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Deep reinforcement learning has seen successful implementations on humanoid robots to achieve
dynamic walking. However, these implementations have been so far successful in simple environments
void of obstacles. In this paper, we aim to achieve bipedal locomotion in an environment where obstacles
are present using a policy-based reinforcement learning. By adding simple distance reward terms to a
state of art reward function that can achieve basic bipedal locomotion, the trained policy succeeds in
navigating the robot towards the desired destination without colliding with the obstacles along the way.
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1 Introduction

Locomotion for legged robots has been studied for decades,
and continues to be a topic of research. Bipedal locomotion,
especially for humanoid robots, has been a difficult topic to
address, due to difficulties concerning balance, collision, and
efficiency. For humanoid robots, controllers are designed in
order to ensure a balanced motion for a specific robot. The
most well-known controllers are basically considered model-
based controllers, in the sense that the robot and the interac-
tion with the environment are modeled according to the law
of physics and mechanics. These controllers, such as the ones
based on the linear inverted pendulum mode [1][2], rely on
the accuracy of their simplified representation of the natural
interaction between the robot and the environment, which is
always an imperfect representation of the complex interaction.
This is why they have limited robustness in uncertain envi-
ronments, even when relying on stabilizing control to counter
these modeling errors. Recently however, researchers have
been testing with reinforcement learning-based controllers [3]
[4]. These controllers aim to train the robot in simulation to
obtain an optimal policy, allowing the robot to achieve ro-
bust locomotion in uncertain environments by adapting its
movement in these environments during training, without the
need for precise modeling of the robot-environment interac-
tion. However, reinforcement learning-based controllers come
with their own challenges, such as their unpredictable behav-
ior, which is driven by the trained policy. This is one reason
why their application is so far limited to simple environments
void of obstacles.

In this paper, we work on executing a bipedal locomotion
in a challenging environment, where obstacles exist. We im-
plement a simple learning method for a humanoid robot in
order to achieve a collision-free locomotion to arrive at a de-
sired destination. This method is based on the actor-critic
algorithm usually used in previous works for bipedal locomo-
tion, with additional terms for the reward function to make a
collision-free movement possible.

2 Background

Reinforcement Learning [5] aims to maximize a reward r by
prescribing an action a given an input s. The world is repre-
sented as a discrete-time Markov Decision Process (MDP),
formed by a continuous state space S ∈ R

n , and action
space A ∈ R

m, a state-transition function p(s, a, s′) and a re-
ward function r(s, a). The state-transition function, unknown
apriori, defines the dynamics of the world and gives the proba-

bility density over the next state s′ when taking action a in the
current state s. The reward function provides a scalar signal
at each state transition that the agent aims to maximize. The
policy π (a | s) is defined as a stochastic mapping from states
to action. The goal in reinforcement learning is to find a π
that maximizes the agent’s expected T-horizon discounted re-

turn given by J (πθ) = E

[

∑T

t=0 γ
tr (st, at)

]

, where γ ∈ (0, 1]

is the discount factor. In the case of large, continuous state
spaces, we use a parametric policy πtheta with parameters θ ,
which represent the set of parameters of a multi-layered per-
ceptron (MLP). The policy is improved iteratively, by esti-
mating the gradient of J (πθ) and updating the policy param-
eters by performing stochastic gradient ascent with a step size
α : θk+1 = θk + α∇J (πθk ). ∇J (πθk ) can be estimated with
the experience collected from trajectories sampled by follow-
ing the policy πθk . We use the Proximal Policy Optimization
(PPO) algorithm [6], which builds upon the above-explained
policy gradient method, in order to increase sample efficiency
while avoiding policy collapse.

3 Controller Design

Consider a humanoid robot with n degrees of freedom. The
controller adopts a high-level policy to calculate joint posi-
tions, which are fed to low-gains PD controllers, responsible
for calculating the joint torques.

3.1 Observation and Action Spaces

TheObservation Space consists of the robot’s state taken
from feedback measurements, reference values, and a clock sig-
nal. The robot’s space includes joint positions and velocities
of the robot’s leg joints, in addition to the floating base’s ro-
tation and angular velocity.

The reference values consist of the fixed obstacle positions
in the environment in addition to the goal position, which is
the destination where the robot is supposed to arrive. Theses
references are given by their x-y coordinates, and are required
for the reward terms introduced later, so that the robot is
aware of the objects to avoid and of its destination.

The clock signal is necessary for generating periodic loco-
motion based on periodic reward terms. We basically use the
same clock signal as the one introduced in [7], where you can
read about it in detail.

As for the Action Space, the policy produces the joint po-
sitions of the leg joints only, in order to facilitate the learning
of bipedal locomotion. We apply stiff PD control to the rest
of the joints to maintain a half-sitting posture.
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Fig.1 Overall control structure. The environment information consists of the obstacle and destination reference posi-

tions.

3.2 Reward function

We will devise the reward function into two parts: a basic

locomotion part and distance part, which can be written as:

r = W1rlocomotion +W2rdistance, (1)

The basic locomotion part rlocomotion consists of generic
terms used frequently in the state of the art of bipedal loco-
motion in reinforcement learning. We adopt the reward terms
from [7], minus the reward term that is concerned with follow-
ing the footsteps provided by a higher-level footstep planner,
since we are not using one.

The distance part rdistance consists of reward terms to avoid
collision with the obstacles in the environment and to reach
the desired destination. The reward term is based on the
distance between the robot’s base position and the target in
question, written as:

rdistance =
m
∑

i=1

e
−ki‖pbase(x,y)−pi,target(x,y)‖, (2)

where k is a constant that is tuned for the desired behav-
ior, and m is the number of distance rewards to be added.
pi,target (x, y) represents the position of an obstacle, the desti-
nation, or the initial position of the floating base. We use this
term as a positive reward when it is applied to the destination;
this encourages the policy to minimize the distance between
the robot’s base and the desired destination. On the other
hand, we use this term as a negative reward with each ob-
stacle in the environment, and with the initial position of the
floating base; this encourages the policy to navigate the robot
away from the obstacles. We also realized that without a neg-
ative distance reward on the initial position, the robot would
step in place around its initial position instead of heading to-
wards the goal, as the policy concludes that not approaching
the obstacles is more beneficial.

W1 is a weight matrix given to the reward terms for the
basic locomotion, and W2 is attributed to the distance-based
terms. The weights for the locomotion were set as in [7],
while the distance-based weights require some tuning; basi-
cally we set the weight for the distance to the destination as
0.95, while setting the one for the distance to each obstacle as
−0.2, and as −0.5 for the initial position. We noticed that giv-
ing a significant weight for each obstacle hinders the walking
performance, as the robot starts reducing its step size.

An overview of the control structure is given in Figure 1.
The joint positions calculated by the policy are added to the
default values for a half-sitting position, before being con-
verted to joint torques.

4 Results

The robot used in our simulations is the JVRC-1 vir-
tual robot model, which was developed for the Japan Vir-
tual Robotics Challenge [8]. This 172cm tall humanoid robot
weighs 62kg and has 34 degrees of freedom (d.o.f). The robot
has 6 d.o.f in each leg, which means that the action space of the
policy has a dimension of 12. We used the MLP architecture
to represent both the actor and critic policies, which parame-
terize the policy and the value function in PPO [6]. Each MLP
network consists of 2 hidden layers of size 256 and uses ReLU
activations, before passing the output through a tanh layer to
limit the range of the actor’s predictions. The hyperparame-
ters are primarily similar to [7], and we set the learning episode
length to 400 iterations. The policy was trained for about 10
hours on 96 million samples, with the simulations being run
entirely on an Intel Core i9-13900HXH CPU @ 2.2GHz with
32 cores. We trained the policy for different environments
with different obstacles and destination, however we will talk
specifically about the case represented in Figure 2, where there
are 4 small obstacles that the robot needs to not collide with
before reaching its destination marked in red.

Figure 3 shows the return value and episode lengths
throughout the learning process. The return value represents
the total reward at each timestep during the learning process,
averaging at around 138 with little variance, meaning that
the number of samples was enough to obtain a good policy.
The episodes finished at their 400 iterations most of the time,
and were terminated a few times because of terminating con-
ditions, such as self-collision or in case the robot fell during
training, which are set just like in [7].

Fig.2 The simulated environment, highlighting the tra-

jectory taken by the robot to reach the destination

in red.



Fig.3 Episode Lengths and Returns during the Learning

Process

Walking with Obstacle Avoidance

Thanks to the simple distance reward terms added to the
regular basic walking reward terms, the robot succeeds in its
motion and reaches the destination without collisions. We
noticed that the robot makes smaller steps compared to a case
where the robot is trained to walk on a terrain without any
obstacles. This is probably due to the increased difficulty of
the executed motion, so the policy had to penalize the center of
mass velocity reward. A video of the simulations is accessible
in [9].

Robustness

In order to test the robustness of the learned policy, simu-
lations were done while adding a random displacement to the
position of each obstacle and to the destination. The learned
policy successfully executes the desired motion when the ob-
stacles are moved in the frontal plane, however collisions occur
when they are moved along the sagittal plane for about 0.5m.
This is probably because it is more challenging for the robot
to move in the sagital plane while heading for the desired des-
tination. The robot can still arrive at the destination when
it’s displaced by up to 1.5m in the sagittal plane, and the dis-
placement in the frontal plane causes no issues for the policy.

Discussion

Our simple modifications to the reward function allowed
the robot to safely execute a walking motion in a challeng-
ing environment without collisions. However, this approach is
currently limited to fixed and known obstacle positions. While
the policy demonstrated some robustness with respect to the
obstacles’ positions, it would not work if the obstacles were
completely randomized or unknown. In such cases, it is neces-
sary to observe the obstacle’s positions using vision-based sen-
sors (e.g., camera, LiDAR), and rely on a Visual-locomotion
policy architecture such as [10].

Another topic to mention is that the executed motion, like
other related works on humanoid robots, actuates only the
degrees of freedom of the robot’s legs. Our research team
is interested in expanding the basic locomotion into a multi-
contact locomotion: the robot should exploit the presence of
the objects in the environment, and use them to form addi-
tional contacts with its hands before arriving at the destina-
tion. This paper serves as a first step towards reaching this
goal, by showing how the learned policy with the introduced
modifications to the regular walking policy behaves in a chal-
lenging environment with objects.

5 Conclusion

To go a step beyond basic locomotion for humanoid robots
in simple environments, our proposed adjustments to the reg-
ular reward function for bipedal walking, consisting of adding
negative distance reward terms to avoid obstacles and a pos-
itive one to reach the desired destination, allow the robot to
execute collision-free locomotion and arrive at the desired des-
tination. Future work will aim to improve the reinforcement
learning algorithm, to make the robot interact with the ob-
jects in the environment by executing multi-contact motion
before reaching its desired destination.
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