Computations regarding the torsion homology of Oeljeklaus-Toma manifolds - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2024

Computations regarding the torsion homology of Oeljeklaus-Toma manifolds

Résumé

This article investigates the torsion homology behaviour in towers of Oeljeklaus-Toma (OT) manifolds. This adapts an idea of Silver and Williams from knot theory to OT-manifolds and extends it to higher degree homology groups. In the case of surfaces, i.e. Inoue surfaces of type $S^{0}$, the torsion grows exponentially in both $H_{1}$ (as was established by Braunling) and $H_{2}$ (our result) according to a parameter which already plays a role in Inoue's classical paper, and we obtain that the torsion vanishes in all higher degrees. This motivates our presented machine calculations for OT-manifolds of higher dimension.
Fichier principal
Vignette du fichier
PHAN_BUI_RAHM_Oeljeklaus-Toma_manifolds.pdf (164.88 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04619504 , version 1 (20-06-2024)

Identifiants

  • HAL Id : hal-04619504 , version 1

Citer

Dung Phuong Phan, Tuan Anh Bui, Alexander D. Rahm. Computations regarding the torsion homology of Oeljeklaus-Toma manifolds. 2024. ⟨hal-04619504⟩

Collections

UPF 35430 ANR
40 Consultations
21 Téléchargements

Partager

More