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COMPUTATIONS REGARDING THE TORSION HOMOLOGY OF

OELJEKLAUS–TOMA MANIFOLDS

DUNG PHUONG PHAN1, TUAN ANH BUI2, AND ALEXANDER D. RAHM1

Abstract. This article investigates the torsion homology behaviour in towers
of Oeljeklaus–Toma (OT) manifolds. This adapts an idea of Silver–Williams
from knot theory to OT manifolds and extends it to higher degree homology
groups. In the case of surfaces, i.e. Inoue surfaces of type S0, the torsion
grows exponentially in both H1 and H2 according to a parameters which al-
ready plays a role in Inoue’s classical paper. This motivates running example
calculations in all homological degrees.

1. Introduction

In order to motivate the computations in this paper, let us for a moment look
at an idea from knot theory. Suppose

K →֒ S3

is a tame knot. Then one can put a tubular neighbourhood T around K and the
knot complement is the space

XK = S3 − (interior of T ) .

This makes sense not just as a topological space, but indeed gives a compact con-
nected 3-manifold. By a standard computation, one always has

(1) H1(XK ,Z) ≃ Z,

see for example [6, Remark 18.4], independently of the choice of the knot. By the
Hurewicz theorem, this means that the quotient of the fundamental group to its
abelianization, i.e. the first homology group of XK , is given by

(2) q : π1(XK , ∗) ։ Z.

This map is almost canonical. Really, in both Equation 1 and 2 one just gets infinite
cyclic groups canonically, so for identifying them with Z one needs to choose a
generator of this infinite cyclic group, and changing this would change the maps by
multiplication with −1.

Consider the subgroups

q−1(nZ) ⊆ π1(XK , ∗)
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2 THE TORSION HOMOLOGY OF OELJEKLAUS–TOMA MANIFOLDS

for integers n ≥ 1, where q is as in Equation 2. These subgroups are well-defined,
since multiplication by −1 preserves them. By covering space theory, each such
subgroup corresponds to a finite covering

(3)
XK,n

|
XK

of degree n. Now, one can study the torsion homology of the spaces XK,n, depend-
ing on n. Gonzáles-Acuña–Short [5] and Riley [9] have independently proven in the
early 1990s that

(4) lim
n−→+∞

log |H1(XK,n,Z)tor|
n

= logM(∆K),

where ∆K denotes the Alexander polynomial of the knot, and M(−) the Mahler
measure. So, loosely speaking, this shows that the amount of torsion first homology
classes of the spaces XK,n grows in a very controlled way along n. For example, in
the case |M(∆K)| > 1 one obtains the asymptotic exponential growth

|H1(XK,n,Z)tor| ∼M(∆K)n as n −→ +∞.

Note that this is just an asymptotic; for small n this is a bad heuristic. The case
|M(∆K)| > 1 is fairly common, so one sees that the spaces XK,n for large n will
have a tremendous amount of torsion classes in H1. More qualitatively, one can
also say that once the torsion homology is not bounded in n, it must already grow
exponentially, and if Lehmer’s conjecture is true, there is even a lower bound on
the minimal possible exponential growth.

As a brief comment on the literature, we note that many articles instead discuss

the first homology of the branched covering spaces X̂K,n instead (e.g., [5]), but one

just has H1(XK,n,Z)tor ∼= H1(X̂K,n,Z), so these considerations are just a different
viewpoint, but equivalent, see [3, Chapter 8].

In 2002 Daniel Silver and Susan Williams have pointed out in their article [10]
that many of the above considerations do not need to be restricted to knot com-
plements. Instead, they point out that whenever one has a connected manifold X
with a surjection

q : π1(X, ∗) ։ Z

imitating Equation 2, one can run the analogous analysis for any such X . One has
the corresponding covering spaces, call them Xn, and can study the limit

lim
n−→+∞

log |H1(Xn,Z)tor|
n

.

This note is about a special type of complex manifolds where this idea can be
implemented:

Concretely, the situation envisioned by Silver–Williams is met for Inoue surfaces
[7]; and in this note we only look at Inoue surfaces of so-called type S0 (these are
the ones discussed in §2 loc. cit.). These are compact non-Kähler complex surfaces
(so instead of dimension 3, we now move to compact 4-dimensional real manifolds
with rich extra structure. While the knot complements are frequently hyperbolic,
the Inoue surfaces carry at least a locally conformal Kähler metric. This plays no
role here though).

Inoue surfaces X are one of the types appearing in Kodaira’s classification of
minimal compact complex surfaces. They occur in the not fully understood Class
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VII0. They satisfy H1(X,Q) ≃ Q, vaguely analogous to Equation 1, and one can
set up a surjection

q : π1(X, ∗) ։ Z

as in Equation 2, again canonical up to multiplication with −1 in Z. As is pointed
out in [2], one obtains

(5) lim
n−→+∞

log |H1(Xn,Z)tor|
n

= logM(f),

where M(f) is the Mahler measure of a polynomial f which in the setting of
Inoue’s paper is the minimal polynomial of the matrix he denotes by “M” in [7,§2],
or, in the setting of [2] the minimal polynomial of a unit in a certain number field
(this translation follows the philosophy of [8]).

This result is entirely in line with the philosophy laid out by Silver and Williams
in [10]. This motivates the question to investigate the remaining torsion homology

|Hr(Xn,Z)tor |
for r 6= 1.

Theorem 1. For Inoue surfaces of type S0 (resp. Oeljeklaus–Toma manifolds with
r1, r2 = 1), the torsion homology growth satisfies

log |Hr(Xn,Z)tor| ∼
{
n logM(f) for r = 1, 2
0 for r = 0, 3, 4

as n −→ +∞, where M(f) is the Mahler measure of the minimal polynomial as
described above in the text. This is > 1, so the orders of the torsion part of both
H1 and H2 grow exponentially with n.

We refer to §2 for the proof. However, Inoue surfaces of type S0 admit a gen-
eralization to higher dimensions due to Oeljeklaus and Toma [8]. Given a number
field K with r1 ≥ 1 real places and r2 = 1 complex places, and any torsion-free
finite-index subgroup

U ⊆ O×,+
K

of the totally positive units (i.e. the units which are positive under any homomor-
phism O×

K → R), they attach a complex manifold

X(K,U)

which is

• connected compact of complex dimension r1 + 1,
• real dimension 2r1 + 2,
• non-Kähler (but carries a locally conformal Kähler metric),
• and whose underlying real manifold is a locally symmetric space for a solv-
able Lie group.

For any such manifold X(K,U) the fundamental group sits in a canonical exact
sequence

1 −→ G −→ π1(X(K,U), ∗) q−→ U −→ 1,

see [1,Prop. 6]. In the special case of r1 = 1, Dirichlet’s Unit Theorem implies

that O×,+
K ≃ Z, canonical up to multiplication with −1, and X(K,U) is merely an

Inoue surface. So, this is just the case as discussed above. However, for r1 = 2, we
have

O×,+
K ≃ Z2,
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canonical up to the action of GL2(Z).
A good source of examples stems from fourth roots. Consider the number field

K = Q( 4
√
p)

for a prime p. The polynomial X4 − p is irreducible by the Eisenstein criterion,
it has two real roots ± 4

√
p and a pair of complex conjugate roots ±i 4

√
p, so that

K indeed satisfies r1 = 2 and r2 = 1. Hence, this is a great source for OT threefolds.

Let σ1 and σ2 be the real embeddings and σ3 be a complex embedding of K
respectively.

The ring of integers can be determined by a general result of Gassert [4,Theorem
1.1]. As soon as p satisfies

p2 6= pmod 4,

the ring of integers is

OK = Z[ 4
√
p]

(the theorem is stated in Gassert’s paper only as claiming that the ring of integers
is monogenic, but the proof explicitly shows that the index [OK : Z[ 4

√
p]], using

our notation, is one, so this shows that 4
√
p is a concrete generator). The totally

multiplicative units of OK is

O×

K ≃ Z 〈u, v〉
for generating units u, v.

Let

i = min
{
k ∈ N∗ : σ1(u

k) > 0, σ2(u
k) > 0

}
,

j = min
{
k ∈ N∗ : σ1(v

k) > 0, σ2(v
k) > 0

}
,

then O×,+
K = Z < ui, vj >.

For each m,n ≥ 1, define the monomorphism ϕ :< uim, vjn >→ Aut(OK),
x 7→ ϕ(x) such that ϕ(x)(y) = xy, for all y ∈ OK . With this monomorphism, the
semidirect product OK ⋊ϕ Z < uim, vjn > is defined with the product

(h1, u
im1vjn1).(h2, u

im2vjn2 ) = (h1 + uim1vjn1h2, u
i(m1+m2)vj(n1+n2)),

for all h1, h2 ∈ OK , uim1vjn1 , uim2vjn2 ∈ Z < uim, vjn >.
The action

∗ : (OK ⋊ϕ Z < uim, vjn >)× (H2 × C) → (H2 × C)

((h, k), (z1, z2, z3)) 7→ (σ1(h) + σ1(k)z1, σ2(h) + σ2(k)z2, σ3(h) + σ3(k)z3)

is a properly discontinuous action of OK⋊ϕ < uim, vjn > on H2 × C. Then

Xm,n = X(K,Z < uim, vjn >) := (H2 × C)/(OK ⋊ϕ Z < uim, vjn >)

is itself an Oeljeklaus–Toma threefold (or ”OT threefold”).

In §3, we describe an algorithm to find the homology of an OT manifold Xm,n.

Next, a detailed algorithm for the case p = 2 will be described in §4, and a GAP
program which implements this algorithm will be distributed online [11].
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Proposition 2. Our algorithm produces the following results for the r-th degree
homology of Xm,n when p = 2:

m n r=1 r=2 r=3 r=4 r=5 r=6

1 1 (Z/2)2 ⊕ Z
2 (Z/2)4 ⊕ (Z/4)2 ⊕ Z (Z/2)4 ⊕ (Z/4)2 (Z/2)2 ⊕ Z Z

2
Z

2 1 (Z/2)2 ⊕ Z
2 (Z/2)4 ⊕ (Z/4)2 ⊕ (Z/3)2 ⊕ Z (Z/2)4 ⊕ (Z/4)2 ⊕ (Z/3)2 (Z/2)2 ⊕ Z Z

2
Z

3 1 (Z/2)2 ⊕ Z
2 (Z/2)4 ⊕ (Z/4)2 ⊕ Z (Z/2)4 ⊕ (Z/4)2 (Z/2)2 ⊕ Z Z

2
Z

1 2 (Z/2)2 ⊕ Z
2 (Z/2)4 ⊕ (Z/4)2 ⊕ Z (Z/2)4 ⊕ (Z/4)2 (Z/2)2 ⊕ Z Z

2
Z

2 2 (Z/2)4 ⊕ Z
2 (Z/2)6 ⊕ (Z/4)2 ⊕ (Z/3)2 ⊕ Z/8 ⊕ Z/16 ⊕ Z

3 2 (Z/2)2 ⊕ Z
2 (Z/2)4 ⊕ (Z/4)2 ⊕ Z

1 3 (Z/2)2 ⊕ Z
2 (Z/2)4 ⊕ (Z/4)2 ⊕ Z

2 3 (Z/2)2 ⊕ Z
2 (Z/2)4 ⊕ (Z/4)2 ⊕ (Z/9)2 ⊕ (Z/43)2 ⊕ Z

3 3 (Z/2)2 ⊕ Z
2 (Z/2)5 ⊕ Z/4 ⊕ Z/7 ⊕ Z

Finally, in Section 5, we determine explicitly the first homology of some classes
of the manifolds Xm,n in the case K = Q( 4

√
2) and obtain the following tow propo-

sitions.

Proposition 3. For Oeljeklaus–Toma manifolds with r1 = 2, r2 = 1 when p = 2,
the first homology is of isomorphism type

H1(Xm,1) ∼=
{
Z/2Z⊕ Z/2Z⊕ Z⊕ Z for m ∤ 6
Z/2Z⊕ Z/14Z⊕ Z⊕ Z for m | 6.

Proposition 4. For Oeljeklaus–Toma manifolds with r1 = 2, r2 = 1 when p = 2,
the first homology is of isomorphism type H1(Xm,n) ∼= Z/2Z ⊕ Z/2Z ⊕ Z ⊕ Z for
all n ∈ N∗ when m is odd.

For the proof of Propositions 3 and 4, see Section 5.

Proposition 5. Our computational results on the isomorphism type of the first
homology of some Xm,n are the following:

m n= 1 n=2 n=3 n=4 n=5

1 (Z/2)2 ⊕ Z
2 (Z/2)2 ⊕ Z

2 (Z/2)2 ⊕ Z
2 (Z/2)2 ⊕ Z

2 (Z/2)2 ⊕ Z
2

2 (Z/2)2 ⊕ Z
2 (Z/2)4 ⊕ Z

2 (Z/2)2 ⊕ Z
2 (Z/2)2 ⊕ Z

2 (Z/2)2 ⊕ Z
2

3 (Z/2)2 ⊕ Z
2 (Z/2)2 ⊕ Z

2 (Z/2)2 ⊕ Z
2 (Z/2)2 ⊕ Z

2 (Z/2)2 ⊕ Z
2

4 (Z/2)2 ⊕ Z
2 (Z/2)4 ⊕ Z

2 (Z/2)2 ⊕ Z
2 (Z/4)2 ⊕ (Z/8)2 ⊕ Z

2 (Z/2)2 ⊕ Z
2

5 (Z/2)2 ⊕ Z
2 (Z/2)2 ⊕ Z

2 (Z/2)2 ⊕ Z
2 (Z/2)2 ⊕ Z

2 (Z/2)2 ⊕ Z
2

6 (Z/2)2 ⊕ Z/7 ⊕ Z
2 (Z/2)4 ⊕ Z/7 ⊕ Z

2 (Z/2)2 ⊕ (Z/7)2 ⊕ Z
2 (Z/2)4 ⊕ Z/7 ⊕ Z

2 (Z/2)2 ⊕ Z/7 ⊕ Z
2

7 (Z/2)2 ⊕ Z
2 (Z/2)2 ⊕ Z

2 (Z/2)2 ⊕ Z
2 (Z/2)2 ⊕ Z

2 (Z/2)2 ⊕ Z
2

8 (Z/2)2 ⊕ Z
2 (Z/2)4 ⊕ (Z/3)2 ⊕ Z

2 (Z/2)2 ⊕ Z
2 (Z/3)4 ⊕ (Z/4)2 ⊕ (Z/8)2 ⊕ Z

2 (Z/2)2 ⊕ Z
2

9 (Z/2)2 ⊕ Z
2 (Z/2)2 ⊕ Z

2 (Z/2)2 ⊕ Z
2 (Z/2)2 ⊕ Z

2 (Z/2)2 ⊕ Z
2

10 (Z/2)2 ⊕ Z
2 (Z/2)4 ⊕ Z

2 (Z/2)2 ⊕ Z
2 (Z/2)4 ⊕ Z

2 (Z/2)2 ⊕ Z
2

11 (Z/2)2 ⊕ Z
2 (Z/2)2 ⊕ Z

2 (Z/2)2 ⊕ Z
2 (Z/2)2 ⊕ Z

2 (Z/2)2 ⊕ Z
2

12 (Z/2)2 ⊕ Z/7 ⊕ Z
2 (Z/2)4 ⊕ Z/7 ⊕ Z

2 (Z/2)2 ⊕ (Z/7)2 ⊕ Z
2 (Z/4)2 ⊕ (Z/8)2 ⊕ Z/7 ⊕ Z

2 (Z/2)2 ⊕ Z/7 ⊕ Z
2
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2. Proof of Theorem 1

Let Xn = X(K,Z < vn >). As OT manifold Xn of dimension 4 is oriented
closed, according to Poincaré duality,

Hk(X) ∼= H4−k(X), 0 ≤ k ≤ 4.

With k = 3, H3(X) ∼= H1(X), so the torsion of H3(X) is isomorphic to the torsion
of H1(X). On the other hand, by the Universal Coefficient Theorem,

H1(Xn) ∼= Torsion(H0(Xn))⊕ [H1(Xn)/Torsion(H1(Xn))].

Since H0(Xn) ∼= Z,

H3(Xn) ∼= H1(Xn) ∼= [H1(Xn)/Torsion(H1(Xn))].

This implies

Torsion(H3(Xn)) ∼= Torsion(H1(Xn)) = 0.

In the case of H2(Xn), again with the Universal Coefficient Theorem,

H2(Xn) ∼= Torsion(H1(Xn))⊕ [H2(Xn)/Torsion(H2(Xn))].

This implies

Torsion(H2(Xn)) ∼= Torsion(H2(Xn)) ∼= Torsion(H1(Xn)).

Usage of Equation (5), stated above, completes the proof of the theorem.

3. An algorithm computing the homology of Xm,n

3.1. A resolution of Z over Z2. Consider the topological space R2 and the mul-
tiplicative group

G =< x, y| x and y commute >,

with the generators acting via

(a, b) 7→ x(a, b) := (a+ 1, b) and (a, b) 7→ y(a, b) := (a, b + 1),

for all (a, b) ∈ R2. Then the group G acts on the space R2 by the translation
G× R2 : (g, u) 7→ gu := g(u).
With this action, G forms a CW-structure on R2, and this CW-structure induces
a CW-structure on the quotient space R2/G. Let Ck(R

2/G) be the free abelian
group generated by all k-cells in R2/G, then the cellular chain complex

0 → C2(R
2/G)

∂2→ C1(R
2/G)

∂1→ C0(R
2/G)

ε→ Z → 0,

is a resolution of Z over Z2 with the contracting homotopies

• h1 : C1 → C2 with

h1(x
myne11) = 0;

h1(x
myne12) = sign(m)

(
m−1−m∑

i=m

xi

)
yne212.

• h0 : C0 → C1 with

h0(x
myne0) = sign(m)

(
m−1−m∑

i=m

xi

)
yne11 + sign(n)




n−1−n∑

j=n

yj


 e12.
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In the above formulas,

m =
m− |m|)

2
, n =

n− |n|)
2

,

e11 = {(a, 0) : 0 < a < 1} , e12 = {(0, b) : 0 < b < 1} ,
e212 = e11 × e12.

3.2. A resolution of Z over Z4. Consider the topological space R4 and the mul-
tiplicative group

G =< x, y, z, t | x, y, z and t commute >,

with the generators acting via

(a, b, c, d) 7→ x(a, b, c, d) := (a+ 1, b, c, d),

(a, b, c, d) 7→ y(a, b, c, d) := (a, b+ 1, c, d),

(a, b, c, d) 7→ z(a, b, c, d) := (a, b, c+ 1, d),

(a, b, c, d) 7→ t(a, b, c, d) := (a, b, c, d+ 1),

for all (a, b, c, d) ∈ R4. Then the group G acts on the space R4 by the translation
G× R4 : (g, u) 7→ g(u).
With this action, G forms a CW-structure on R4 and this CW-structure induces
a CW-structure on the quotient space R4/G. Let Ck(R

4/G) be the free abelian
group generated by all k-cells in R4/G, then the cellular chain complex

0 → C4(R
4/G)

∂4→ C3(R
4/G)

∂3→ C2(R
4/G)

∂2→ C1(R
4/G)

∂1→ C0(R
4/G)

ε→ Z → 0,

is a resolution of Z over Z4 with the contracting homotopies

• h3 : C3 → C4 with

h3(x
mynzptqe3123) = h3(x

mynzptqe3124) = h3(x
mynzptqe3134) = 0,

h3(x
mynzptqe3234) = sign(m)

(
m−1−m∑

i=m

xi

)
ynzptqe41234.

• h2 : C2 → C3, with

h2(x
mynzptqe212) = h2(x

mynzptqe213) = h2(x
mynzptqe214) = 0,

h2(x
mynzptqe223) = sign(m)

(
m−1−m∑

i=m

xi

)
ynzptqe3123,

h2(x
mynzptqe224) = sign(m)

(
m−1−m∑

i=m

xi

)
ynzptqe3124,

h2(x
mynzptqe234) = sign(m)

(
m−1−m∑

i=m

xi

)
ynzptqe3134 + sign(n)




n−1−n∑

j=n

yj


 zptqe3234.



8 THE TORSION HOMOLOGY OF OELJEKLAUS–TOMA MANIFOLDS

• h1 : C1 → C2, with

h1(x
mynzptqe11) = 0,

h1(x
mynzptqe12) = sign(m)

(
m−1−m∑

i=m

xi

)
ynzptqe212,

h1(x
mynzptqe13) = sign(m)

(
m−1−m∑

i=m

xi

)
ynzptqe213 + sign(n)




n−1−n∑

j=n

yj


 zptqe223,

h1(x
mynzptqe14) = sign(m)

(
m−1−m∑

i=m

xi

)
ynzptqe214 + sign(n)




n−1−n∑

j=n

yj


 zptqe224

+sign(p)




p−1−p∑

k=p

zk


 tqe234.

• h0 : C0 → C1 with

h0(x
mynzptqe0) = sign(m)

(
m−1−m∑

i=m

xi

)
ynzptqe11 + sign(n)




n−1−n∑

j=n

yj


 zptqe12

+sign(p)




p−1−p∑

k=p

zk


 tqe13 + sign(q)




q−1−q∑

l=q

tl


 e14.

In the above formulas,

m =
m− |m|

2
, n =

n− |n|
2

, p =
p− |p|

2
, q =

q − |q|
2

,

e11 = {(a, 0, 0, 0) : 0 < a < 1} , e12 = {(0, b, 0, 0) : 0 < b < 1} ,
e13 = {(0, 0, c, 0) : 0 < c < 1} , e14 = {(0, 0, 0, d) : 0 < d < 1} ,

e2ij = e1i × e1j , i = 1, 4, j = i+ 1, 4,

e3ijk = e1i × e1j × e1k, i = 1, 4, j = i+ 1, 4, k = j + 1, 4,

e41234 = e11 × e12 × e13 × e14.

3.3. The isomorphism from OK ⋊ϕ Z < uim, vjn > to Z4 ⋊ϕ Z2. The mul-
tiplicative group Z < uim, vjn > is isomorphic to the additive group Z2 by the
isomorphism α : (uim)p(vjn)q 7→ (p, q). The additive group of the ring of integers

OK =
{
a+ bw + cw2 + dw3/a, b, c, d ∈ Z, w4 = p

}

of K is isomorphic to Z4 by the isomorphism ψ : a+ bw + cw2 + dw3 7→ (a, b, c, d).
Using α and ψ, we define ϕ : Z2 → Aut(Z4), (s, t) 7→ ϕ(s, t), where

ϕ(s, t)(y) = ψ(ϕ(α−1(s, t)))ψ−1(y), for all y ∈ Z4.

In detail, for y = (a, b, c, d) ∈ Z4,

ϕ(α−1(s, t))ψ−1(y) =
(
1 w w2 w3

)
M imsN jntyT
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where M and N are the matrices defined by

u
(
1 w w2 w3

)
=
(
1 w w2 w3

)
M,

v
(
1 w w2 w3

)
=
(
1 w w2 w3

)
N

respectively. Finally, ϕ(s, t)(y) = ψ(ϕ(α−1(s, t)))ψ−1(y) = (As,t, Bs,t, Cs,t, Ds,t)
with




As,t

Bs,t

Cs,t

Ds,t


 =M imsN jntyT

This homomorphism helps us to form the semidirect product Z4 ⋊ϕ Z2 which is
isomorphic to OK ⋊ϕ Z < uim, vjn >.
Since two groups which are isomorphic have the same homology groups, to find
the homology groups of OK ⋊ϕ Z < uim, vjn >, we just need to find the homology
groups of Z4⋊ϕZ

2. The following is the algorithm to find the homologies of Z4⋊ϕZ
2.

3.4. An algorithm for computing the homology of Z4 ⋊ϕ Z2.

Step 1. Construct ϕ : Z2 → Aut(Z4), (s, t) 7→ ϕ(s, t), with ϕ(s, t) : (a, b, c, d) 7→
(As,t, Bs,t, Cs,t, Ds,t), whereAs,t, Bs,t, Cs,t, Ds,t are defined by the following
formula:




As,t

Bs,t

Cs,t

Ds,t


 =M imsN jnt




a
b
c
d


 .

Then construct the semidirect product E = Z4 ⋊ϕ Z2 with this ϕ.
Step 2. The projection p : E → Z2, (a, b, c, d, e, f) 7→ (e, f), for all (a, b, c, d, e, f) ∈ E

has ker(p) = Z4. So E is a group extension of its normal subgroup Z4 and
the quotient group Z2. Let R and S be the free resolution of Z over Z4

and Z2 respectively. The twisted tensor product of these resolutions, which
we obtain using C.T.C Wall’s method, gives us a free resolution for the
semidirect product E.

Step 3. Compute the desired homology groups using the above resolution.

4. An explicit example when p = 2

In this case, the field K is Q( 4
√
2). Two generators of the free part of O×

K are

u = w2 − 1, v = w + 1, with w = 4
√
2, and O×

K = Z < u, v >.

Since σ1(u) > 0, σ2(u) > 0, σ1(v) > 0, σ2(v) < 0, O×,+
K = Z < u, v2 >.

We observe that

u
(
1 w w2 w3

)
=
(
1 w w2 w3

)
M,

v
(
1 w w2 w3

)
=
(
1 w w2 w3

)
N,
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with

M =




−1 0 2 0
0 −1 0 2
1 0 −1 0
0 1 0 −1


 , N =




1 0 0 2
1 1 0 0
0 1 1 0
0 0 1 1


 .

So, OK⋊ϕZ < um, v2n > is isomorphic to Z4⋊ϕZ
2 by the isomorphism ϕ(s, t)(y) =

ψ(ϕ(α−1(s, t)))ψ−1(y) = (As,t, Bs,t, Cs,t, Ds,t) with




As,t

Bs,t

Cs,t

Ds,t


 =MmsN2nt




a
b
c
d


 .

5. Proof of Propositions 3 and 4

Let us now provide the proofs of Propositions 3 and 4 stated in the Introduction.

Proposition 3. For Oeljeklaus–Toma manifolds with r1 = 2, r2 = 1 when p = 2,
the first homology is of isomorphism type

H1(Xm,1) ∼=
{
Z/2Z⊕ Z/2Z⊕ Z⊕ Z for m ∤ 6
Z/2Z⊕ Z/14Z⊕ Z⊕ Z for m | 6.

Proof.

Z4 =< f1, f2, f3, f4/fifj = fjfi, i = 1, 4, j = 1, 4 >=< X/R >

Z2 =< u1, u2/u1u2 = u2u1 >=< Y/S >

E = Z4 ⋊ϕ Z2 =< X, Y/R, S, yxy−1 = ϕ(y)(x), ∀x ∈ X, ∀y ∈ Y >

where with y = (s, t),

ϕ(y)(x) =




−1 0 2 0
0 −1 0 2
1 0 −1 0
0 1 0 −1




ms


1 0 0 2
1 1 0 0
0 1 1 0
0 0 1 1




2t

x.

We can see H1(E) ∼= E/[E,E].
To find [E,E], we consider the system of equations

uifju
−1
i = ϕ(ui)(fj) = f

aij

1 f
bij
2 f

cij
3 f

dij

4 , i = 1, 2, j = 1, 4,

from which we can imply a system of equations of equivalence classes

f1
aij−e1j

f2
bij−e2j

f3
cij−e3j

f4
dij−e4j

= 1, i = 1, 2, j = 1, 4,

where ekj =

{
1 if k = j
0 if k 6= j.

Picking up the power of
{
fi
}
in each equation, we obtain a matrix of order 8× 4.
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In the case m is arbitrary and n = 1, the matrix has the form



am − 1 0 bm 0
0 am − 1 0 bm

2bm 0 am − 1 0
0 2bm 0 am − 1
0 2 1 0
0 0 2 1
2 0 0 2
4 2 0 0




where

am =
1

2
(−1 +

√
2)m +

1

2
(−1−

√
2)m,

bm =
1

4
(−1 +

√
2)m+1 +

1

4
(−1−

√
2)m+1 +

1

4
(−1 +

√
2)m +

1

4
(−1−

√
2)m.

Applying the row transformations, we change this matrix into the matrix (*) as
below 



2 0 0 2
0 2 1 0
0 0 1 4
0 0 0 7
0 0 0 am + 4bm − 1
0 0 0 2(am − 1) + bm




(∗)

Now, when m = 6k, k ∈ N∗, gcd(7, am + 4bm − 1, 2(am − 1) + bm) = 7, then the
matrix (*) is row equivalent to the matrix




2 0 0 2
0 2 1 0
0 0 1 4
0 0 0 7
0 0 0 0
0 0 0 0



.

In this case, H1(Xm,1) = Z/2Z⊕ Z/2Z⊕ Z/7Z⊕ Z⊕ Z.
On the other hand, when m 6= 6k, k ∈ N∗,

gcd(7, am + 4bm− 1, 2(am − 1) + bm) = 1,

then the matrix (*) is row equivalent to the matrix




2 0 0 2
0 2 1 0
0 0 1 4
0 0 0 1
0 0 0 0
0 0 0 0



.

In this case, H1(Xm,1) = Z/2Z⊕ Z/2Z⊕ Z⊕ Z.

Proposition 4. For Oeljeklaus–Toma manifolds with r1 = 2, r2 = 1 when p = 2,
the first homology is of isomorphism type H1(Xm,n) ∼= Z/2Z ⊕ Z/2Z ⊕ Z ⊕ Z for
all n ∈ N∗ when m is odd.
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Proof. Apply an analogous procedure as in the proof of Proposition 2 for the
case m is odd and n is arbitrarily, we obtain the matrix of powers of

{
fi
}
of the

form 


am − 1 0 bm 0
0 am − 1 0 bm

2bm 0 am − 1 0
0 2bm 0 am − 1

2an 2bn cn dn
2dn 2an 2bn cn
2cn 2dn 2an 2bn
4bn 2cn 2dn 2an




By applying some row operations αri + rj → rj , this matrix turns into the matrix



2 0 0 0
0 2 0 0
0 0 −am 0
0 0 0 −am
0 0 −ancm + cn −bncm + dn
0 0 −dncm + 2bn −ancm + cn
0 0 −cncm + 2an −dncm + 2bn
0 0 −2bncm + 2dn −cncm + 2an




Let

α = gcd(−am,−ancm + cn,−dncm + 2bn,−cncm + 2an,−2bncm + 2dn),

β = gcd(−am,−bncm + dn,−ancm + cn,−dncm + 2bn,−cncm + 2an),

then the homology is of isomorphism type

H1(Xm,n) ∼= Z/2Z⊕ Z/2Z⊕ Z/αZ⊕ Z/βZ⊕ Z⊕ Z.
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