CNN-based Compressor Mass Flow Estimator in Industrial Aircraft Vapor Cycle System - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2024

CNN-based Compressor Mass Flow Estimator in Industrial Aircraft Vapor Cycle System

Résumé

In Vapor Cycle Systems, the mass flow sensor plays a key role for different monitoring and control purposes. However, physical sensors can be inaccurate, heavy, cumbersome, expensive or highly sensitive to vibrations, which is especially problematic when embedded into an aircraft. The conception of a virtual sensor, basedon other standard sensors, is a good alternative. This paper has two main objectives. Firstly, a data-driven model using a Convolutional Neural Network is proposed to estimate the mass flow of the compressor. We show that it significantly outperforms the standard Polynomial Regression model (thermodynamic maps), in terms of thestandard MSE metric and Engineer Performance metrics. Secondly, a semi-automatic segmentation method is proposed to compute the Engineer Performance metrics for real datasets, as the standard MSE metric may pose risks in analyzing the dynamic behavior of Vapor Cycle Systems.
Fichier principal
Vignette du fichier
fsbmgtmngddcytffstzqvvdkwrfmjkft.pdf (897.82 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04587505 , version 1 (24-05-2024)

Identifiants

  • HAL Id : hal-04587505 , version 1

Citer

Justin Reverdi, Sixin Zhang, Saïd Aoues, Fabrice Gamboa, Serge Gratton, et al.. CNN-based Compressor Mass Flow Estimator in Industrial Aircraft Vapor Cycle System. 2024. ⟨hal-04587505⟩
442 Consultations
54 Téléchargements

Partager

More