Asymptotic properties of some ODE's flows on the 3D torus under a min-max condition - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2024

Asymptotic properties of some ODE's flows on the 3D torus under a min-max condition

Résumé

This paper deals with the asymptotic analysis of the family of the three-dimensional flows X on the torus, solutions to the ODE's system x'=f(x,y), y'=g(x,y), z'=h(x,y) in [0,∞), where f,g,h are regular periodic fonctions satisfying the condition f ∂x h + g ∂yh = 0. Under the min-max condition satisfied by the first integral h for the flow min_x max_y h(x,y) ≠ max_x min_y h(x,y), we prove that one of the coordinates x or y of the flow is bounded in [0,∞). Restricting ourselves to the subclass of flows defined by f(x,y):=b'(y), g(x,y):=b'(y), h(x,y):=b(y)-a(x), it turns out that both coordinates x and y are bounded when ||a||_∞ = ||b||_∞, and that the Herman rotation set of the flow is then reduced to a closed line segment. When ||a||∞ ≠ ||b||∞, assuming some extra condition on the roots of the derivatives a',b', we prove that the Herman rotation set is planar and contains non-degenerate triangles. Finally, we refine this result in the case of the Arnold-Beltrami-Childress flow ABC with A=0, by showing that the planar Herman rotation set contains a fusiform shape.
Fichier principal
Vignette du fichier
ODE-flow_min-max.pdf (489.36 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04607825 , version 1 (11-06-2024)
hal-04607825 , version 2 (08-07-2024)
hal-04607825 , version 3 (17-11-2024)

Identifiants

  • HAL Id : hal-04607825 , version 1

Citer

Marc Briane. Asymptotic properties of some ODE's flows on the 3D torus under a min-max condition. 2024. ⟨hal-04607825v1⟩
115 Consultations
22 Téléchargements

Partager

More