Towards More Robust NLP System Evaluation: Handling Missing Scores in Benchmarks - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2023

Towards More Robust NLP System Evaluation: Handling Missing Scores in Benchmarks

Résumé

The evaluation of natural language processing (NLP) systems is crucial for advancing the field, but current benchmarking approaches often assume that all systems have scores available for all tasks, which is not always practical. In reality, several factors such as the cost of running baseline, private systems, computational limitations, or incomplete data may prevent some systems from being evaluated on entire tasks. This paper formalize an existing problem in NLP research: benchmarking when some systems scores are missing on the task, and proposes a novel approach to address it. Our method utilizes a compatible partial ranking approach to impute missing data, which is then aggregated using the Borda count method. It includes two refinements designed specifically for scenarios where either task-level or instance-level scores are available. We also introduce an extended benchmark, which contains over 131 million scores, an order of magnitude larger than existing benchmarks. We validate our methods and demonstrate their effectiveness in addressing the challenge of missing system evaluation on an entire task. This work highlights the need for more comprehensive benchmarking approaches that can handle real-world scenarios where not all systems are evaluated on the entire task.
Fichier principal
Vignette du fichier
2305.10284v1.pdf (4.06 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04575102 , version 1 (14-05-2024)

Identifiants

  • HAL Id : hal-04575102 , version 1

Citer

Pierre Colombo, Anas Himmi, Ekhine Irurozki, Nathan Noiry, Stéphan Clémençon. Towards More Robust NLP System Evaluation: Handling Missing Scores in Benchmarks. 2024. ⟨hal-04575102⟩
220 Consultations
41 Téléchargements

Partager

More