Learning Bipedal Walking for Humanoid Robots in Challenging Environments with Obstacle Avoidance - Archive ouverte HAL
Communication Dans Un Congrès Année : 2024

Learning Bipedal Walking for Humanoid Robots in Challenging Environments with Obstacle Avoidance

Résumé

Deep reinforcement learning has seen successful implementations on humanoid robots to achieve dynamic walking. However, these implementations have been so far successful in simple environments void of obstacles. In this paper, we aim to achieve bipedal locomotion in an environment where obstacles are present using a policy-based reinforcement learning. By adding simple distance reward terms to a state of art reward function that can achieve basic bipedal locomotion, the trained policy succeeds in navigating the robot towards the desired destination without colliding with the obstacles along the way.
Fichier principal
Vignette du fichier
Robomech 2024 - Learning Bipedal Walking for Humanoid Robots in Challenging Environments with Obstacle Avoidance - Marwan Hamze.pdf (1.34 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04618129 , version 1 (24-09-2024)

Identifiants

Citer

Marwan Hamze, Mitsuharu Morisawa, Eiichi Yoshida. Learning Bipedal Walking for Humanoid Robots in Challenging Environments with Obstacle Avoidance. Robomech, May 2024, Utsunomiya, Japan. ⟨hal-04618129⟩
111 Consultations
29 Téléchargements

Altmetric

Partager

More