GEOMETRIC DEEP LEARNING FOR SULCAL GRAPHS - Archive ouverte HAL
Communication Dans Un Congrès Année : 2024

GEOMETRIC DEEP LEARNING FOR SULCAL GRAPHS

R. Yadav
  • Fonction : Auteur
François-Xavier Dupé
  • Fonction : Auteur
  • PersonId : 1164097

Résumé

The human cerebral cortex features intricate, convoluted sulci forming a complex and variable geometry. Characterizing these variations in the sulcal patterns is critical for assessing cerebral structure abnormalities. However, the uniqueness of sulcal patterns in individuals poses challenges in dissociating abnormal from normal variations. In this study, we use deep graph representation learning models to analyze sulcal graphs from a population of 1090 healthy adults. We leverage sulcal graphs for encoding the surface geometry, combined with graph neural networks(GNNs) for predicting the gender of the subjects, and analyze the underlying variability. These methods show potential in offering valuable insights into biomarker discovery for neurological and psychiatric disorders, relying on structured representations of cortical geometry.
Fichier principal
Vignette du fichier
ISBI_2024_yadav.pdf (10.15 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04608751 , version 1 (11-06-2024)

Licence

Copyright (Tous droits réservés)

Identifiants

  • HAL Id : hal-04608751 , version 1

Citer

R. Yadav, François-Xavier Dupé, S Takerkart, G Auzias. GEOMETRIC DEEP LEARNING FOR SULCAL GRAPHS. IEEE International Symposium on Biomedical Imaging (ISBI 2024), May 2024, Athènes, Greece. ⟨hal-04608751⟩
27 Consultations
28 Téléchargements

Partager

More