Direct Electrodeposition of Electrically Conducting Ni 3 (HITP) 2 MOF Nanostructures for Micro‐Supercapacitor Integration - Archive ouverte HAL
Journal Articles Small Year : 2024

Direct Electrodeposition of Electrically Conducting Ni 3 (HITP) 2 MOF Nanostructures for Micro‐Supercapacitor Integration

Abstract

Abstract Micro‐supercapacitors emerge as an important electrical energy storage technology expected to play a critical role in the large‐scale deployment of autonomous microdevices for health, sensing, monitoring, and other IoT applications. Electrochemical double‐layer capacitive storage requires a combination of high surface area and high electronic conductivity, with these being attained only in porous or nanostructured carbons, and recently found also in conducting metal–organic frameworks (MOFs). However, techniques for conformal deposition at micro‐ and nanoscale of these materials are complex, costly, and hard to upscale. Herein, the study reports direct, one step non‐sacrificial anodic electrochemical deposition of Ni 3 (2,3,6,7,10,11‐hexaiminotriphenylene) 2 – Ni 3 (HITP) 2 , a porous and electrically conducting MOF. Employing this strategy enables the growth of Ni 3 (HITP) 2 films on a variety of 2D substrates as well as on 3D nanostructured substrates to form Ni 3 (HITP) 2 nanotubes and Pt@ Ni 3 (HITP) 2 core–shell nanowires. Based on the optimal electrodeposition protocols, Ni 3 (HITP) 2 films interdigitated micro‐supercapacitors are fabricated and tested as a proof of concept.
Fichier principal
Vignette du fichier
smll.202401509 (preprint.pdf (952.81 Ko) Télécharger le fichier
Origin Publisher files allowed on an open archive
Licence

Dates and versions

hal-04607931 , version 1 (17-06-2024)

Licence

Identifiers

Cite

Sepideh Behboudikhiavi, Géraldine Chanteux, Binson Babu, Sébastien Faniel, Florent Marlec, et al.. Direct Electrodeposition of Electrically Conducting Ni 3 (HITP) 2 MOF Nanostructures for Micro‐Supercapacitor Integration. Small, 2024, ⟨10.1002/smll.202401509⟩. ⟨hal-04607931⟩
73 View
46 Download

Altmetric

Share

More