Jul 2024, Toronto, France. ⟨hal-04621487⟩
28 Consultations
26 Téléchargements

Partager

More