OPTIMAL ERROR BOUNDS FOR THE TWO POINT FLUX APPROXIMATION FINITE VOLUME SCHEME - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2024

OPTIMAL ERROR BOUNDS FOR THE TWO POINT FLUX APPROXIMATION FINITE VOLUME SCHEME

Résumé

We consider a finite volume scheme with two-point flux approximation (TPFA) to approximate a Laplace problem when the solution exhibits no more regularity than belonging to $H^1_0(\Omega)$. We establish in this case some error bounds for both the solution and the approximation of the gradient component orthogonal to the mesh faces. This estimate is optimal, in the sense that the approximation error has the same order as that of the sum of the interpolation error and a conformity error. A numerical example illustrates the error estimate in the context of a solution with minimal regularity. This result is extended to evolution problems discretized via the implicit Euler scheme in an appendix.
Fichier principal
Vignette du fichier
ester_fv.pdf (687.84 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04586601 , version 1 (27-05-2024)

Licence

Identifiants

Citer

Robert Eymard, Thierry Gallouët, Raphaele Herbin. OPTIMAL ERROR BOUNDS FOR THE TWO POINT FLUX APPROXIMATION FINITE VOLUME SCHEME. 2024. ⟨hal-04586601⟩
113 Consultations
60 Téléchargements

Altmetric

Partager

More