N
N

N

HAL

open science

CNN-based Compressor Mass Flow Estimator in
Industrial Aircraft Vapor Cycle System

Justin Reverdi, Sixin Zhang, Said Aoues, Fabrice Gamboa, Serge Gratton,

Thomas Pellegrini

» To cite this version:

Justin Reverdi, Sixin Zhang, Said Aoues, Fabrice Gamboa, Serge Gratton, et al.. CNN-based Com-
pressor Mass Flow Estimator in Industrial Aircraft Vapor Cycle System. 2024. hal-04587505

HAL Id: hal-04587505
https://hal.science/hal-04587505

Preprint submitted on 24 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-04587505
https://hal.archives-ouvertes.fr

CNN-based Compressor Mass Flow Estimator in
Industrial Aircraft Vapor Cycle System

Justin Reverdi'?3, Sixin Zhangl, Said Aoues?, Fabrice Gamboa?, Serge Gratton', and Thomas Pellegrinil

Unstitut de Recherche en Informatique de Toulouse (IRIT)
2LIEBHERR Aerospace Toulouse
3Instiut de Mathématiques de Toulouse (IMT)

Abstract—In Vapor Cycle Systems, the mass flow sensor plays
a key role for different monitoring and control purposes. However,
physical sensors can be inaccurate, heavy, cumbersome, expensive or
highly sensitive to vibrations, which is especially problematic when
embedded into an aircraft. The conception of a virtual sensor, based
on other standard sensors, is a good alternative. This paper has two
main objectives. Firstly, a data-driven model using a Convolutional
Neural Network is proposed to estimate the mass flow of the
compressor. We show that it significantly outperforms the standard
Polynomial Regression model (thermodynamic maps), in terms of the
standard MSE metric and Engineer Performance metrics. Secondly,
a semi-automatic segmentation method is proposed to compute the
Engineer Performance metrics for real datasets, as the standard MSE
metric may pose risks in analyzing the dynamic behavior of Vapor
Cycle Systems.

Keywords—Deep Learning, Convolutional Neural Network, Vapor
Cycle System, Virtual Sensor

NOMENCLATURE
m Compressor Mass Flow kgs™!
w Compressor Motor Speed rads™!
C Compressor Motor Torque Nm
P, Compressor Inlet Pressure Pa
P, Compressor Outlet Pressure Pa
T, Compressor Inlet Temperature K
Tou Compressor Outlet Temperature K

I. INTRODUCTION

N physical systems, it is crucial to measure certain

quantities. Traditionally, physical sensors have been used
for this purpose, but they can be expensive, cumbersome, and
require maintenance. Sometimes there are no physical sensors
for the quantity of interest. As an alternative, virtual sensors
have emerged as a cost-effective and reliable method for
measuring physical data based on other physical sensors [1].
In complex physical systems, it is sometimes hard to derive
physically meaningful equations to construct a virtual sensor.
Therefore, using machine learning models to design a virtual
sensor has become a popular research direction in recent
years [1]-[7]. In this paper, we propose and evaluate a virtual
sensor based on Machine Learning (ML) for estimating an
important physical quantity (Compressor Mass Flow) in the
Vapor Cycle System (VCS) of LIEBHERR in airplanes.

Exterior air

Condenser

High Pressure

Expansion
Valve

Compressor

Low Pressure

Evaporator

[ Heat

Motor!Cabiﬁe

Fig. 1: Vapor Cycle System (VCS)

Background of the VCS: The function of this system is to re-
duce and control the temperature of a medium by transferring
its heat to the refrigerant (Evaporator) and then to transfer the
heat from the refrigerant to an external medium (Condenser).
The Compressor and the Expansion Valve bring the refrigerant
fluid in the appropriate conditions of pressure and temperature
for heat transfer. A typical refrigeration cycle comprises four
stages through which the refrigerant undergoes: compression
(from point 1 to point 2), condensation (from point 2 to point
3), expansion (from point 3 to point 4), and evaporation (from
point 4 back to point 1) [8], [9]. This system is represented
in Figure 1. The cycle is defined by these transitions that are
represented in Figure 2. VCSs are used in aircraft for cooling
the cabin and the motors down. For control purposes, it is
necessary to accurately measure the mass flow through the
compressor with a small response time, lest it could lead to
control instability [10] and surge phenomenon [11]. This mass
flow can be expressed as the ratio of the power supplied to
the fluid by the enthalpy difference between the outlet and the



inlet of the compressor [2] :
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where h(P,T) is the enthalpy of the refrigerant fluid in vapor
phase at temperature 7' and pressure P. q,, is the proportion
of dissipated energy and cannot be measured.
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Fig. 2: Vapor Cycle on Pressure-Enthalpy diagram [9]

On the ML-based virtual sensor: There are two standard
physical mass flow sensors, the Coriolis [12] and Venturi [13]
flowmeter. The first one is highly accurate but not robust
to vibrations and hence not adapted to aircraft systems. The
second one requires adding a bottleneck that induces a loss of
charge and deteriorates the efficiency of the system. This leads
to the need for a virtual sensor based on other embeddable
sensors. Unfortunately, there are no obvious physical equations
that give the flow in function of these measured quantities with
sufficient accuracy.

In the laboratory of LIEBHERR Aerospace in Toulouse,
experiments were done on an industrial VCS. Several physicals
quantities were recorded at a high frequency during 30 hours,
including the mass flow measured with a Coriolis flowmeter.
Indeed, even though the Coriolis flowmeter is not embeddable
in aircraft, it is an excellent sensor for measuring the mass flow
during the experiment in the laboratory. Those measures pave
the way to adopt a supervised machine learning framework to
predict the mass flow from other physical quantities (defined
in the Nomenclature and exposed in Figure 3). Similar exper-
iments were done in [2] without the torque measure C' and in
[3] with additional data on the Condenser and the Expansion
Valve.

State-of-the-art and main contributions: In [2] an evaluation
of statistical models based on Polynomial Regression (PR)
is conducted. A CNN based on 2d convolutional networks
(usually used to analyze images) is tested in [3] and it is
shown to outperform the PR models. The issue with the
existing CNN approach is that no guarantee of physical
properties are analyzed. In this article, we propose a different
CNN architecture to guarantee time-translational invariance,
insensitive to the order of input features, and causal properties
for real-time estimation. The architecture is adapted from [6]
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Fig. 3: Scaled measures

for unsupervised learning of time series, with applications to
classification and regression problems.

By expanding the scope of applications, one finds in the
literature several models for designing virtual sensors [4]-[7],
[14]. In [5], a CNN with recurrent skip connections is trained
on simulated data, fine-tuned on real data to estimate physical
quantities in electrical induction motors, and evaluated with
electrical engineering metrics.

The main contribution of this article is to show that the
proposed CNN significantly outperforms the PR model on the
novel LIEBHERR dataset. To compare the difference between
these models, we further propose a semi-automatic evaluation
method to compute similar engineering metrics as in [5]. The
novelty is that we work on a real dataset so it is needed to
introduce a segmentation step of time series based on peak
detection.

The rest of the article is organized as follows. In Section II,
PR and the proposed CNN models are detailed. In Section
IlI, a two-fold evaluation method is explained, integrating
machine learning metrics and engineering ones. The engineer’s
metrics are computed after a segmentation step, that enables
to compute a multitude of metrics and to perform statistics
analysis. Finally, the results are presented and discussed in
Section IV.

II. ML MODELS

We aim to develop a model 8capable of predicting real-
time mass flow m based on specific measurements. Although
equation (x) relates these variables, the quantity oy, is
absent from our measurements. To circumvent this lack of
physical relationship, we will rely on experimental data
to construct two statistical models: Polynomial Regression
(PR) and Convolutional Neural Networks (CNN). Each
recording consists of a variable-length, multivariate time
series containing seven measures, as represented in Figure 3.

Polynomial Regression: Statistical models are used in ther-
modynamics to determine the state function of a system at
equilibrium from experiments. These models are called maps,
and a standard way to create them is Polynomial Regression
(PR) [15]. Our baseline approach is PR as in [2], [3], [15]



and hence the model is static. It involves fitting a second-
order polynomial function without cross-terms to the data
points obtained from experimental recordings. This function
was then used to predict the mass flow on the test recordings
for evaluation. It is important to note that the prediction at
time ¢ depends only on the measures at time {.

6 6
i=1 i=1

where ﬁ@t is the estimated mass flow at time ¢,

¢ = (Ctywe, Pty Tint, Pourts Tour,e) 18 the vector of input
measures at time t, &« € R and 3,7 € R® are the model
parameters.

In [2], the authors propose to use the equation (%) by es-
timating the missing value ¢, with a polynomial of other
measures and found more precise and consistent results. Com-
bining physical and statistical approach could be interesting,
but this is not in the scope of this paper.

Convolutional Neural Network [16], [17]: A Convolutional
Neural Network (CNN) is a series of convolution layers with
adjustable coefficients, designed to minimize a loss function
during the training process. We shall first specify the con-
volutional layer that we use in this paper and then analyze
its physical properties. We then specify the proposed CNN
architecture and discuss its advantage with respect to the
standard Polynomial Regression model.

Let z € R™T with 2! the i-th feature at time ¢ € {1, ..., T}.
The causal one-dimensional convolution (Conv1lD) is defined

as
E § J»t
It—sws )

1<i<I s=0

yf = ConviD(x

where yi is the j—th output channel at time ¢, I € N is
the number of input channels, £ € N is the kernel size,
w? € RI** the kernels of the j—th output channel. This
convolution is performed with zero padding, meaning that
z; = 0 for ¢ < 0. To compute the output at time ¢ the model
uses the measurements (T;_p41, t—g+2, ..., £¢) Which are all
anterior to ¢, this is a way to model causality [18].

In [3], the CNN is based on two-dimensional convolution
(Conv2D) defined as
d—1k—1 )
1—|d/2 -H 7,
= Com2D(@) =Y @ [ap el
i=0 s=0

where w’/ € R**4 are the kernels of j—th output channel of
size k x d. There is one more exponent I’ on y because the
convolution is also performed on the dimension of features.
In this paper, we propose a one-dimensional causal CNN
with skip connections [19]. The complete architecture is
detailed in Figure 4 and is similar to the one used in [6]. A
skip connection creates a shortcut from an early layer to a later
one, linking the input of a convolutional block straight to its
output [19]. Since various layers of a neural network capture
distinct feature “levels,” skip connections assist in preventing a
drop in performance as more layers are added [19]. The CNN

is trained with the MSE Loss. To accelerate the training, we
also apply the weight normalization [20] to re-parameterize
the weights of each convolutional layer.

Physical properties in CNN

o Causality: Aiming to perform real-time estimation, the
CNN has to be causal [18]. Thus, the model will only
use present and past measures.

o Equivariance to time-translation: As demonstrated in [21],
CNNs are equivariant to translation in the dimension of
convolution. Time-translation equivariance is an impor-
tant property of physical systems, since the physical law
does not evolve through time.

« Insensitivity to input-feature order: The order of features
in z is arbitrary and has no physical meaning.

In causal Conv1D, the j—th output channel at time ¢ is

J 7yt
Yi E E mt sWs

1<i<I s=0

where I is the number of input channels. If the input
channel of = is permuted (by 7) to

~i (i)
xt Ty 9

then one can find an equivalent CNN with kernel @} =
w?™? (o have the same output y;. This property does

not hold in general if one uses the Conv2D layer.
Advantage of CNN over PR:

o Capturing Local Patterns [22]: CNNs are designed to
capture local patterns and features within the data. In
the context of time series, local patterns can represent
short-term temporal dependencies, which are crucial for
understanding the dynamics of the time series. PR, on the
other hand, cannot effectively capture these local patterns
as it does not use past measures for predictions.

o Automatic Feature Extraction [22]: During the training
step, CNNs automatically learn the relevant features from
time series. PR uses directly the measures from sensors,
which might not capture all the relevant information in
the time series.

o Handling Non-Linear Relationships [22]: Time series
data often contains complex non-linear relationships
between the input and output variables. CNNs with their
multiple layers and non-linear activation functions can
better model these non-linear relationships compared
to the PR, which is inherently limited to polynomial
relationships. The activation functions of our model are
LeakyReLU [23] :

T ifx>0

vz €R LeakyReLU( )= { 0.1z elsewhere

PR has the advantage of being simple to train and easy to
understand, as it only involves 13 parameters. On the other
hand, CNN are considerably more complex, requiring the
tuning of 2, 700 parameters and involving more sophisticated
computational processes.
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III. EVALUATION

EP Metrics: To evaluate the performance of the ML meth-
ods, a dataset of systems measures and their corresponding
mass flow was split into training (64%), validation (18%),
and testing (18%) sets. The training set was used to train
the ML models, the model which had the smallest validation
loss was selected, and the testing set was used to evaluate
their performance. The performance of the ML models was
evaluated using the MSE and engineering performance (EP)
metrics that are standard in engineering fields and well-suited
for analyzing dynamical behavior [5]. The EP metrics are
defined as follows:

o Atggoy, At1on, [5]: 80% (resp.10%) response time
(ts09%,t10%) 1s the time value at which the response signal
has covered 80% (resp.10%) of the ramp amplitude.
Atgge, (resp. Atigy) is the absolute difference between

the true and predicted tgqy, (resp. t1g9)

o Atpeqr [5]: Peak delay is the absolute delay between the
predicted signal and the target one.

o At for a signal containing a ramp followed by a static
state, t.n 1S the time when the signal has converged to
the final valued with 3% of tolerance. At,,,, is the delay
between the predicted and true t.,,.

o By (resp. Ey ): Absolute (resp. relative) error on static
states.

In order to compute a lot of characteristic times and static
errors (EP metrics), a first step of segmentation was developed
to identify the ramps (Atggy, At1ge, and Ate,p), the over-
shoots and undershoots (At,.q) and the static states (E,,; and
E.»s). Eventually, we have, for each of those metrics, several
instances. To represent their distributions, we consider their
90% quantile.
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Fig. 5: Templates of patterns

The segmentation process: It consists of four steps. The
patterns of interest are presented in Figure 5. The first step
consists in selecting windows in the dataset that will con-
stitute a set of candidates for being one of the patterns.
For this purpose, a Butterworth [24] pass band filter of
order 6 is applied to the flow with system-specific cutting
frequencies. The frequency peaks are detected via the scipy
function ’find_peaks’ as shown in Figure 6. The candidates
are symmetric windows around the detected peaks. Then, a
Dynamic Time Warping (DTW) k-means clustering [25] with
6 clusters is performed on the normalized signals (Figure 7 in
Appendix). DTW, while not a true distance measure, serves
as an effective metric for clustering patterns. Specifically, two
signals exhibiting identical patterns, albeit with a mere time
delay, will manifest a small DTW value. This is evident in
Cluster 2 of Figure 7, where even if overshoots happen at
varying times, they remain closely aligned in terms of DTW.
The identification of patterns is as follows:

e Cluster 1: Undershoots

o Cluster 2: Overshoots

¢ Cluster 3: Descending ramps
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Fig. 6: First selection of candidates

e Cluster 4: Rising ramps

Cluster 5 and 6 correspond to other phenomenons like
sinusoids. At this step, there are in clusters 1-4 some bad
candidates. Aiming to remove those, we take the intersection
with a DTW ball centered on the centers. A last manual
selection is applied. Finally, we obtain satisfying numbers of
each pattern (table II).

train  test
Rising ramps 30 8
Descending ramps 35 5
Overshoots 79 12
Undershoots 22 8

TABLE I: Number of patterns detected in each set

IV. RESULTS

Our study at LIEBHERR presents its results in a normalized
manner due to the sensitivity and protection of the VCS data.
Even so, the obtained results can provide a clear comparison
between the performance of PR and CNN models.

As tabulated in Table III, the Convolutional Neural Network
(CNN) model demonstrates superiority over the PR model
both in terms of Machine Learning (ML) metric (MSE)
and Engineering Performance (EP) metrics. The CNN model
particularly excels in predicting static errors and At,,,, (con-
vergence time).

As per the results, the CNN model outperforms the PR
model by reducing the MSE from 0.18 to 0.06, the absolute
error (E,,s) from 0.73 to 0.28, and the relative error (E,;) from
28% to 14%. Furthermore, it provides a more accurate predic-
tion of At.,, and Atgyy,. PR has better results on Atqgy, and
less good results on At,.qk, however the differences are not
significant. Thus, a better dynamic behavior is captured by the
CNN model. Examples of predictions on patterns of interest
can be found in Figure 8 in Appendix.

PR CNN
train test train test
MSE 0.2 0.18  0.063 0.06
Eaps 0.53 0.73 0.19 0.28
Eel 21% 28% 11% 14%
Atgoy 65 20 33 17
Atigy 92 3 17 3.6
Ateony 97 44 74 14
Atpeak 9 7.1 11 7

TABLE II: Comparaison on MSE and 90% quantile

V. CONCLUSION

The study demonstrates that ML algorithms, specifically
CNNE, can effectively function as virtual sensors in estimating
physical quantities such as mass flow in aircraft compressor
systems. Compared to PR, the causal one-dimensional CNN
model, with the ability to capture dynamic behavior and non-
linear relationships, outperforms in terms of MSE and EP
metrics. The computation of multiple EP metrics on a large
real dataset was performed via a semi-automatic segmentation
method proposed in this article. The contribution is, on one
hand, the design of a CNN-based model for estimating the
flow in an industrial dataset from LIEBHERR Aerospace. On
the other hand, the engineering evaluation is performed on
several instances of ramps, overshoots, and undershoots.

Future work will focus on improving these models by using
physical knowledge. For the virtual sensor of mass flow,
the author of [2] proposed to use an incomplete equation
(%). There exists multiple other methods to integrate physical
knowledge into ML Models [26].
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APPENDIX
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Fig. 7: Clusters with the DTW K-means algorithm. The centers are represented in red.
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Fig. 8: On (a) Atjeaks is computed from an overshoot. In (b) At is computed from a rising ramp with the two predictions.
On (c) and (d) there is the same ramp as (b) but the three signals are scaled in order to have the same initial and final value.
In this manner it is easier to compute Atiqy and Atggy.



