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The human cerebral cortex features intricate, convoluted
sulci forming a complex and variable geometry. Characteriz-
ing these variations in the sulcal patterns is critical for assess-
ing cerebral structure abnormalities.However, the uniqueness
of sulcal patterns in individuals poses challenges in dissoci-
ating abnormal from normal variations. In this study, we use
deep graph representation learning models to analyze sulcal
graphs from a population of 1090 healthy adults. We lever-
age sulcal graphs for encoding the surface geometry, com-
bined with graph neural networks(GNNs) for predicting the
gender of the subjects, and analyze the underlying variability.
These methods show potential in offering valuable insights
into biomarker discovery for neurological and psychiatric dis-
orders, relying on structured representations of cortical geom-

etry.

1. INTRODUCTION

The highly convoluted geometry of the cerebral cortex is dif-
ficult to analyze and compare across individuals. Various
methods have been proposed to unravel the complicated pat-
terns of cortical folding. Recently, deep learning techniques
have reached the forefront in numerous neuroimaging appli-
cations [1]]. They have showed a remarkable capability to au-
tonomously harness hierarchical feature representations from
large datasets, surpassing traditional approaches[2].

A limited number of studies have explored the potential
of deep learning methods for the analysis of folding patterns.
One of the first study by [3]], evaluated convolutional neu-
ral networks for classifying folding patterns. More recently,
[4] used the well established 3-VAE [5] for the detection of
abnormal patterns. Similarly, another work by [6] compared
the former 5-VAE approach with a recent self-supervised
deep contrastive model(SIimCLR)[7]. These studies intro-
duced a framework for conducting exploratory analysis of
cortical folds by leveraging existing representation learning
techniques. These studies aim at capturing the intrinsic char-
acteristics of cortical folds using unsupervised generative
methods, that learn a latent space under the constraint of re-
constructing the input data. In parallel, studies such as [2]
demonstrated that supervised learning settings yield robust
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Fig. 1. The sulcal graph from each subject is transferred onto
a common sphere using the inflation and spherical registration
tools from freesmferﬂ The sulcal graphs from every subjects
can be mapped in an average surface for visualization. Note
that the spatial distribution of nodes in common spaces is un-
even, forming dense clusters in cortical regions where indi-
vidual variations are minimal.

and discriminative latent representations that are relevant for
diagnostic classification and disease characterisation. In this
work, we explore the potential of this strategy for learning
representations of a population of sulcal graphs, taking the
gender classification as a pretext task. The relevance of gen-
der classification as a pretext task in the examination of brain
morphology is supported by many studies reporting that gen-
der shapes the spatial pattern of cortical alterations in many
conditions such as autism [8] and dyslexia[9]].

Additionally, in contrast with [3| 4} 6], we explicitly take
into account the spatial relationships between cortical folds
by using sulcal graphs to represent patterns of cortical folds.
As proposed in [[10]], a sulcal graph is constructed by decom-
posing the cortical surface into sulcal basins. Illustrated on
Fig[T] sulcal graphs effectively capture the spatial relationship
of the sulci, that was ignored in former methods. Note that
since the sulcal graph extraction approach is applied to each
individual separately, the number of nodes and graph topol-
ogy vary across individuals. In contrast, in most approaches
for designing brain graphs from the literature, the graphs are
constructed based on a predefined atlas that ensure an equal
number of nodes for all subjects. While this technique sim-
plifies the manipulation of the graphs with GNN:gs, it does dis-
regard the essential consideration of individual variations in
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cortical folding patterns. On the contrary, our sulcal graphs
do exhibit topological variations, necessitating the identifica-
tion of suitable GNN architectures.

In the present work, we examine for the first time the rel-
evance GNNss for the analysis of sulcal graphs. We compare
two alternative GNN designs : a shallow Graph attention net-
work (GAT) and a shallow GCN model with a hierarchical
graph pooling strategy. Both of these architectures were se-
lected for their capacity to offer interpretable maps and with
the anticipation of producing complementary insights. All
source code and data are publicly available on our github
repository’}

2. METHODS

Formally, a sulcal graph G is given as a triplet of vertices,
edges and attributes: G = (V, E, X), with vy, vy ... 0p € V
being the nodes in G and |G| = M is the number of nodes in
the graph.

Graph Neural Networks
Graph Neural Networks (GNNs) have gained prominence for
their ability to integrate node features and graph topology
for end-to-end learning, with applications to analyzing com-
plex brain data and predicting brain diseases[11]. Notable
advancements have resulted in more interpretable models and
improved outcomes. For instance, BrainGNN, introduced by
[[12]] uses fMRI data analysis to define biomarkers in Autism
Spectrum Disorder using specialized graph convolutional and
pooling layers. Additionally, BrainNetCNN, developed by
[[L3]], employs a variety of convolutional filters to exploit topo-
logical relationships in brain networks. Furthermore, [14]]
conducted a comprehensive benchmarking of diverse GNN
architectures and feature engineering methods for brain net-
work analysis. These studies provide a robust framework for
applying GNNs to the analysis of brain graphs with various
architectures and learning strategies [11]. However, all the
above methods are intended for graphs with uniform number
of nodes across subjects, which makes them unsuitable for
direct application in the present study.

The basic process underlying all of the GNN designs is
its message passing operation. During the learning process it
allows nodes to gather and integrate information from sur-
rounding nodes. As a result, the model is able to capture
the complex connections and relationships inherent in data
arranged as a graph. The message passing operation typically
consists of two main steps: message aggregation and message
update.

* Message aggregation: In this step, for each node in the
graph a message is computed based on its own features
and the features of its neighboring nodes:

m{? = ¢ (h{D {h{D};en,,) (1)

3https://github.com/Rohit3594/Deep_sulcal_
graphs.git

where m!? is the computed message for node v;, h? are

the features of node v; at ¢'" layer and N, denotes the
neighborhood of v;. ¢(@ is a differentiable function that
computes the message based on the given input features of
the nodes in the graph. The features of nodes at layer ¢ =
0 correspond to initial node attributes, h(fj) = x,,,Vu; €
V', where z,, is the node attribute associated to v;.

* Message update: The messages are then updated to obtain
a summary of the neighborhood information:

A = U@ (D (D) 2)
where thf“’ is the updated message for node v; at layer

q+1and U is the learnable update function. After running

for () layers of this message passing, the output of the final

layer can be used as node embeddings, z,, = h§

In practice, most of the GNNs models differ depending
on how they perform the aggregation of messages from its
neighbouring nodes. For a standard GCN, an output message
for node v; is computed as :

mi? =o( Y ayhl?) (3)
JEN,

where o is some activation function, ¢;; is a factor that
determines the importance of node features of node v; to
node v;. In a standard message passing of GCN, the o;
is often set to edge weights. However in a Graph atten-
tion network(GAT)[15], «;; is defined implicitly using self-
attention mechanism that computes the coefficients e;; based
on the features for each pair of nodes 7 and j in the graph:

eij = LeakyReLU (a' [©h,, || Oh,,]) 4)

Where a is a learnable weight vector, and © is a learnable
linear transformation matrix, usually estimated using a MLP
and finally LeakyReLU for imposing non-linearity. In or-
der to be comparable across different neighbourhoods, these
coefficients are normalised using the softmax function:

exp(e;;)

_ 5
ZpENUi exp(eip) ©)

Q5 =

In similar manner, multiple o’s can be computed in parallel
where each attention head can automatically attend to vari-
ous aspects of the input data. GAT models have significant
advantages in terms of interpretation as the learnt attention
scores are indicative of nodes (in our case brain regions) that
are most influential in the propagation of information.
Graph Pooling

Graph pooling operations are used for generating coarsened
representations of the given graphs in order to achieve graph-
level tasks while preserving topological information. As de-
tailed in the review [[16]], the approaches for graph pooling can
fall into two main categories: Flat and Hierarchical Pool-
ing. In this work, we use mean pooling and incorporate a
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learnable Top-k pooling strategy [[17] for better interpretation.
For a graph G, the graph-level representation g is obtained
through mean pooling, i.e. by averaging the node features
across nodes of a graph: g = M Zv —1 Zvi-

The Top-k pooling operates by selectlng the K nodes with
the highest importance scores from original graph in order to
create a coarsened representation of the graph. This selec-
tion of nodes is particularly interesting because it provides
interpretable insights on most informative nodes in the sulcal
graphs for the current learning task.

Formally, at a given pooling layer [, the Top-k pooling
method is defined by computing:

y=X"p0/|Ip],
id = rank(y, k),
j = sigmoid(y(id),

Here, a scalar projection on attribute matrix X ¢
RMxd is computed using a learnable projection vector
p € R? which produces scalar projection scores §j corre-
sponding to each node. k is a hyper-parameter defining the
number of nodes to select. Next, a reduced attribute matrix
corresponding to the selected nodes is computed for subse-
quent pooling or GNN layers until g is obtained.

3. EXPERIMENTS

Imaging data and sulcal graph extraction

This study relies on the data from 1090 healthy adults sub-
jects from the S1200 release of the open dataset shared by the
Human Connectome Project (HCP) [[18]. Structural images
were processed using the HCP structural processing pipeline,
which has been described in [[19]. The sulcal graphs were
computed as detailed in [10]. We considered the following
attributes as features for the nodes of the graphs: 1) Sphere
3dcoords: 3D coordinates of the deepest point in each sul-
cal basin. 2) Basin area: area of corresponding sulcal basin.
3) Max depth: sulcal depth of the deepest point in the sulcal
basin. 4) Basin mean depth: average of the sulcal depth across
all the vertices located in the sulcal basin. 5) Basin var depth:
variance of the sulcal depth across all the vertices located in
the sulcal basin. 6) Basin int curvature: integral across all the
vertices located in the sulcal basin of the absolute value of the
mean curvature. 7) Pit thickness: cortical thickness at the lo-
cation of the deepest point. 8) Basin mean thickness: average
of the cortical thickness across all the vertices located in the
sulcal basin.

Classification task and Model description

As proposed in [2], we learn a representation space for sul-
cal graphs in a supervised setting consisting in the binary
classification of the subjects according to their gender. The
GAT architecture used in this work consists of a three-layer
GAT network with double head attention in the first layer fol-
lowed by single head in subsequent layers. Drawing inspira-

tion from [12], the “Top-k” model in this work uses a two-
layers GCN network. After each GCN layer, a top-k pooling
operation is applied where we set the ratio K = 0.5, result-
ing in a 50% reduction of irrelevant nodes after each pooling
layer. Finally, we also designed a baseline MLP model, that
is also capable to learn the significance of attributes but inde-
pendently from the topology. The MLP has two linear layers
with ReLU activation that translates node attributes to node
embeddings. For all these models, the node embeddings are
subsequently processed by a mean pooling layer to obtain the
graph representations, which is then processed through an ad-
ditional learnable layer that performs a linear transformation
to translate these graph representations g,, into class scores.
All models are trained on the 1090 sulcal graphs from the left
hemisphere, using a 10-fold cross validation framework in a
fully-supervised manner. We define the loss using a softmax
classification and negative log-likelihood :

L= Z — log(softmax (g, yn)) (6)

NENtrain

where Ny,q:r, denotes the graphs in training set, and softmax (g, , y» )

denotes the predicted probability corresponding to class y,, :

egn w;

Zyn el

_7_

softmax(gy,, yn)

with w being the learnable parameters with C classes.

All models were implemented using the pytorch-geometricﬂ
package. We empirically fixed the embedding size in the
models to 16-dimensional embedding. All models were
trained for 100 epochs with Adam optimizer[20] and 0.01 as
learning rate. Along with the comparison of GNN models,
we also assess the relevance of sulcal graph attributes by
constructing two different attribute sets. One constitutes of
only 3D coordinates providing spatial information, while the
second set corresponds to all the node attributes with both the
spatial and the geometrical information. All models achieved
the task of gender classification above chance throughout
multiple trials.

4. RESULTS

We report the average and standard deviation across all folds
of test scores in Table[[] We observe that the model GCN +
Top-K outperforms both GAT and the baseline MLP in both
experiments. Our interpretation is that the addition of the Top-
k pooling operation improves the reduction of noise and inte-
gration of structural information. When comparing between
the two experiments (and thus the two columns in the table),
we observe that the enrichment of the attributes on nodes re-
sults in an increase in performance for all models. The gain

4https://pytorch-geometric.readthedocs.io/en/
latest/index.html
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Fig. 2. 2-dim t-SNE visualization for the different models at best folds

is higher for MLP than for GAT. The lower performance of
GAT which suggests that this model did not learn relevant
information from the topology for this specific classification
task.

Table 1. Average test accuracy across 10 folds

Cross-val accuracy

Model | 3D coords | 3D Coords + Geometric features
MLP 62t 4 76 £3
GAT 64 +3 69 +3
GCN + Top-K 65+3 78 +£2

To complement the quantitative results from Table [T} we
visualize the 2-dim #-SNE for the whole population corre-
sponding to the best models on Fig. For the three meth-
ods, the two sub-populations are visually separable, which is
consistent with Table[T} The spatial pattern obtained with the
model GCN + Top-K suggests that the underlying structure
of the information could be 1-dimensional, hence confirming
the potential of this method.

Fig. 3. For each node of each graph, we compute the mean
attention from incoming edges to visualize the smooth map
across all subjects.

To better interpret the underlying learning mechanism of
the GAT model we visualize the attention map correspond-
ing to last layer of the model on Fig. 3] The attention scores
are computed for each incoming edge to a node in the graph,
where a softmax score range the value between 0 and 1. We
compute the mean attention by averaging these scores for
each node. These scores are then summed across subjects

Fig. 4. Top-k nodes after the first layer of pooling operation.

to create a map showing the spatial distribution of the rele-
vant information across cortical regions. The map obtained
suggest that the GAT models automatically emphasize the re-
gions located in deep cortical folds which are known to be less
variable across individuals as pivotal to learn the global char-
acteristics of the graphs. For GCN + TopK, we visualize on
Fig ] the top-k nodes extracted from the first pooling layer se-
lected by the model that were the most relevant for the gender
discrimination task. The most informative nodes for classify-
ing the subjects according to their gender are concentrated in
three large cortical regions: the frontal lobe, the occipital lobe
and the anterior part of the temporal lobe. The spatial extent
of informative regions is much larger than for GAT (Fig[3). In
addition, these regions are highly consistent with the obser-
vations from [[10]. This consistent localization across studies
support the relevance of the representation learnt by the GCN
+ TopK method.

5. CONCLUSION

We explored the potential of recent geometric deep learn-
ing approaches to learn representations in the context of sul-
cal graphs, specifically focusing on the variations in cortical
folding patterns analyzed through supervised gender classifi-
cation task. We identified two methods having particularly
attractive features in this context. Our experiments on the
sulcal graphs from 1090 subjects confirmed the relevance of
these approaches allowing better interpretation than a classi-
cal MLP.
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