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Abstract

This paper deals with the asymptotic analysis of the family of the three-dimensional
flows X = Xfgh on the torus T3, solutions to the ODE’s system

x′ = f(x, y), y′ = g(x, y), z′ = h(x, y) in [0,∞),
where f, g, h are regular Z3-periodic fonctions satisfying the condition f ∂xh+ g ∂yh = 0.
Under the min-max condition satisfied by the first integral h for the flow Xfgh

min
x∈T1

max
y∈T1

h(x, y) 6= max
x∈T1

min
y∈T1

h(x, y),

we prove that one of the coordinates x or y of the flow is bounded in [0,∞). Restricting
ourselves to the subclass of flows X = Xab with

f(x, y) := b′(y), g(x, y) := b′(y), h(x, y) := b(y)−a(x),
it turns out that both coordinates x and y are bounded when ‖a‖∞ = ‖b‖∞, and that
the Herman rotation set of the flow Xab is then reduced to a closed line segment. When
‖a‖∞ 6= ‖b‖∞, assuming some extra condition on the roots of the derivatives a′, b′, we prove
that the Herman rotation set of Xab is planar and contains non-degenerate triangles.
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Finally, we refine this result in the case of the Arnold-Beltrami-Childress flow ABC with
A = 0, by showing that the planar Herman rotation set contains a “fusiform” shape.

Keywords: Integrable system, min-max, asymptotics, invariant probability measure, rotation
set, ABC flow

Mathematics Subject Classification: 34E05, 34E10, 37C10, 37C40

1 Introduction
In this paper we study the three-dimensional ODE’s flow X : [0,∞)× T3 → R3 solution to the
ODE’s system  X ′(t, x) := ∂tX(t, x) = F

Ä
X(t,X0)

ä
, t ∈ [0,∞),

X(0, X0) = X0, X0 ∈ R3,
(1.1)

for the class of three-dimensional vector fields F := Ffgh : T3 = R3/Z3 → R3 defined by

Ffgh(x, y, z) :=
Ä
f(x, y), g(x, y), h(x, y)

ä
for (x, y, z) ∈ T3. (1.2)

Here, f, g are Z2-periodic functions in C1(R2) and h is a Z2-periodic function in C2(R2) satisfying

(f, g) · ∇h = f ∂xh+ g ∂yh = 0 in T2, (1.3)

so that h is a first integral for the flow X associated with Ffgh. A well-known example of such
a flow is given by the so-called Arnold-Beltrami-Childress flow (denoted by ABC) (1)

ABC flow:


x′ = A sin z + C cos y

y′ = B sinx+ A cos z

z′ = C sin y +B cosx,

(1.4)

when one of the three parameters is equal to zero. Up to a circular permutation of the coor-
dinates we can assume that A = 0. The case where ABC 6= 0 has been the object of several
works as an example of chaotic dynamical system (see, e.g., [8, 18] and the references therein)
along with an example of non-integrable flow (see [19, 20]). When A = 0 the ABC flow is
integrable and clearly satisfies equation (1.3) with

f(x, y) := C cos y, g(x, y) := B sinx, h(x, y) := B cosx+ C sin y for (x, y) ∈ T2.

In [18] the flow ABC with A = 0 has been explicitly computed thanks to Jacobi elliptic
functions restricting the flow to the periodic box [0, 2π)3. However, this cannot not allow us

1The ABC flow has been introduced by Arnold [1] for studying the steady-state solution of Euler equations.
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to evaluate the asymptotics of the flow X (1.1) in terms of the limits (or more rigorously the
limit points)

asymptotics of the flow: lim
t→∞

X(t,X0)

t
for X0 ∈ R3, (1.5)

(which can take actually non-zero values), and to characterize the possible orbits X([0,∞))
whose projections x([0,∞)) or/and y([0,∞)) are bounded in R (they do exist). The derivation
of the asymptotics (1.5) allows us to the Herman rotation set [11] (see Section 1.2) as shown
by Misiurewicz-Ziemian [14] for general flows in the framework of ergodic theory. The ergodic
approach has seen a spectacular rise for the knowledge of two-dimensional flows on the torus
since the pioneer work of Franks-Misiurewicz [9] until the most recent developments (see, e.g.,
[7, 13]). However, restricting ourselves to the field of ODE’s flows there are very few results
concerning the asymptotics (1.5). Up to our best knowledge, the seminal contribution in the
topic is due to Peirone [15] (see, also [16, 17]) which has proved the remarkable result that for
any two-dimensional regular vector-field F which does not vanish on the torus, limits (1.5) do
hold for any X0 ∈ R3 (without extraction of any subsequence). This has allowed Peirone to
revisit the Franks-Misiurewicz [9] result for the ODE’s flows. Moreover, Peirone’s result does
not hold in dimension three [15], nor in dimension two when the vector field F does vanish
[16]. This pioneer work has been extended in [3, 4, 5], and more recently we have studied in [2]
the asymptotics of a two-dimensional Euler flow. In the present paper, we investigate the class
of flows (1.1) associated with the vector fields Ffgh in terms of the asymptotics (1.5) together
with the Herman rotation set.

In Section 2.1, dealing with the general class of vector fields (1.2) we prove (see Theorem 2.1)
that one of coordinates of the flow X = (x, y, z), either x or y is bounded in R, if the first
integral h satisfies the min-max condition

min
x∈T1

max
y∈T1

h(x, y) 6= max
x∈T1

min
y∈T1

h(x, y). (1.6)

This implies that the Herman rotation set lies either in the plane {x = 0} or in {y = 0}. This
general result seems to be original in the setting of the ODE’s flows, and it is proved thanks to
a connectedness argument.

In Section 2.2 we restrict ourselves to the subclass of

ab flows:


x′ = b′(y)

y′ = a′(x)

z′ = b(y)− a(x),

(1.7)

where a, b are two 1-periodic functions in C2(R). In this case, the min-max condition (1.6)
reads as

‖a‖∞ := ‖a‖L∞(T1) 6= ‖b‖L∞(T1) =: ‖b‖∞. (1.8)

Moreover, we prove in addition to (1.8) (see Theorem 2.3) that both the coordinates x and y
of the flow ab are bounded in R, so that the Herman rotation set agrees with the closed line
segment [−2‖a‖∞, 2‖a‖∞] in the line {x = y = 0}.
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In Section 3 we focus on the asymptotics of the ab flow under additional assumptions on
the functions a, b. Assuming that the derivatives of the functions c = a, b have a finite number
of roots in T1, whose two roots, say γ1 6= γ2, satisfy¶

c(γ) : c′(γ) = 0
©
∩
Ä
c(γ1), c(γ2)

ä
= Ø, (1.9)

we prove that the Herman rotation set is a planar compact convex set in R3, which contains 0R3

and a family of non-degenerate triangles whose vertices are parametrized by the open set{
(x0, y0) ∈ R2 : −

∣∣∣‖a‖∞ − ‖b‖∞∣∣∣ < a(x0)− b(y0) <
∣∣∣‖a‖∞ − ‖b‖∞∣∣∣} . (1.10)

In contrast, the subset of the Herman rotation set induced by the regular (with respect to
Lebesgue’s measure) invariant probability measures for the flow (see Section 1.2) is reduced to
the closed line segment

î
−‖a‖∞−‖b‖∞, ‖a‖∞+‖b‖∞

ó
in the line {x = y = 0}. Therefore, any

point of the Herman rotation set without the line {x = y = 0}, is obtained through a singular
(with respect to Lebesgue’s measure) invariant probability measure for the ab flow.

Finally, in Section 4 we refine the previous results to the ABC flow with A = 0, by exploiting
the particular symmetries of the vector field. When |B| 6= |C|, we prove (see Proposition 4.1)
that the planar Herman rotation set contains a “fusiform” shape as shown in Figure 1 on page 18.

1.1 Notation

• (e1, . . . , ed) denotes the canonical basis of Rd, and 0Rd denotes the null vector of Rd.

• “ · ” denotes the scalar product and | · | the euclidean norm in Rd.

• conv(A) denotes the convex hull of the subset A of Rd.

• Td for d ∈ N, denotes the d-dimensional torus Rd/Zd (respectively Rd/(2πZ)d in Sec. 4),
which may be identified to the unit cube [0, 1)d (respectively [0, 2π)d) in Rd, and 0Td

denotes the null vector of Td.

• Ck
c (Rd) for k ∈ N ∪ {∞}, denotes the space of the real-valued functions in Ck(Rd) with

compact support in Rd.

• Ck
] (Td) for k ∈ N∪{∞}, denotes the space of the real-valued functions f ∈ Ck(Rd) which

are Zd-periodic, i.e.

∀K ∈ Zd, ∀X ∈ Rd, f(X +K) = f(X). (1.11)

• The Jacobian matrix of a C1-mapping Φ : Rd → Rd is denoted by the matrix-valued
function ∇Φ with entries ∂xjΦi for i, j ∈ {1, . . . , d}.

• The abbreviation “a.e.” for almost everywhere, will be used throughout the paper. The
simple mention “a.e.” refers to the Lebesgue measure on Rd.
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• dX denotes the Lebesgue measure on Rd and Td, and σ(X) dX denotes the regular
Lebesgue measure with density σ.

• Lp] (Td) for p ∈ [1,∞], denotes the space of the Lebesgue measurable functions f in
Lploc(R

d), which are Zd-periodic dX-a.e. in Rd.
‖f‖p :=

Çˆ
Td

|f(X)|p dX
å1/p

<∞ if p <∞,

‖f‖∞ := supessTd|f | <∞ if p =∞.

• M (Td) denotes the the space of the Radon measures on Td, and Mp(Td) denotes the
space of the probability measures on Td.

• D ′(Rd) denotes the space of the distributions on Rd.

• For a Borel measure µ on Td and for f ∈ L1
] (T

d, µ), we denote

µ(f) :=

ˆ
Td

f(X)µ(dX), (1.12)

which is simply denoted by f when µ is Lebesgue’s measure. The same notation is used
for a vector-valued function in L1

] (T
d, µ)d.

• c denotes a positive constant which may vary from line to line.

1.2 A few tools of ergodic theory

Let F ∈ C1
] (Td)d. Consider the ODE’s flow X (1.1) associated with the vector field F . A

probability measure µ ∈Mp(Td) on Td is said to be invariant for the flow X defined by (1.1) if

∀ t ∈ R, ∀ψ ∈ C0
] (Td),

ˆ
Td

ψ
Ä
X(t, y)

ä
dµ(y) =

ˆ
Td

ψ(y) dµ(y). (1.13)

Then, we may define the set of invariant probability measures

IF :=
¶
µ ∈Mp(T

d) : µ invariant for the flow X
©
. (1.14)

Also define for any vector field F ∈ C1
] (Td)d, the following non empty subsets of Rd:

• According to [14, (1.1)] the set of all the limit points of the sequences
Ä
X(n, ξn)/n

ä
n∈N

in Rd for any sequence (ξn)n∈N in Td, is defined by

ρF :=
⋂
n∈N

Ñ ⋃
ξ∈Td

®
X(k, ξ)

k
: k ≥ n

´é
. (1.15)

By [14, Lem. 2.2, Thm. 2.3] it is a compact and connected set of Rd.
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Remark 1.1. From the semi-group property of the flow (1.1) combined with the following
uniform bound

∀ t ∈ [0,∞), ∀ ξ ∈ Td
 X(t, ξ) = X

Ä
[t], X(t− [t], ξ)

ä
∣∣∣X(t− [t], ξ)− ξ

∣∣∣ ≤ ‖F‖∞, (1.16)

we deduce that the set ρF (1.15) agrees with the set all the limit points of the sequencesÄ
X(tn, ξn)/tn

ä
n∈N

in Rd for any positive sequence (tn)n∈N tending to ∞ and for any se-
quence (ξn)n∈N in Td.

• The so-called Herman [11] rotation set is defined by

CF :=
¶
µ(F ) : µ ∈ IF

©
. (1.17)

It is clearly a compact and convex set of Rd.

An implicit consequence of [14, Thm. 2.4, Rem. 2.5, Cor. 2.6] shows that in any dimension

CF = conv (ρF ). (1.18)

The connection (1.18) between the asymptotics of the flow (1.1) and the Herman rotation set
for the flow is even stronger in dimension two, since by virtue of [14, Thm. 3.4 (b)] we get that

d = 2 ⇒ CF = ρF . (1.19)

We have the following characterization of an invariant probability measure, known as Liou-
ville’s theorem (see, e.g., [6, Thm 1, Sec. 2.2]) which can also be regarded as a divergence-curl
result with measures (see [3, Rem. 2.2] for further details).

Proposition 1.2 (Liouville’s theorem). Let F ∈ C1
] (Td)d and let µ ∈ M (Td). Then, the two

following assertions are equivalent:

i) µ is invariant for the flow X, i.e. (1.13) holds true.

ii) µF is divergence free in Rd, i.e.

div (µF ) = 0 in D ′(Rd), (1.20)

or equivalently, µF is divergence free in the torus Td, i.e.

∀ψ ∈ C1
] (Td),

ˆ
Td

F (Y ) · ∇ψ(Y )µ(dY ) = 0. (1.21)
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2 Three-dimensional flows satisfying a min-max condition

2.1 The class of fgh flows

Let f , g be two functions in C1
] (T2), and let h be a function in C2

] (T2) the gradient of which is
solution to the equation

f ∂xh+ g ∂yh = 0 in T2. (2.1)

We consider the three-dimensional flowXfgh = (x, y, z) associated with the vector field Ffgh(X) by
X ′fgh(t,X0) =


f
Ä
x(t,X0), y(t,X0)

ä
g
Ä
x(t,X0), y(t,X0)

ä
h
Ä
x(t,X0), y(t,X0)

ä
 =: Ffgh

Ä
Xfgh(t,X0)

ä
, t ≥ 0,

Xfgh(0, X0) = X0 = (x0, y0, z0) ∈ R3.

(2.2)

Then, we have the following min-max result.

Theorem 2.1. Let f, g ∈ C1
] (T2) and let h ∈ C2

] (T2) be a function satisfying (2.1). Then, the
following implications hold for any fixed X0 ∈ R3,

min
x∈T1

max
y∈T1

h(x, y) < max
x∈T1

min
y∈T1

h(x, y) ⇒ ∀ t ∈ [0,∞), |x(t,X0)− x0| < 1,

min
x∈T1

max
y∈T1

h(x, y) > max
x∈T1

min
y∈T1

h(x, y) ⇒ ∀ t ∈ [0,∞), |y(t,X0)− y0| < 1.
(2.3)

Remark 2.2. In the two implications (2.3) the use of min and max, rather than inf and sup,
is actually justified. Indeed, due to h ∈ C1

] (T2) the functions defined by

hM(x) := max
y∈T1

h(x, y) and hm(x) := min
y∈T1

h(x, y) for x ∈ T1,

are Lispschitz with constant ‖∂xh‖L∞(T2), thus continuous in R. Therefore, the functions hM
and hm do attain their bounds on T1 so that

min
x∈T1

max
y∈T1

h(x, y) = min
x∈T1

hM(x) and max
x∈T1

min
y∈T1

h(x, y) = max
x∈T1

hm(x).

Also note that since the extrema are taken independently with respect of the coordinates x, y,
we have

min
x∈T1

max
y∈T1

h(x, y) = inf
x∈T1

sup
y∈T1

h(x, y) = sup
y∈T1

inf
x∈T1

h(x, y) = max
y∈T1

min
x∈T1

h(x, y)

max
x∈T1

min
y∈T1

h(x, y) = sup
x∈T1

inf
y∈T1

h(x, y) = inf
y∈T1

sup
x∈T1

h(x, y) = min
y∈T1

max
x∈T1

h(x, y).
(2.4)

Proof of Theorem 2.1. Let X0 ∈ R3. In the sequel we simply denote the flow X (2.2) by

Xfgh(t) =
Ä
x(t), y(t), z(t)

ä
instead of Xfgh(t,X0) =

Ä
x(t,X0), y(t,X0), z(t,X0)

ä
. (2.5)
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The function h ∈ C2
] (T2) is a Hamiltonian for the flow X (2.8), since by the chain rule and

by (2.1) we have

∂t
Ä
h(Xfgh(t))

ä
= x′(t) ∂xh(x(t), y(t)) + y′(t) ∂yh(x(t), y(t))

= f(x(t), y(t)) ∂xh(x(t), y(t)) + g(x(t), y(t)) ∂yh(x(t), y(t)) = 0 for t ∈ [0,∞).

Hence, it follows that
∀ t ∈ [0,∞), h(x(t), y(t)) = h(x0, y0). (2.6)

Now, assume that min
x∈T1

max
y∈T1

h(x, y) < max
x∈T1

min
y∈T1

h(x, y). Then, we have

h(x0, y0) > min
x∈T1

max
y∈T1

h(x, y) or h(x0, y0) < max
x∈T1

min
y∈T1

h(x, y). (2.7)

First, we assume that the first inequality of (2.7) holds. There exists xm ∈ T1 such that

min
x∈T1

max
y∈T1

h(x, y) = hM(xm) with hM(x) := max
y∈T1

h(x, y).

This combined with equality (2.6) and the first inequality of (2.7) yields

∀ t ∈ [0,∞), hM(x(t)) ≥ h(x(t), y(t)) = h(x0, y0) > min
x∈T1

max
y∈T1

h(x, y) = hM(xm),

Hence, due to the 1-periodicity of hM , we deduce that

x([0,∞)) ⊂
⋃
n∈Z

(n+ xm, n+ 1 + xm).

Therefore, since by the intermediate value theorem x([0,∞)) is an interval of R, there exists an
integer n ∈ Z such that

x([0,∞)) ⊂ (n+ xm, n+ 1 + xm),

which implies that
∀ t ∈ [0,∞), |x(t)− x0| = |x(t)− x(0)| < 1.

The proof is quite similar if the second inequality of (2.7) holds using this time that there
exists xM ∈ T1 such that

max
x∈T1

min
y∈T1

h(x, y) = hm(xM) with hm(x) := min
y∈T1

h(x, y),

which leads us to the existence of n ∈ Z such that

x([0,∞)) ⊂ (n+ xM , n+ 1 + xM).

Therefore, we have just proved the first implication of (2.3).
Finally, in view of (2.4) the inequality of the second implication of (2.3) also reads as

min
y∈T1

max
x∈T1

h(x, y) < max
y∈T1

min
x∈T1

h(x, y),

so that it can be simply deduced from the previous proof by a permutation of x and y. The
proof of Theorem 2.1 is thus complete.
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2.2 The subclass of ab flows

Let a, b be two functions in C2
] (T1). We consider the flow Xab = (x, y, z) of type (1.1) associated

with the vector field Fab(X) by
X ′ab(t,X0) =


b′
Ä
y(t,X0)

ä
a′
Ä
x(t,X0)

ä
b
Ä
y(t,X0)

ä
− a
Ä
x(t,X0)

ä
 =: Fab

Ä
X(t,X0)

ä
, t ≥ 0,

Xab(0, X0) = X0 = (x0, y0, z0) ∈ R3.

(2.8)

Note that the projection of the flow X on the pair (x, y) turns out to be a two-dimensional
Hamiltonian flow whose Hamiltonian is the fonction (x, y) 7→ b(y)− a(x).

We have the following result satisfied by the flow Xab.

Theorem 2.3. Let a and b be two functions in C2
] (T1) satisfying the range condition

a
Ä
[0, 1)

ä
=
î
−‖a‖∞, ‖a‖∞

ó
and b

Ä
[0, 1)

ä
=
î
−‖b‖∞, ‖b‖∞

ó
. (2.9)

Then, we have the following alternative.

i) The following implications hold for any fixed X0 ∈ R3, ‖a‖∞ > ‖b‖∞ ⇒ ∀ t ∈ [0,∞), |x(t,X0)− x0| < 1,

‖a‖∞ < ‖b‖∞ ⇒ ∀ t ∈ [0,∞), |y(t,X0)− y0| < 1.
(2.10)

ii) If ‖a‖∞ = ‖b‖∞, we have

∀ t ∈ [0,∞), |x(t,X0)− x0| ≤ 1 and |y(t,X0)− y0| ≤ 1. (2.11)

Moreover, the Herman rotation set (1.17) is given by

CFab
=
î
−2 ‖a‖∞, 2 ‖a‖∞

ó
e3. (2.12)

Proof of Theorem 2.3.
Proof of i). Define the functions f , g and h by

f(x, y) := b′(y), g(x, y) := a′(x) and h(x, y) := b(y)− a(x) for (x, y) ∈ T2, (2.13)

so that equality (2.1) is satisfied. Moreover, by the range condition (2.9) we get that
min
x∈T1

max
y∈T1

h(x, y) = min
x∈T1

max
y∈T1

Ä
b(y)− a(x)

ä
= ‖b‖∞ − ‖a‖∞,

max
x∈T1

min
y∈T1

h(x, y) = max
x∈T1

min
y∈T1

Ä
b(y)− a(x)

ä
= ‖a‖∞ − ‖b‖∞.
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Therefore, the implications (2.3) of Theorem 2.1 imply the desired implications (2.10).

Proof of ii). Assume that ‖a‖∞ = ‖b‖∞ > 0, and define the function aε := (1 + ε) a for ε > 0.
First of all, let Xε be the flow defined by (2.8) with the functions aε and b, which is associated
with the vector-field

F ε
ab(X) := Fab(X) + ε

Ä
0, a′(x),− a(x)

ä
for X = (x, y, z) ∈ T3.

Since Fab ∈ C1
] (T3) is a κ-Lipschitz function on R3 for some κ > 0, we have for any fixed

X0 ∈ R3, for any fixed T > 0 and for any t ∈ [0, T ],

0 ≤
∣∣∣Xε(t,X0)−X(t,X0)

∣∣∣ =

ˆ t

0

∣∣∣F ε
ab

Ä
Xε(s,X0)

ä
− Fab

Ä
X(s,X0)

ä∣∣∣ ds
≤ κ

ˆ t

0

∣∣∣Xε(s,X0)
ä
−X(s,X0)

ä∣∣∣ ds+ ε t (‖a′‖∞ + ‖a‖∞)︸ ︷︷ ︸
c:=

≤ κ

ˆ t

0

∣∣∣Xε(s,X0)
ä
−X(s,X0)

ä∣∣∣ ds+ c T ε.

Hence, by Gronwall’s inequality (see, e.g., [12, Sec. 17.3]) we deduce that

∀ t ∈ [0, T ],
∣∣∣Xε(t,X0)−X(t,X0)

∣∣∣ ≤ c T ε eκ t. (2.14)

On the other hand, since

‖aε‖∞ = (1 + ε) ‖a‖∞ = (1 + ε) ‖b‖∞ > ‖b‖∞ > 0,

by the first implication of (2.10) we get that

∀ t ∈ [0,∞), |xε(t,X0)− x0| < 1.

Therefore, passing to the limit ε→ 0 together with the uniform estimate (2.14) for an arbitrary
T > 0, we obtain the enlarged inequality

∀ t ∈ [0,∞), |x(t,X0)− x0| ≤ 1,

i.e. the first inequality of (2.11). Finally, proceeding similarly with the functions a and the
perturbed function bε := (1 + ε) b, and using the second estimate of (2.10), we obtain the two
desired inequalities (2.11).

Now, it remains to characterize the Herman rotation set CFab
when ‖a‖∞ = ‖b‖∞. On the

one hand, as an immediate consequence of (2.11) we have

∀X0 ∈ R3, lim
t→∞

x(t,X0)

t
= lim

t→∞

y(t,X0)

t
= 0,

which by the set equality (1.18) (see also (1.15) and Remark 1.1) implies that

CFab
⊂ R e3. (2.15)
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On the other hand, since the function h defined by (2.13) is a first integral of the flow Xab, we
get that for any X0 ∈ R3,

∀ t ∈ [0,∞), z(t,X0) =
Ä
b(y0)− a(x0)

ä
t+ z0 so that lim

t→∞

z(t,X0)

t
= h(X0), (2.16)

which again by (1.18) implies that

CFab
· e3 =

¶
h(X0)), X0 ∈ R3

©
.

This combined with (2.15) thus gives

CFab
=
¶
h(X0), X0 ∈ R3

©
e3 =

¶
b(y0)− a(x0)), (x0, y0) ∈ T2

©
e3.

Finally, using the range condition (2.9) combined with equality ‖a‖∞ = ‖b‖∞, we obtain the
equality ¶

b(y0)− a(x0), (x0, y0) ∈ T2
©

=
î
−2 ‖a‖∞, 2 ‖a‖∞

ó
,

which leads us to the expression (2.12) of the Herman rotation set.
The proof of Theorem 2.3 is now complete.

3 Asymptotics of the ab flows
In this section we assume that the derivatives a′, b′ of the flow X (2.8) have a finite number of
roots in the torus T1:

¶
α ∈ [0, 1) : a′(γ) = 0

©
=
¶
0 ≤ α0 < α1 < · · · < αp−1 < 1

©
, p ≥ 2,¶

β ∈ [0, 1) : b′(δ) = 0
©

=
¶
0 ≤ β0 < β1 < · · · < βq−1 < 1

©
, q ≥ 2.

(3.1)

When the 1-periodic functions a, b satisfy some extrema conditions, we can determine the
regular (with respect to Lebesgue’s measure) invariant probability measures and the Herman
rotation set CFab

(1.17) in a rather precise way. This is the aim of the following result.

Theorem 3.1. In addition to condition (2.9) assume that either

‖a‖∞ > ‖b‖∞, ∃ i0, j0 ∈ {0, . . . ,m−1}, a(αi0) < a(αj0), ∀ k, a(αk) /∈
Ä
a(αi0), a(αj0)

ä
, (3.2)

or

‖a‖∞ < ‖b‖∞, ∃ k0, l0 ∈ {0, . . . , n−1}, b(βk0) < b(βl0), ∀ j, b(βj) /∈
Ä
b(βk0), b(βl0)

ä
. (3.3)

Then, the following results hold.
i) The closed subset Dab of the rotation set CFab

(1.17) induced by the regular (with respect to
Lebesgue’s measure) invariant probability measures for the flow Xab is given by

Dab :=
¶
σFab : σ ∈ L1

] (T3) and σ(Y ) dY ∈ IFab

©
=
î
−‖a‖∞−‖b‖∞, ‖a‖∞+‖b‖∞

ó
e3. (3.4)

11



ii) For any pair (x0, y0) ∈ T2, we have the two following implications:
(3.2) and a(αi0) + ‖b‖∞ < a(x0)− b(y0) < a(αj0)− ‖b‖∞

⇓

∃ γ0 6= 0,
Ä
0, γ0, b(y0)−a(x0)

ä
∈ CFab

,

 (3.5)

and 
(3.3) and b(βk0) + ‖a‖∞ < b(y0)− a(x0) < b(βl0)− ‖a‖∞

⇓

∃ δ0 6= 0,
Ä
δ0, 0, b(y0)−a(x0)

ä
∈ CFab

.

 (3.6)

Moreover, if there exists a pair (x0, y0) ∈ T2 satisfying
(3.2) and a(αi0) + ‖b‖∞ < a(x0)− b(y0) < a(αj0)− ‖b‖∞

or

(3.3) and b(βk0) + ‖a‖∞ < b(y0)− a(x0) < b(βl0)− ‖a‖∞,
(3.7)

then the Herman rotation set CFab
is a planar compact convex set in R3, which contains 0R3 and

a non-degenerate triangle.
iii) Any invariant probability measure µ for the flow Xab satisfying

µ(Fab) · e1 6= 0 or µ(Fab) · e2 6= 0, (3.8)

is singular with respect to Lebesgue’s measure.

Remark 3.2. In view of Theorem 2.3 and Theorem 3.1 the geometrical nature of the Herman
rotation set CFab

is very different depending on whether ‖a‖∞ 6= ‖b‖∞ or ‖a‖∞ = ‖b‖∞. If
‖a‖∞ 6= ‖b‖∞, CFab

is a non-degenerate planar set of R3. On the contrary, if ‖a‖∞ = ‖b‖∞, CFab

is a close line segment. This also shows the gap between dimension two and dimension three
for the Herman rotation set. Indeed, Franks and Misiurewicz [9] have proved that the rotation
set for any dimensional continuous flow is always a closed line segment, while according to [4,
Thm. 4.1] any convex polyedra of R3 can be a Herman rotation set CF for some suitable vector
field F .

Proof of Theorem 3.1. In the sequel we again use the simplified notation (2.5).
Proof of i). Let σ be a non-negative function in L1

] (T
3) such that σ(Y ) dY is an invariant

probability measure for the flow Xab. Applying the div-curl equality (1.21) with the invariant
probability measure µ(dY ) := σ(Y ) dY and the vector field Fab of (2.8), using condition (3.1),
and noting that the vector field Fab is independent of coordinate z, we get that

ˆ
T2

‹Fab(x, y) · ∇ϕ(x, y)σz(x, y) dxdy = 0, ∀ϕ ∈ C1
] (T2),‹Fab(x, y) :=

Ä
b′(y), a′(x)

ä
, σz(x, y) :=

ˆ
T2

σ(x, y, z) dz for (x, y) ∈ T2.

(3.9)
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By condition (3.1) the previous equality reads as

∀ϕ ∈ C1
] (T2),

p−2∑
i=0

q−2∑
j=0

ˆ
(αi,αi+1)×(βj ,βj+1)

‹Fab(x, y) · ∇ϕ(x, y)σz(x, y) dxdy = 0. (3.10)

Now, fix a pair (i, j) in {0, . . . , p−2}×{0, . . . , q−2}, and define the C1-mapping Φij by

Φij(x, y) :=
1

2

Ä
a(x)− b(y), a(x) + b(y)

ä
for (x, y) ∈ Rij := (αi, αi+1)× (βj, βj+1), (3.11)

the Jacobian of which satisfies

JΦij
(x, y) =

1

4

∣∣∣∣∣ a′(x) −b′(y)
a′(x) b′(y)

∣∣∣∣∣ =
1

2
a′(x) b′(y) 6= 0 for any (x, y) ∈ Rij.

Moreover, since the function a is injective in (αi, αi+1) (due to a′ 6= 0 in the interval) and the
function b is injective in (βjβj+1) (due to b′ 6= 0 in the interval), the mapping Φij is clearly
injective in the open rectangle Rij. Hence, by virtue of the (global) inverse function theorem,
Φij is a C1-diffeomorphism from the open rectangle Rij on its open range Φij(Rij).
Then, making the change of variables (u, v) = Φij(x, y) and ψij(u, v) = ϕ(x, y) in (3.10), we
get that

0 =
p−2∑
i=0

q−2∑
j=0

ˆ
Rij

Ä
b′(y) ∂xϕ(x, y) + a′(x) ∂yϕ(x, y)

ä
σz(x, y) dxdy

=
p−2∑
i=0

q−2∑
j=0

ˆ
Φij(Rij)

a′(x) b′(y) ∂vψij(u, v)σz(x, y)
∣∣∣JΦij

(x, y)
∣∣∣−1

dudv

=
p−2∑
i=0

q−2∑
j=0

ˆ
Φij(Rij)

2 ∂vψij(u, v)σz
Ä
Φ−1
ij (u, v)

ä
dudv.

Therefore, due to the arbitrariness of the function ψij chosen in C∞c
Ä
Φij(Rij)

ä
for any (i, j), we

deduce from the previous equality that

∂v
Ä
σz
Ä
Φ−1
ij (u, v)

ää
= 0 in D ′

Ä
Φij(Rij)

ä
,

which is equivalent to the existence of some negative function θij ∈ L1
Ä
Φ−1
ij (u, v)

ä
such that

σz
Ä
Φ−1
ij (u, v)

ä
= θij(u) in

Ä
Φij(Rij)

ä
, for any (i, j) ∈ {0, . . . , p−2}×{0, . . . , q−2}.

This implies that the mean-value function σz reads as

σz(x, y) = θ(a(x)− b(y)) for (x, y) ∈ T2, (3.12)

for some non-negative Lebesgue measurable function θ in R satisfying
ˆ

T2

θ(a(x)− b(y)) dxdy = 1. (3.13)
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Conversely, recalling equality (3.9) we can check that any non-negative function σ satisfying
(3.12), (3.13) clearly defines the Lebesgue density of an invariant probability measure for the
flow Xab.

As a consequence of the representation (3.12), (3.13), we have

σFab =

ˆ
T2

σz(x, y)Fab(x, y) dxdy

=

Çˆ
T2

b′(y) θ(a(x)− b(y)) dxdy

å
e1 +

Çˆ
T2

a′(x) θ(a(x)− b(y)) dxdy

å
e2

−
Çˆ

T2

(a(x)− b(y)) θ(a(x)− b(y)) dxdy

å
e3

(3.14)

Let Θ be the function in C0(R) defined by

Θ(t) :=

ˆ t

0

θ(s) ds for t ∈ R.

If θ is continuous in R, we have θ = Θ′ and by the 1-periodicity of b,
ˆ

T2

b′(y) θ(a(x)− b(y)) dxdy = −
ˆ 1

0

ï
Θ(a(x)− b(y))

òy=1

y=0
dx = 0.

By a density argument, the previous equality still holds for any Lebesgue measurable function
θ satisfying (3.12). Similarly, we have

ˆ
T2

a′(x) θ(a(x)− b(y)) dxdy = 0.

Hence, the mean-value (3.14) is reduced to

σFab = −
Çˆ

T2

(a(x)− b(y)) θ(a(x)− b(y)) dxdy

å
e3, (3.15)

for any non-negative Lebesgue measurable function θ in R satisfying equality (3.13).
Finally, let us prove equality (3.4). On the one hand, from the equality (3.15) combined

with the representation (3.12), (3.13), we easily deduce that

Dab =
¶
σFab : σ ∈ L1

] (T3) and σ(Y ) dY ∈ IFab

©
⊂
î
−‖a‖∞−‖b‖∞, ‖a‖∞+‖b‖∞

ó
e3. (3.16)

On the other hand, by the range condition (2.9) there exist two pairs (γ, δ) ∈ T2 such that

a(γ) = ∓‖a‖∞ and b(δ) = ±‖b‖∞.

For such a pair (γ, δ) and for any ε > 0, define the non-negative function θε by

θε(t) :=
1[c−ε,c+ε](t)´

T2 1[c−ε,c+ε](a(x)− b(y)) dxdy
for t ∈ R, where c := a(γ)− b(δ),
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so that equality (3.13) is fulfilled. Hence, the associated function σε by (3.12) satisfies the
equality (3.15) with θε, i.e., recalling the definition of Dab in (3.16),

σεFab = −
´

T2(a(x)− b(y)) 1[c−ε,c+ε](a(x)− b(y)) dxdy´
T2 1[c−ε,c+ε](a(x)− b(y)) dxdy

e3 ∈ Dab.

Hence, applying the C1-diffeomorphism Φij (3.11) in each open rectangle Rij, and using the
continuity of the functions a, b and the compactness of Dab, we obtain that

lim
ε→0

σεFab = − c e3 =
Ä
−a(γ) + b(δ)

ä
e3 =

Ä
±‖a‖∞ ± ‖b‖∞

ä
e3 ∈ Dab.

Therefore, since the set Dab is clearly convex, the inclusion (3.16) and the previous limit yield
equality (3.4), which ends the proof of part i).

Proof of ii). Let us prove implication (3.5). The proof of (3.6) is quite similar by permuting
the roles of x and y.

First of all, note that the hypothesis of (3.5) implies that there exists ε > 0 satisfying

ε+ a(αi0) + ‖b‖∞ ≤ a(x0)− b(y0) ≤ a(αj0)− ε− ‖b‖∞. (3.17)

By property (2.6) and by the hypothesis of (3.5) we have for any t ∈ [0,∞),

ε+ a(αi0) ≤ ε+ a(αi0) + ‖b‖∞ + b(y(t)) ≤ a(x(t)) ≤ a(αj0)− ε− ‖b‖∞ + b(y(t)) ≤ a(αj0)− ε,

namely
∀ t ∈ [0,∞), ε+ a(αi0) ≤ a(x(t)) ≤ a(αj0)− ε. (3.18)

This combined with (3.1) and (3.2) implies that the function a′(x) : t 7→ a′(x(t)) does not
vanish in [0,∞). Then, by the continuity of a′(x) we get that

∀ t ∈ [0,∞), a′(x(t)) > 0 or ∀ t ∈ [0,∞), a′(x(t)) < 0. (3.19)

First, assume that the first inequality of (3.19) holds true. Hence, we deduce the existence of
a constant γ > 0 such that

∀ t ∈ [0,∞), y′(t) = a′(x(t)) ≥ γ. (3.20)

Otherwise, there exists a sequence (sn)n∈N in [0,∞) such that lim
n→∞

a′(x(sn)) = 0. However,
due to ‖a‖∞ > ‖b‖∞ the first implication of (2.10) shows that the sequence (x(sn))n∈N is
bounded in R. Hence, by (3.18) there exists a subsequence, still denoted by (sn)n∈N, such that
lim
n→∞

x(sn) = u with

a′(u) = 0 and a(αi0) < ε+ a(αi0) ≤ a(u) ≤ a(αj0)− ε < a(αj0),

which contradicts (3.2). Hence, inequality (3.20) holds and implies that

lim inf
t→∞

y(t)

t
≥ γ > 0.
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This combined with the first implication of (2.10) and the formula (2.16) satisfied by z(t),
shows the existence of a number γ0 > 0 and of a positive sequence (tn)n∈N tending to ∞ such
that

lim
n→∞

x(tn)

tn
= 0, lim

n→∞

y(tn)

tn
= γ0, lim

n→∞

z(tn)

tn
= b(y0)− a(x0). (3.21)

Finally, using the set equality (1.18) (see also (1.15) and Remark 1.1) we obtain thatÄ
0, γ0, b(y0)−a(x0)

ä
∈ CFab

.

Similarly, when the second inequality of (3.19) holds, there exists a number γ0 < 0 satisfying
(3.21) so that Ä

0, γ0, b(y0)−a(x0)
ä
∈ CFab

.

which ends the proof of implication (3.5).
On the other hand, taking into account the range condition (2.9) consider a pair (x0, y0)

in T2 satisfying the extrema conditions

a(x0) ∈
¶
−‖a‖∞, ‖a‖∞

©
and b(y0) ∈

¶
−‖b‖∞, ‖b‖∞

©
which imply a′(x0) = b′(y0) = 0.

Then, by the uniqueness of the solution to the ODE (2.8) we have

∀ t ∈ [0,∞), a′(x(t)) = b′(y(t)) = 0 and z(t) =
Ä
±‖b‖∞∓‖a‖∞

ä
t+ z0.

Therefore, again using equality (1.18) we obtain thatÄ
0, 0,±‖b‖∞∓‖a‖∞

ä
∈ CFab

.

This combined with the conclusion of (3.5) implies the existence of a number γ0 6= 0 and of
some pair (x0, y0) ∈ T2 satisfying, under condition (3.2), the inclusion

Tab := conv
Ä¶Ä

0, 0, ‖a‖∞−‖b‖∞
ä
,
Ä
0, 0, ‖b‖∞−‖a‖∞

ä
,
Ä
0, γ0, b(y0)−a(x0)

ä©ä
⊂ CFab

, (3.22)

where Tab is a non-degenerate triangle containing 0R2 in the plane {x = 0}. This concludes the
proof of part ii).

Proof of iii). Assume that µ is a regular invariant probability measure for the flow Xab with
density σ ∈ L1

] (T
3). Then, the vector µ(Fab) in CFab

agrees with the mean-value σFab which
belongs to the line R e3 by (3.4). Therefore, condition (3.8) cannot hold, which establishes the
part iii) by contraposition.

This concludes the proof of Theorem 3.1.
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4 The ABC flow with A = 0

The ABC flow XBC = (x, y, z) with parameters A = 0 and B,C ∈ R is solution to the ODE’s
system

X ′BC(t,X0) =


C cos

Ä
y(t,X0)

ä
B sin

Ä
x(t,X0)

ä
C sin

Ä
y(t,X0)

ä
+B cos

Ä
x(t,X0)

ä
 =: FBC

Ä
XBC(t,X0)

ä
, t ≥ 0,

XBC(0, X0) = X0 = (x0, y0, z0) ∈ R3.

(4.1)

In [18, Sec. 2] the parametric expressions of x(t,X0) and y(t,X0) are explicitly given in terms
of some Jacobi elliptic functions modulo 2π in the two-dimensional torus T2 := R2 \ (2πZ)2,
but not in the whole space R2. However, when |B| 6= |C| some orbits of the flow XBC are not
bounded in R2. More generally, we will characterize the Herman rotation set CFBC

which is
strongly connected to the asymptotics of the flow XBC by the set equality (1.18).

On the one hand, apply the the results of Section 3 depending on the cases |B| 6= |C| and
|B| = |C|. In the sequel we still use the simplified notation (2.5).
The ABC flow XBC (4.1) agrees with the flow Xab (2.8) taking

a(x) := −B cos(x) and b(y) := C sin(y) for x, y ∈ T1 := R/(2πZ), (4.2)

which satisfy the range condition

a
Ä
[0, 2π)

ä
=
î
−|B|, |B|

ó
and b

Ä
[0, 2π)

ä
=
î
−|C|, |C|

ó
, (4.3)

The roots condition (3.1) also holds since
¶
α ∈ [0, 2π) : a′(γ) = 0

©
=
¶
0 = α0 < α1 = π

©
with p = 2,¶

β ∈ [0, 2π) : b′(δ) = 0
©

=
¶
π/2 = β0 < β1 = 3π/2

©
with q = 2.

(4.4)

Moreover, condition (3.2) is satisfied since the derivatives a′, b′ have only two roots in [0, 2π).
Therefore, equality (3.14) reads as¶

σFBC : σ ∈ L1
] (T3) and σ(Y ) dY ∈ IFBC

©
=
î
−|B|−|C|, |B|+|C|

ó
e3. (4.5)

Next, taking into account the 2π-periodicity, the boundedness properties (2.10) are written as |B| > |C| ⇒ ∀ t ∈ [0,∞), |x(t)− x0| < 2π,

|B| < |C| ⇒ ∀ t ∈ [0,∞), |y(t)− y0| < 2π.
(4.6)

In addition, the inclusion (3.22) yieldsÄ
0, 0,± |B| ± |C|

ä
∈ CFBC

. (4.7)

On the other hand, a more careful analysis leads us to the following result.
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Figure 1: The convex subset DBC of CFBC
for B > C > 0

Proposition 4.1.
i) If |B| 6= |C|, the Herman rotation set for the flow XBC satisfies the inclusion

DBC := conv
Ä
D
Ä
0R2 , ||B|−|C||

ä
∪
î
−|B|−|C|, |B|+|C|

ó
e3

ä
⊂ CFBC

, (4.8)

where DBC is the fusiform shape (see Figure 1) defined as the convex hull of the closed line
segment

î
−|B|−|C|, |B|+|C|

ó
along the line R e3, together with the open disk D

Ä
0R2 , ||B|−|C||

ä
centered on 0R2 and of radius ||B|−|C|| which lies either in the plane {x = 0} (if |B| > |C|) or
in the plane {y = 0} (if |B| < |C|).

In terms of the flow asymptotics, for any point µ(FBC) (1.12) in the set DBC, there exist a
point U0 ∈ T3 and a sequence (sn)n∈N tending to ∞ such that

Π
Ä
µ(FBC)

ä
= lim

n→∞

Π
Ä
XBC(sn, U0)

ä
sn

, (4.9)

where Π : (x, y, z) 7→ (x, y) is the orthogonal projection of R3 on the plane {z = 0}.
Moreover, for any point µ(FBC) in CFBC

\ (R e3), the invariant probability measure µ for the
flow XBC is necessarily singular with respect to Lebesgue’s measure.
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ii) If |B| = |C|, the Herman rotation set for the flow XBC is given by

CFBC
=
î
−2|B|, 2|B|

ó
e3. (4.10)

Proof of Proposition 4.1.
Proof of ii). First, let us prove that for any (x0, y0) ∈ T2, the implications (3.5) and (3.6) yield

|C|−|B| < B cos(x0) + C sin(y0)︸ ︷︷ ︸
=:c0

< |B|−|C|︸ ︷︷ ︸
>0

⇒ ∃ γ0 6= 0,

∣∣∣∣∣ (0,±γ0, c0) ∈ CFBC

(0, γ0,−c0) ∈ CFBC
,

|B|−|C| < B cos(x0) + C sin(y0) < |C|−|B|︸ ︷︷ ︸
>0

⇒ ∃ δ0 6= 0,

∣∣∣∣∣ (±δ0, 0, c0) ∈ CFBC

(−δ0, 0,−c0) ∈ CFBC
.

(4.11)

Compared to the general case of (3.5) and (3.6), we get the additional points of CFBC
as follows:

Assume for example that |B| > |C|. Since the vector field

YBC : t 7→
Ä
− x(t), π − y(t), z(t)

ä
= XBC

Ä
t, (−x0, π − y0, z0)

ä
, (4.12)

is solution to (4.1), and since by (3.21) there exists a sequence (tn)n∈N tending to ∞ such that

(0, γ0, c0) = lim
n→∞

XBC(tn)

tn
,

we deduce from the set equality (1.18) (see also (1.15) and Remark 1.1) that

(0,−γ0, c0) = lim
n→∞

YBC(tn)

tn
∈ CFBC

. (4.13)

Moreover, the vector field

ZBC : t 7→
Ä
π − x(t), π + y(t),−z(t)

ä
= XBC

Ä
t, (π − x0, π + y0,−z0)

ä
(4.14)

is also solution to (4.1), which implies that

(0, γ0,−c0) = lim
n→∞

ZBC(tn)

tn
∈ CFBC

.

Similarly, assuming that |B| < |C| and using the two fields (4.12), (4.14), we get the second
implication of (4.11).

Then, collecting (4.11), (4.7) and using the convexity of the Herman rotation set CFBC
, we

obtain that for any (x0, y0) ∈ T2 with |c0| < ||B|−|C||, there exist γ0, δ0 6= 0 such that

• if |B| > |C|, CFBC
contains the convex pentagon in the plane {x = 0}

conv
Ä¶

(0, 0,−|B|−|C|), (0, 0, |B|+ |C|), (0, γ0, c0), (0,−γ0, c0), (0, γ0,−c0)
©ä
, (4.15)

• if |B| < |C|, CFBC
contains the convex pentagon in the plane {y = 0}

conv
Ä¶

(0, 0,−|B|−|C|), (0, 0, |B|+ |C|), (δ0, 0, c0), (−δ0, 0, c0), (−δ0, 0,−c0)
©ä
. (4.16)
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Next, let us prove the two constants γ0, δ0 satisfy the following estimate from below

|c0| =
∣∣∣B cos(x0) + C sin(y0)

∣∣∣ < ||B|−|C|| ⇒ |γ0|, |δ0| ≥
»

(|B|−|C|)2 − c2
0. (4.17)

Assume for example that |B| > |C|. Consider a pair (x0, y0) ∈ T2 satisfying |c0| < |B| − |C|.
Then, by property (2.6) we have in [0,∞)Ä

B sin(x) + C cos(y)
ä2

+ c2
0 =

Ä
B sin(x) + C cos(y)

ä2
+
Ä
B cos(x) + C cos(y)

ä2
= B2 + C2 + 2BC sin(x+ y) ≥ (|B|−|C|)2,

which implies that

|x′ + y′| =
∣∣∣B sin(x) + C cos(y)

∣∣∣ ≥ »(|B|−|C|)2 − c2
0 > 0 in [0,∞).

Then, by a continuity argument it follows that

x′ + y′ ≥
»

(|B|−|C|)2 − c2
0 in [0,∞) or x′ + y′ ≤ −

»
(|B|−|C|)2 − c2

0 in [0,∞).

Hence, due to the boundedness of x (recall that |B| > |C|) and to the definition (3.21) of γ0

we deduce that γ0 satisfies (4.17).
Therefore, collecting (4.15), (4.17) and using the convexity of CFBC

we get that

{0} ×
Å ⋃
|c0|<|B|−|C|

[
−
»

(|B|−|C|)2 − c2
0 ,
»

(|B|−|C|)2 − c2
0

]
× {c0}

ã
⊂ CFBC

. (4.18)

Now, observe that the subset of R2 between the brackets in (4.18) agrees with the open disk
D(0R2 , |B|−|C|) of the plane {x = 0}. The two inclusions (4.7), (4.18) thus give (4.8).

On the other hand, the projection Π(XBC) = (x, y) of the flow XBC (4.1) agrees with the
two-dimensional flow solution to the ODE’s system x′(t) = C cos

Ä
y(t)
ä

y′(t) = B sin
Ä
x(t)

ä  = Π(FBC)(x(t), y(t)), t ≥ 0, (x(0), y(0)) = (x0, y0) ∈ R2. (4.19)

Assume for example that |B| > |C|. Let µ ∈ IFBC
be an invariant probability measure for the

flow XBC such that the mass µ(FBC) belongs to the subset DBC of CBC defined by (4.8), which
implies that

Π
Ä
µ(FBC)

ä
= (0, b0) with |b0| ≤ |B| − |C|. (4.20)

Then, using (3.21), (4.13) and applying the inequality (4.17) with c0 = 0, there exist a number
γ0 with |γ0| ≥ |B|−|C|, a point U0 = (u0, v0, w0) ∈ T3 and a sequence (tn)n∈N tending to ∞
such that 

(0, γ0, 0) = lim
n→∞

XBC(tn, U0)

tn

(0,− γ0, 0) = lim
n→∞

XBC

Ä
tn, (−u0, π − v0, w0)

ä
tn

.
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Applying the orthogonal projection Π in the previous equalities and using the set equality (1.18)
for the flow Π(XBC) associated with the vector field Π(FBC) in (4.19), we get that

(0, γ0) = lim
n→∞

Π(XBC)
Ä
tn, (u0, v0)

ä
tn

∈ CΠ(FBC)

(0,− γ0) = lim
n→∞

Π(XBC)
Ä
tn, (−u0, π − v0)

ä
tn

∈ CΠ(FBC),

which by the convexity of CΠ(FBC) combined with (4.20), and thus b0 ∈ [− γ0, γ0], yields

Π
Ä
µ(FBC)

ä
= (0, b0) ∈ CΠ(FBC).

Now, by virtue of the two-dimensional equality (1.19) (see also (1.15) and Remark 1.1) there
exists a sequence (sn)n∈N tending to ∞ such that

Π
Ä
µ(FBC)

ä
= lim

n→∞

Π(XBC)
Ä
sn, (u0, v0)

ä
sn

,

which is equivalent to the desired projection equality (4.9).

Finally, in view of (4.5), for any invariant probability measure µ for the flow XBC such that
the mass µ(FBC) does not belongs to the line R e3, µ is necessarily singular with respect to
Lebesgue’s measure.

Proof of ii). Taking into account the 2π-periodicity, by (2.11) the flow XBC satisfies the
boundedness property

∀ t ∈ [0,∞), |x(t)− x0| ≤ 2π and |y(t)− y0| ≤ 2π. (4.21)

Moreover, by equality (2.12) the Herman rotation set for the flow XBC is given by the closed
line segment (4.10).
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