Robotic in-hand manipulation with relaxed optimization - Archive ouverte HAL
Communication Dans Un Congrès Année : 2024

Robotic in-hand manipulation with relaxed optimization

Résumé

Dexterous in-hand manipulation is a unique and valuable human skill requiring sophisticated sensorimotor interaction with the environment while respecting stability constraints. Satisfying these constraints with generated motions is essential for a robotic platform to achieve reliable in-hand manipulation skills. Explicitly modelling these constraints can be challenging, but they can be implicitly modelled and learned through experience or human demonstrations. We propose a learning and control approach based on dictionaries of motion primitives generated from human demonstrations. To achieve this, we defined an optimization process that combines motion primitives to generate robot fingertip trajectories for moving an object from an initial to a desired final pose. Based on our experiments, our approach allows a robotic hand to handle objects like humans, adhering to stability constraints without requiring explicit formalization. In other words, the proposed motion primitive dictionaries learn and implicitly embed the constraints crucial to the in-hand manipulation task.
Fichier principal
Vignette du fichier
Robotic_in_hand_manipulation_based_on_relaxed_optimization_smaller (2).pdf (8.17 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04609532 , version 1 (12-06-2024)

Identifiants

  • HAL Id : hal-04609532 , version 1

Citer

Ali Hammoud, Valerio Belcamino, Quentin Huet, Alessandro Carfi, Mahdi Khoramshahi, et al.. Robotic in-hand manipulation with relaxed optimization. The 33rd IEEE International Conference on Robot and Human Interactive Communication (RO-MAN 2024), IEEE, Aug 2024, Pasadena, CA, United States. ⟨hal-04609532⟩
33 Consultations
46 Téléchargements

Partager

More