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Abstract

The evaluation of natural language processing (NLP) systems is crucial for advanc-
ing the field, but current benchmarking approaches often assume that all systems
have scores available for all tasks, which is not always practical. In reality, several
factors such as the cost of running baseline, private systems, computational lim-
itations, or incomplete data may prevent some systems from being evaluated on
entire tasks. This paper formalize an existing problem in NLP research: bench-
marking when some systems scores are missing on the task, and proposes a novel
approach to address it. Our method utilizes a compatible partial ranking approach
to impute missing data, which is then aggregated using the Borda count method. It
includes two refinements designed specifically for scenarios where either task-level
or instance-level scores are available. We also introduce an extended benchmark,
which contains over 131 million scores, an order of magnitude larger than existing
benchmarks. We validate our methods and demonstrate their effectiveness in ad-
dressing the challenge of missing system evaluation on an entire task. This work
highlights the need for more comprehensive benchmarking approaches that can
handle real-world scenarios where not all systems are evaluated on the entire task.

1 Introduction

Benchmarking and system evaluation are critical processes for assessing the performance of AI
systems, providing a standardized means of comparing various models and techniques while keeping
track of technological advancements [112, 44, 102]. However, evaluating general-purpose systems,
such as foundation models used for generative tasks [74? , 91, 17, 103], presents unique challenges. A
single task, metric, or dataset may not be sufficient to effectively gauge their capabilities [62, 90, 113].
Therefore, it is crucial to develop tools that can benchmark these systems on a multitude of tasks [5],
enabling a comprehensive assessment of their overall performance [97].

In recent years, the field of natural language processing (NLP) has made significant strides, with
frequent emergence of new models [74, 71, 17, 91, 103, 80, 50] and techniques [16, 65]. To
evaluate the performance of these systems across various tasks, datasets, and metrics [33] have

∗main authors

ar
X

iv
:2

30
5.

10
28

4v
1 

 [
cs

.C
L

] 
 1

7 
M

ay
 2

02
3



been created. However, with the increasing complexity of these benchmarks, missing scores has
become a significant challenge. Missing data can arise from a variety of sources, such as benchmarks
that are too large or time-consuming to run (e.g., BigBench has recently introduce MiniBench for
these reasons [119]), high costs associated with reproducing experiments (e.g., see Table 3 in [6]),
incomplete datasets (see Table 5 in [109]), data collection errors, data cleaning procedures, data
privacy concerns (particularly in-house datasets [61]), and specialized expertise required to process
niche datasets [95]. In recent work, two main approaches have been followed to deal with missing
scores, which are discarding data [98] or ignoring certain tasks (see Table 10 in [79] and Table 5 in
[84]) or evaluations. However, these approaches are unsatisfactory as they can lead to biased and
unreliable evaluations.

In this work, we aim to address the challenge of benchmarking NLP systems when one or several
systems cannot be evaluated on a specific task. We propose the development of effective methods for
aggregating metrics that can handle missing data and enable a comprehensive assessment of system
performance. Our approach will ensure the reliability and validity of NLP system evaluations and
contribute to the creation of benchmarks that can be used to compare and evaluate NLP systems
effectively. Specifically, our contributions are listed below.

1. Introducing a new problem with a direct impact on NLP research: benchmarking when there
are missing system evaluations for an entire task, which has practical implications [98, 79, 84, 61, 95].
2. A novel method for benchmarking NLP systems with missing system scores. We present a
novel method that effectively tackles the issue of missing system evaluations for entire tasks. Our
includes a novel combinatorial approach for inputting missing data in partial rankings. It allows
using standard rank aggregation algorithms such as Borda and offers two refinements tailored to the
availability of either task-level or instance-level scores of the systems across different tasks.
3. An extended benchmark for comprehensive and accurate evaluation of NLP systems: pre-
vious works on score aggregation relied on a benchmark of 250K scores [31, 97], and did not release
system’s input, output, and ground truth texts. In our work, we collected their scores and extended
the benchmark by adding over 131M scores.
4. Extensive validation of benchmarking methods: Results show that our method effectively
handles missing scores and is more robust than existing methods, yielding different results. These
highlight the importance of considering missing system scores in evaluation.

In order to promote the adoption of our method, we will publicly share the code and data at https:
//github.com/AnasHimmi/MissingDataRanking, enabling researchers to apply our approach
and assess NLP system performance more reliably.

1.1 General Considerations

Comparing systems with benchmarks. Benchmarking aims to determine the ranking of systems
based on their scores to identify the best-performing systems. In this process, each system is evaluated
on individual tests within a larger set and assigned a score according to a specific metric. Depending on
the available information, two approaches are typically employed. When only task-level information
is available (i.e., the system scores on each task), a task-level aggregation is utilized to obtain the
final ranking. On the other hand, when instance-level information is available, i.e., the system
scores on each instance of each task test set, an instance-level aggregation method is used to obtain
the final system ranking. Mean aggregation has commonly been adopted to consolidate information
at both the instance and task levels.

Benchmarking in the presence of missing data. As benchmarks and models continue to grow
in size and complexity, the occurrence of missing system performance of entire task becomes
increasingly common. This is particularly true in situations where one or more systems cannot be
evaluated on a specific task due to factors such as the high cost of running the model or the extensive
computational requirements of the benchmarks [57, 56, 58]. An illustration of the general framework
(i.e., with instance and system level) for benchmarking can be found in Fig. 1.

1.2 Problem Formulation

The notation used in this discussion will closely follow that of a previously mentioned [31]. In essence,
we are dealing with a scenario where N systems are being compared based on their performance
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Figure 1: Framework for benchmarking NLP systems with two information granularity:
instance-level (red above) and task-level (purple below). The final goal of benchmarking is to
produce a ranking (green bottom). The instance-level aggregation allows for the derivation of task-
level information, which is used to synthesize system performance via the final ranking (in green). X
indicates the presence of missing values in the benchmark.

on T different tasks. Each task t ∈ {1, . . . , T} has a specific metric mt associated with it and has
been evaluated on a k of test instances with k ∈ {1, . . . ,Kt}, where Kt is the test size of task t. The
score of each system on each instance of each test set is represented by the real number sn,t,k ∈ R.
The final goal of benchmarking is to output a ranking of each systems according to some objective
criterion. We denote by SN the symmetric group on N elements. With this objective in mind
aggregating instance and task level information is equivalent to computing a permutation σ ∈ SN

corresponding to the final ranking of the N systems. In this formalism, system i is the σi-th best
system according to the considered aggregation. Equivalently, ordering π = (π1 � π2 � . . . � πN )
denotes that πi is better than system πi+1 for all i. Let us first defined the different granularity of
benchmarking depending wether we have access to individual instance scores.
Aggregating with Missing Task Level Information. Given a set of scores (sn,t, 1 ≤ n ≤ Nt, 1 ≤
t ≤ T ) where Nt is the number of systems for which we have access to the score on task t, find a
proper aggregation procedure.

Thus the problem of task level information aggregation boils down to finding fT :

fT : SN1 × · · · × SNT︸ ︷︷ ︸
T times

−→ SN . (1)

where SNt = (sn,t, 1 ≤ n ≤ Nt) is the set of score achieved by each system evaluated on the task t.
Note that only Nt systems are evaluate on task t.

In many cases, we not only have access to task-level performance but also individual instance-level
scores. As a result, the challenge lies in effectively aggregating information at the instance level.
Aggregating Missing Instance Level Information. Given a set of scores (sn,t,k, 1 ≤ n ≤ Nt, 1 ≤
t ≤ T, 1 ≤ k ≤ Kt) where similarly as previously Nt is the number of systems for which we have
access to the score on task t, find a proper aggregation procedure.
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Thus the problem of instance level information aggregation boils down to finding f I :

f I : S1N1
× · · · × SK1

N1
× · · · × SkNt × · · · × S

1
NT × · · · S

KT
NT︸ ︷︷ ︸

T
∑
t
Kt times

−→ SN . (2)

where SkNi = (sn,t,k, 1 ≤ n ≤ Ni) is the set of score achieved by each system evaluated on the task
t for the specific instance k.
Remark 1. In the context of complete ranking, which is also a classical setting for benchmarking
NLP systems and has been addressed in [31], we have Nt = N for all t ∈ [1, T ].

1.3 Handling Complete Scores in NLP System Evaluation

The literature relies on two main techniques for aggregating score information to benchmark machine
learning systems: mean aggregation and ranking based aggregation.

Mean aggregation (σµ) is the default choice for practitioners. At the task level σµ is defined

as σµ = argsort

(
argsort

[
1
T

∑
1≤t≤T

sn,t for 1 ≤ n ≤ N

])
and at the instance level σµ =

argsort

(
argsort

[
1
T

∑
1≤t≤T

1
Kt

∑
1≤t≤Kt

sn,t,k for 1 ≤ n ≤ N

])
, where argsort(u) is the permu-

tation that sorts the items in u. However, this approach has its limitations, particularly when evaluating
tasks of different natures or using evaluation scores that are not on the same scale. Indeed in NLP,
metric can have different ranges (or even be unbounded) and systems are evaluated based on diverse
criteria such as quality, speed, or number of parameters. In such cases, conventional rescaling or
normalization techniques may not sufficiently capture the inherent difficulty of each task.

Ranking Based Aggregation To address the challenges mentioned, researchers have proposed
ranking-based aggregations [97, 31]. These methods aggregate rankings instead of scores. In [31],
the authors tackle the problem of generating a ranking by aggregating rankings, utilizing the Borda
count method (see Ssec. D.1 for more details on Borda Count) known for its computational properties
[10, 47, 3]. Extending the Borda count method is not a straightforward task either. In the next section,
we will present our aggregation procedure that can handle missing system score on a whole task.

2 Ranking with missing system evaluation

In this section, we will outline our methodology for ranking multiple systems in multi-task bench-
marks, even if some systems have not been evaluated on one or more tasks. We use the ranking and
ordering notation interchangeably.

2.1 Partial Rankings

Mapping Scores to Partial Rankings To address the challenge of benchmarking with missing
system evaluations, we propose a ranking-based approach that focuses on aggregating rankings rather
than directly combining scores. Suppose we have a specific task t with a task-level score denoted as
SNt , or in the case of instance-level information, a task t and instance k with score SkNt . In scenarios
where there are missing evaluations at the task-level or instance-level, a partial ranking of systems is
generated. A partial ordering represents an incomplete ranking that includes only a subset of items
from a larger set. We denote the partial ordering of systems as πNt = (π1 � π2 � . . . � πNt) for the
task-level scenario, and as πNt,k = (πk1 � πk2 � . . . � πkNt) for the instance-level scenario. Here, πi
represents the i-th best system according to the set SNt in the task-level scenario, while πki represents
the i-th best system according to πk in the instance-level scenario.

Compatible Permutation When working with partial rankings, it is necessary to construct a complete
ranking that respects the order of the evaluated systems, i.e., a linear extension of the partial ranking.
This is accomplished by creating a compatible permutation [59], which is a permutation of all systems
consistent with the partial ranking. To construct a compatible permutation, we begin with the partial
ranking of the evaluated systems and extend it to include the missing systems while maintaining the
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order of the evaluated systems. For example, let’s consider a partial ordering π1 � π2 based on the
evaluation of only these two systems. If there is an additional system that has not been evaluated,
we can construct three compatible permutations: π3 � π1 � π2, π1 � π3 � π2 and π1 � π2 � π3.
These permutations ensure that the ordering of the evaluated systems is preserved while incorporating
the missing system into the complete ranking.

Why using a combinatorial approach? Inputting missing data using compatible permutations
enables us to leverage the widely used Borda method for aggregation, inheriting its theoretical
and practical advantages. Unlike classical methods like harmonic Fourier analysis [72, 73, 25] or
multi-resolution analysis [116], our approach works, providing a distinct combinatorial solution for
inputting missing data in partial rankings.

2.2 Our Ranking Procedures: from scores to system ranking

This section describes our algorithms for benchmarking when there are missing task evaluations for
some systems. In summary, our method can be described in two steps:

Our ranking procedure in a nutshell

1. Matrix Representation of the rankings (Sssec. 2.2.1). To harness the full potential of the
available information in partial rankings, we efficiently generate all compatible permutations
from the given partial rankings.
2. Final System Ranking from Matrix Representation. To obtain the final ranking of the
systems, we propose a one-level (σl) approach (see Sssec. 2.2.2) for both task-level and
instance-level information and a two-level aggregation approach (σ2l) for instance-level
information (see Sssec. 2.2.3).

2.2.1 Matrix representation of the rankings

Intuition. The first step in our algorithm is to summarize the available information in all tasks and to
input the missing information in a consistent manner. To do this, we use a matrix representation Mπ

for each partial ranking π. This matrix decomposes the ranking information in pairwise variables, i.e.,
for every pair of systems i, j there is a variable representing the probability that system i outperforms
system j.

Why using matrix representation? Using pairwise information has many advantages in ranking
problems with missing data since it allows decomposing the total ranking information in N(N −1)/2
different variables. This decomposition has been used in statistical problems on partial and complete
rankings [53, 82, 83, 115], for computing distances among partial rankings [49], clustering [2] and
classification [66] among others. However, these problems consider specific forms of missing data
such as top-k rankings [49] or bucket orderings [1]. Our approach differs from the aforementioned
literature in the fact that we input the missing data in a consistent manner in order to be able to deal
with arbitrary missing data.

Efficiently building Mπ . Let us consider a partial ranking π and let Mπ ∈ [0, 1]N×N be its matrix
representation. Matrix Mπ

ij denotes the proportion of complete rankings that are compatible with
π and satisfy the condition i � j, where i and j are distinct systems in the task. Formally, we can
distinguish three cases:

1. if system i is directly compared to system j in π. In this case, we set Mπ
i,j = 0 if i �

j else Mπ
i,j = 1

2. if no information is provided for either system i or system j in π, meaning that both systems are
unobserved in the partial ranking. In this case, Mπ

i,j = 0.5, which is the natural choice when no
information is available.

3. if we lack direct information about the comparison between system i and j in π (one system was
evaluated and the was not), we represent this situation by setting the corresponding matrix entry to
the proportion of compatible permutations ranking system i higher than system j among the total
number of compatible permutations (see Ap. D).
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A naive algorithm for generating the matrix Mπ from π would have factorial complexity and it
is thus exorbitant in practice for relatively small number of systems, say N > 10. One of the
contribution of our solution is to reduce the complexity to O(n3) by efficiently computing pi,j .
The closed-form expressions for pi,j as well as the proof for uniformity can be found in Ap. D.

2.2.2 Final System Ranking from Matrix Representation: a one level approach (σl)

Intuition. At this stage, we have demonstrated the construction of a matrix Mπ for a given partial
ranking. However, in benchmarking scenarios, systems are typically evaluated on multiple tasks (in
the case of task-level evaluation) or on multiple instances and tasks (in the case of instance-level
evaluation). Consequently, it becomes necessary to combine multiple partial rankings. In this section,
we will describe our approach for performing the one-level aggregation to address this requirement.

Combining Multiple Partial Rankings for Benchmarking. To combine the different matrices into
a single matrix M we sum over all the tasks (in the case of task-level information) or instances
and tasks (in the case of instance-level information). Formally, this is achieved by performing the
following operation to obtain the combined matrix M I =

∑
t∈[1,T ]

∑
k∈[1,Kt]

Mπrt,k , where Mπrt,k is

represent the partial ranking induced on task t and instance k. Similarly, for the task level we define
MT =

∑
t∈[1,T ]

Mπrt where Mπrt represents the partial ranking induced on task t.

Obtaining the final system ranking In the final step, our goal is to obtain the final system ranking
σl based on the matrix M I or MT . To achieve this, we use the Borda Count method, which involves
computing the column-wise sum of the matrix and return the permutation that sorts the scores in
increasing order. This step aligns with the approach proposed in [31]. Formally:

σl = argsort

(
argsort

[∑
i

Mi,0, · · · ,
∑
i

Mi,N

])
. (3)

Here, M represents the matrix MT for task-level information, and M I for instance-level information.

2.2.3 Final System Ranking from Matrix Representation: a two level approach (σ2l)

Intuition. In the case of instance-level information, we also present a two-step procedure that draws
inspiration from the widely adopted two-step mean aggregation approach.

Procedure. In the first step, we apply the task-level aggregation approach to generate individual
rankings for each task t, resulting in T different permutations. In the second step, we aggregate these
multiple rankings using the Borda aggregation method. Formally σ2l can be computed as:

1. For each task t, compute M t =
∑

k∈[1,Kt]
Mπrt,k

2. For each task t, compute σ2l,t = argsort

(
argsort

[∑
i

M t
i,0, · · · ,

∑
i

M t
i,N

])
.

3. Compute the Borda count aggregation σ2l of [σ2l,1, · · · , σ2l,t, · · · , σ2l,T ].

2.3 Confidence Intervals for σl

When evaluating systems with missing data, it is crucial to measure the uncertainty of partial rankings.
In the previous section, we discussed combining partial rankings into a complete ranking. In this
section, we analyze the confidence of our data regarding pairwise comparisons of system performance.

Under any ranking model such as as Mallows Model [52] or Plackett-Luce [100], Mπ
ij are random

variables of known expected value. What we compute in the previous section is the empirical value of
it, M̂π

ij that approximates the true value Mπ
ij . Here, we want to know how close these two quantities

are. Formally, we are looking for a confidence interval of level δ, that is the value for cij around M̂π
ij

that contains Mπ
ij with high probability, P (|M̂π

ij −Mπ
ij | ≥ cij) ≤ 1− δ. Noting that 0 ≤Mπ

ij ≤ 1,

6



(a) GLUE (b) SGLUE (c) XTREME (d) GEM

Figure 2: Task-Level Robustness Experiment. We compare the robustness
of our method σl with the mean aggregation method σµ by measuring the
Kendall τ correlation coefficient between their respective rankings after
removing a proportion η of scores and by considering the whole scores.
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we can use the Hoeffding inequality [63] to compute the value of the confidence interval:

cij =

√
− log δ

2zij
, (4)

where zij is the number of times the systems have been compared.

Intuition: to determine the significance of the difference in performance between system i and j,
we can compare Mij to 0.5. Thus, i performs better than j iff Mπ

ij > .5. If the difference between
Mij and 0.5 is small, the performance difference between the two systems may not be statistically
significant, indicating that we cannot determine which system performs better than the other.

The confidence interval developed above says that the true parameter Mπ
ij is included in the interval

[M̂π
ij − cij , M̂π

ij + cij ] with high probability. It follows that if 0.5 is not in this interval then we can
say that one of systems is better than the other with high probability. Similar approaches have been
proposed to find complete rankings and best ranked systems with high probability [18, 124].

2.4 Baseline methods

To date, there is no established method for benchmarking NLP systems in the presence of missing
data. To compare our proposed algorithm to existing methods, we consider a baseline approach that
ignores missing data and relies on mean aggregation. This approach has been used in previous studies
[98, 79, 84, 61, 95], and we will refer to it as σµ in our experiments.

3 Synthetic Experiments

3.1 Data Generation

The analysis of a toy experiment involves synthetic scores generated from N = 20 systems, T = 20
tasks, and K = 20 instances. Each system’s performance is modeled by a Gumbel random variable
Gn with a center at φ × n and a scale of β = 1, where φ is a dispersion parameter between 0 and
1. The scores of each system, s (n, t, k), are independent and identically distributed samples of Gn
centered at φ× n with a scale of β = 1. Furthermore, the scores from different systems are sampled
independently. Since the difference between Gn+1 and Gn follows a logistic distribution with a
mean of φ and a scale of 1, the probability that system n+ 1 performs better than system n is at least
0.5, i.e., P (Gn+1 −Gn > 0) ≥ 0.5. Thus, the ranking of systems for all k and t is a realization
of the true ranking [1, · · · , N ], with a noise term controlled by the dispersion parameter φ. The
extreme scenarios are φ = 0 and φ = 1, where φ = 0 means that all scores s (n, t, k) have the same
distribution, and φ = 1 results in a strong consensus and a clear system ranking. Unless specifically
mentioned, each experiment is repeated 100 times for every data point.

3.2 Robustness To Scaling

In order to conduct a more detailed comparison of the ranking, we introduce a corruption in the
scores of a specific task by rescaling them with a positive factor of λ. Although this corruption
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(a) Dial. PC (b) Flickr (c) COCO (d) TAC09 (e) SummEval

(f) WebNLG-en (g) WebNLG-ru (h) WMT20 (pl) (i) WMT21 (de) (j) WMT21 (ru)

Figure 5: Instance-Level Robustness Experiment. We evaluate the robustness of our proposed
aggregation methods, namely σ2l, σl, and the mean aggregation method σµ, by randomly removing a
proportion η of all instances on a specific task for a specific system.

does not have any impact on our ranking process (since the ranking induced by a task-instance pair
remains unchanged), it progressively disrupts the mean aggregation procedure as the value of λ
increases (see Fig. 3 for detailed results). This experiment further validates the use of rankings in
NLP benchmarking, as these metrics involve different natures of measurements (e.g., BLEU score vs.
number of parameters or speed) and can have bounded or unbounded scales.

3.3 Pairwise Confidence Analysis

To determine the number of system comparisons required to
achieve a desired confidence level of δ, we use Eq. 4. Fig. 4
presents the results for two confidence levels (δ). The graph illus-
trates the number of system pairs for which 0.5 is not within the
confidence interval, plotted against the number of comparisons
for different values of m and φ. As expected, when the rankings
are more concentrated (i.e., when φ is closer to 1), fewer system
comparisons are needed to achieve a high number of valid system
comparisons. In real-world benchmarks, test sets usually contain
more than 500 pairs.
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Figure 4: Confidence analysis.

4 Empirical Experiments

In this section, we benchmark our methods on real rankings. We introduce a dataset with over 100
million scores, surpassing previous datasets by several orders of magnitude (see Ssec. 4.1 and Ap. B).

4.1 A Comprehensive Collection of NLP System Scores

Our dataset builds upon the one used in [31] and includes two types of datasets: those with task-level
information and those with instance-level information.

Datasets with Task Level Information Our datasets are based on GLUE [126], SGLUE [125], and
XTREME [64], which include tasks of varying natures such as accuracy, F1-score, and mean square
errors. In addition, we collected data from the GEM Benchmark [56], which was an ideal use case
for our methods as it encompasses missing data by design (as shown in Table 3 of [56]) and includes
evaluations of various natures such as lexical similarity, semantic equivalence, faithfulness evaluation,
diversity, and system characterization (i.e., size of the vocabulary).

Datasets with Instance Level Information We did not use the data from [4] for the datasets with
instance-level information because they did not provide the sentence and reference test required to
add more evaluation metrics or more systems. Therefore, we collected all the data from scratch
and extended the dataset in two ways. Firstly, we collected data from five distinct tasks - dialogue
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[85], image description [133], summary evaluation [40, 92, 13, 48], data-to-text [55, 138], and
translation [106]. For the translation part, we added datasets from WMT15 [123], WMT16 [15],
WMT17 [14], WMT18 [110], WMT19 [9], WMT20 [81], and WMT21 [51] in several languages
such as en, ru, ts, and others. Secondly, we expanded the set of used metrics from 10 to 17,
including Rouge [77], JS [78], Bleu [94], Chrfpp [101], BERTScore [135], MoverScore [137],
Baryscore [34], DepthScore [120], Infolm [29], CharErrorRate [86], ExtendedEditDistance [121],
MatchErrorRate, TranslationEditRate [117], WordErrorRate [4], WordInfoLost [87], Bleurt [114],
and Comet [107, 108]. Overall, our benchmark grew from 250K scores to over 131 M score. This
extensive data work is one of the core contributions of this paper, and we believe it will be valuable
for future research.

4.2 Task-Level Benchmarking in Real-World Scenarios

In this section, we explore aggregating missing data with task-level information. First, we test the
robustness of our proposed method (σl) against the mean aggregation method (σµ) and then we
quantify the difference between the two output rankings. σl is more robust than σµ. To compare the
effectiveness of aggregation methods in handling missing values on real data, we randomly remove a
proportion η of the task-level data and measure robustness by computing the Kendall τ between the
rankings of the systems obtained by considering the scores with and without missing values. From
Fig. 2, we observe two extreme cases: when no systems are removed (i.e., η = 0), the aggregation
methods output the same value as the one obtained with the full ranking and τ = 1. At the other
extreme, when all missing values are removed (i.e., η = 1), a total absence of correlation can be
observed.
Overall, we find that σl achieves a higher correlation, with a large improvement of more than 10
points compared to other methods, especially in the medium corruption regime (i.e., 0.05 ≥ η ≥ 0.4),
which is more commonly encountered in practical scenarios. These results demonstrate that, on
average, the rankings remain more stable when using our proposed method.

σl outputs a different ranking than σµ. We evaluated the correlation between different rankings
obtained in the robustness experiment depicted in Fig. 2. Specifically, we compared the rankings
produced by σl and σµ in Tab. 1 and found a weak correlation between the two rankings, indicating
that they produce different rankings. This is further supported by the results presented in Tab. 2,

which measure the percentage of times
that the top 1 and top 3 rankings dif-
fer when considering the 2k rankings
generated in the robustness experiment.
These results demonstrate that in ad-
dition to being more robust, our rank-
ing procedure produces different conclu-
sions when benchmarking systems in the
presence of missing tasks.

τσl↔σµ
GLUE 0.17 ±0.24

SGLUE 0.33 ±0.27
XTREM 0.26 ±0.26

GEM 0.36 ±0.36

Table 1: Agreement mea-
sured by Kendall τ corre-
lation.

Dataset top 1 top 3
GEM 0.52 0.25

SGLUE 0.20 0.15
GLUE 0.10 0.07

XTREM 0.19 0.09

Table 2: Percentage of times
the top 1 and top 3 systems are
the same between σl and σµ.

4.3 Instance-Level Benchmarking in Real-World Scenarios

In this section, we evaluate the robustness of our proposed aggregation methods, σ2l, σl, and the
baseline σµ, in the presence of missing data. We also compare the rankings obtained from different
algorithms on our large benchmark dataset, comprising over 132 million scores.

σ2l and σl are more robust than σµ. Similarly to the previous robustness experiment, we randomly
remove a proportion η of scores by discarding all instances of a specific task. The goal of this missing
value sampling is to simulate how missing scores may occur when certain systems are not evaluated
on specific tasks. For each method, Fig. 5 reports the τ correlation coefficient between the ranking
obtained with missing values and the ranking obtained with complete scores.
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Both σ2l and σl produce highly cor-
related rankings, while being differ-
ent from σµ. We conducted a replica-
tion of the agreement analysis presented
in Ssec. 4.3 and present the findings in
Tab. 3 and Tab. 4. Our results align

Corr.
τσ2l↔σl 0.80 ±0.22
τσl↔σµ 0.20 ±0.28
τσµ↔σ2l 0.19 ±0.28

Table 3: Agreement.

Top 1 Top 3
σ2l vs σl 0.67 0.36
σl vs σµ 0.21 0.09
σµ vs σ2l 0.19 0.09

Table 4: Top 1 and 3 analysis.
with those of our previous experiments, demonstrating that both of our ranking-based procedures
(σ2l and σl) are more robust in the presence of missing data and yield different rankings than σµ.

4.4 Statistical Analysis

Confidence interval for practitioners. The confidence interval is valuable for
informing additional comparisons between systems i and j. A
narrow interval indicates a reliable comparison, while a wider
interval suggests more uncertainty and the need for additional
comparisons across tasks. For example, in Fig. 6, we report
the results of applying σl on WMT en-de with a confidence
level of δ = 0.1. Green value in position i < j illustrate
that system 0.5 6∈ [M̂π

ij − cij , M̂π
ij + cij ] and i � j with high

probability. The scale of green displays the distance between
0.5 and the CI, so the greener the more i � j. The results reveal
distinct blocks where top systems (i.e., 9,1,16,15) significantly
outperform others with high confidence. Near the diagonal, the
elements indicate relatively closer performance of the systems.
These findings demonstrate that the confidence interval analysis
provides insights into the relative performance of systems.

Figure 6: Confidence interval anal-
ysis on WMT en-de for a corruption
level of η = 0.2 and a confidence
level δ = 0.01. The final ranking
can be seen on the x axis: left to
right is best to worst

5 Conclusions and Future Research Directions
Our study sheds light on the limitations of the conventional mean-aggregation approach, particularly
when dealing with missing data. To address this issue, we propose a novel statistical perspective and
aggregation procedures that are both robust and grounded in social choice theory. We introduce two
alternative methods: the one-level aggregation method (σl) stands out as the most robust approach.
Furthermore, σl allows to compute confidence intervals, enabling a more refined statistical analysis.
By offering a more reliable and robust means of comparing different systems, our contribution equips
practitioners, especially in the NLP field where large pre-trained models are expected to exhibit
strong generalization across diverse tasks.

6 Acknowledgements

This work was also granted access to the HPC resources of IDRIS under the allocation 2021-
AP010611665 as well as under the project 2021- 101838 made by GENCI.

References
[1] M. Achab, A. Korba, and S. Clémençon. Dimensionality reduction and (bucket) ranking: a

mass transportation approach. volume 98, pages 64–93. PMLR, 2019.

[2] N. Ailon. Aggregation of partial rankings, p-ratings and top-m lists. Algorithmica (New York),
2010.
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A Ethical Statement & Limitation of our work

It is important to consider the potential ethical implications and limitations of our work. One ethical
concern is the potential bias in the reranking process, as the selection of the "best" hypothesis may
favor certain perspectives or reinforce existing biases present in the training data. Care should be
taken to ensure fairness and mitigate any potential bias before applying our methods.

B Dataset Description

B.1 Task Level Information

We provide here additionnal details on the data collection for Task Level Information.

We gathered data from four benchmark studies, namely GLUE (General Language Understanding
Evaluation) [126], SGLUE (SuperGLUE) [125]2, XTREME [64] and GEM. In the GLUE dataset,
there were a total of 105 systems evaluated across nine different tasks: CoLA, SST-2, MRPC, STS-B,
QQP, MNLI, QNLI, RTE, and WNLI [127, 118, 46, 19, 105, 129, 39, 60, 12, 75]. The SGLUE dataset
consisted of 24 systems evaluated on 10 different tasks: BoolQ, CB, COPA, MultiRC, ReCoRD, RTE,
WiC, WSC, AX-b, and AX-g [23, 43, 111, 68, 134, 75, 99]. The XTREME benchmark comprised 15
systems and included tasks such as sentence classification (XNLI and PAXS-X), structured prediction
(Universal Dependencies v2.5 and Wikiann), sentence retrieval (BUCC and Tatoeba), and question
answering (XQuAD, MLQA, TyDiQA-GoldP) [38, 130, 132, 136, 89, 104, 93, 140, 139, 8, 7, 105,
76, 24].

Each benchmark employed a variety of metrics with different scales, including accuracy, f1, and
correlation. Additionally, the GEM benchmark involved 22 systems evaluated using diverse metrics
such as prediction length, vocabulary size, entropy, Rouge, NIST, Bleu’, Meteor’, Bleurt, Nubia, and
Bertscore.

B.2 Instance Level Information

In this particular setting, our primary focus is on evaluating the performance of natural language
generation (NLG) systems, as these scores are among the easiest to collect. We concentrate on five
different tasks: summary evaluation, image description, dialogue, and translation. For summary
evaluation, we utilize the TAC08 [40], TAC10, TAC11 [92], RSUM [13], and SEVAL [48] datasets.
Regarding sentence-based image description, we rely on the FLICKR dataset [133]. For dialogue,
we make use of the PersonaChat (PC) and TopicalChat (TC) datasets [85]. For the translation part,
we added datasets from WMT15 [123], WMT16 [15], WMT17 [14], WMT18 [110], WMT19 [9],
WMT20 [81], and WMT21 [51] in several languages such as en, ru, ts, and others. For all datasets
except MLQE, we consider automatic metrics based on S3 (both variant pyr/resp) [96], ROUGE
[77] (including five of its variants [88]), JS [1-2] [78], Chrfpp [101], BLEU, BERTScore [135],
and MoverScore [137]. For the MLQE dataset, we solely consider several versions of BERTScore,
MoverScore, and ContrastScore. Additionally, we incorporate human evaluation, which is specific to
each dataset.

B.3 Data Statistics

To give to the reader a better sens of the richness of our benchmark, we report in Fig. 7 the statistics
on our dataset. We demonstrate a diverse distribution of system counts across various datasets,
ranging from a minimum of 2 systems to a maximum of 60 systems. Regarding the total number
of sentences (instances) and the average number per system, as depicted in Fig. 8 and Fig. 9, the
smaller datasets consist of several hundred sentences in total, while the larger datasets encompass up
to several hundred thousand sentences in total.

2Results can be accessed at https://super.gluebenchmark.com/
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C Additional Real-Data Experiments

In this dedicated section, we aim to provide curious readers with a deeper understanding of the
capabilities of our methods by presenting additional figures and experimental results. Through these
supplementary materials, we intend to shed more light on the effectiveness and potential of our
approaches, enabling readers to gain valuable insights into our methods.

C.1 Example of Ranking with missing data on XTREM

In this section, we aim to illustrate the distinction between different rankings obtained using σl
and σµ on XTREM dataset for a specific noise realisation. Using Tab. 5, we obtaine the following
rankings:

• σl gives the following ranking : M0 > M3 > M2 > M1 > M7 > M5 > M4 > M8 >
M9

• σµ gives the following ranking : M7 > M4 > M0 > M6 > M9 > M2 =M3 > M1 >
M8 > M5.

We can see that the two methods disagree on the best systems in this case. However, as can be seen
with our experiements, the ranking based method is more robust.

Model Classification Structured Prediction Question Answering Sentence Retrieval

M0 90.3 X 76.3 93.7
M1 90.1 X 75.0 X
M2 89.3 75.5 75.2 92.4
M3 89.0 76.7 73.4 93.3
M4 88.3 X X X
M5 X X X X
M6 87.9 75.6 X 91.9
M7 X X X 92.6
M8 X 75.4 X X
M9 88.2 74.6 X 89.0

Table 5: XTREM dataset with 10 systems and 18 missing values (η = 0.45)

C.2 Additional Robustness Experiment on instance level datasets

In this section we report additionnal experiements on the instance level robustness.
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(a) Dialogue PC (b) Dialogue TC (c) Flickr (d) COCO (e) SummEval

(f) TAC 08 (g) TAC 09 (h) TAC 11 (i) WebNLG2017 (j) WebNLG2020 en

(k) WebNLG2020 ru (l) WMT20 cs-en (m) WMT20 pl-en (n) WMT21 en-de (o) WMT21 en-ru

(p) WMT21
challengeset de-en

(q) WMT21
challengeset en-de

(r) WMT21
challengeset zh-en

(s) WMT21 florestest
bn-hi

(t) WMT21 florestest
hi-bn

(u) WMT21 florestest
xh-zu

(v) WMT21 florestest
zu-xh

(w) WMT21 cs-en (x) WMT21 en-cs (y) WMT21 de-fr
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(z) WMT21 en-ha (aa) WMT21 en-is (ab) WMT21 fr-de (ac) WMT21 ha-en (ad) WMT21 is-en

(ae) WMT21 ja-en (af) WMT21 ru-en (ag) WMT21 zh-en (ah) WMT21 tedtalks
en-de

(ai) WMT21 tedtalks
en-ru

(aj) WMT21 tedtalks
zh-en

Figure 10: Instance-Level Robustness Experiment. We evaluate the robustness of our proposed
aggregation methods, namely σ2l, σl, and the mean aggregation method σµ, by randomly removing a
proportion η of all instances on a specific task for a specific system. Each experiment is repeated 100
times for each proportion.

C.3 Additional Confidence Analysis on Task Level

In this section, we present additional experiments conducted on four instance-level datasets. We
computed confidence intervals for the instance-level, similar to the approach used in Section Ssec. 4.4.
Consistent with the main findings in the paper, our observations reveal that closer performance among
systems is indicated near the diagonal and we can clearly observe group of systems. This analysis of
confidence intervals provides valuable insights into the relative performance of different systems.
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(ak) TAC08 (al) WMT21 en-de

(am) WMT21 en-ha (an) WMT21 en-zh

Figure 11: Confidence intervals for various instance level datasets with η = 0.2 and δ = 0.01

C.4 Future Work

In the futur we would like to extend our work to other sequence generation task [36, 45, 67, 21, 37],
fairness [27, 30], safe ai [26, 22, 32, 35, 42, 41], classification [131, 54, 28, 20]

D On the Rankings

This section gathers technical considerations on the ranking methods used in our algorithm.

D.1 Borda Count on permutations (in vector notation)

Remark 2. The Borda count is a ranking system that aggregates a set of permutations σ1, . . . , σL ∈
SN by summing the ranks of each system and then ranking the obtained sums. The procedure is as
follows:

1. Compute sumn :=
L∑
l=1

σln for every 1 ≤ n ≤ N ,

2. Output σ := Borda(σ1, . . . , σL) ∈ SN that ranks the sums, sumn

(argsort(argsort(sum1, . . . , sumT ))).

D.2 Borda Count on permutations in pairwise matrix notation

In Sssec. 2.2.1 we argue that a ranking σ ∈ SN can also be written as a pairwise matrix and in
Sssec. 2.2.2 and Sssec. 2.2.3 we further elaborate on how to write ranking data-set D in pairwise
matrix form MD ∈ [0, 1]N×N . Under this notation, the final aggregated ranking σ for the Borda
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count algorithm can be shown to be equivalent to the permutation that sorts the sum of the columns
in MD,

σ = argsort

(
argsort

[∑
i

MD
i,0, · · · ,

∑
i

MD
i,N

])
. (5)

D.3 Generating all compatible rankings

In this section, we detail the computation of the Mπ
i,j when item i is not evaluated and item j is

evaluated. Let us fix some notation first. For the following, k is the number of observed systems in π,
item i is not evaluated, item j is evaluated and r is the (partial) rank of item j. Under this setting, we
set Mπ

i,j = p(n, k, r), i.e., the proportion of compatible rankings that rank i before j when π has k
items. The closed-form expressions for this quantities is given in Eq. 6. Here we note that t(n, k)
is the total number rankings of n items of compatible with π, Sab is the number of shuffles of two
lists of lengths a and b and V ab denotes the variations of a out of b items, i.e., the number of possible
arrangements of selections of a objects out of b, where the order of the selected objects matters.

p(n, k, r) =

n−k−1∑
i=0

V in−k−1 ∗ (i+ 1) ∗ Sri+1(n− k − i− 1)! ∗ Sn−k−i−1k−r−1 /t(n, k)

t(n, k) = (n− k)! ∗ Skn−k
Sab = (a+ b)!/(a! + b!)

V ab = a!/(b− a)!

(6)

Remark 3. A naive algorithm for generating the matrix Mπ from σ ∈ SN−rtk would have factorial
complexity and it is thus exorbitant in practice for relatively small number of systems, say N > 10.
However, our solution has a complexity of O(n3), and can be precomputed once at the begining of
the benchmarking process to efficiently generate the pairwise matrix Mπ from partial ranking π.

D.4 Proof of uniformity

In this section, we give the intuition and the proof for Eq. 6. This section follows a classic strategy
on Enumerative Combinatorics [122, 128]: if we can define an algorithm to generate compatible
permutations uniformly at random (such as that in Algorithm 2), we can easily adapt it to count those
permutations to yield an efficient counting expression, as we do in Eq. 6.

We start by introducing 2 basic operations of permute and shuffle, along with the number of
possible outcomes of these operations.

Permute a list - permute(l) Given a list of n objects, generate a permutation of these items. There
are n! possible ways of permuting n items. An efficient way for generating random permutations is
the Fisher-Yates-Knuth algorithm [69].

Shuffle two lists - shuffle(A,B) Given two disjoint lists of distinct elements A,B of lengths a, b
respectively, generate a permutation σ of the two lists of length a+ b in such a way that the relative
order of the items in the lists A and B is respected in σ. This name and idea is based on the popular
way of shuffling two decks of cards [11]. Its easy to see that Algorithm 1 generates every possible
shuffling with equal probability. The total number of shuffles of lists A,B is given in Eq. 6 as Sab .

Algorithm 1: Generate a random shuffle of lists A and B
1 for i ∈ [a+ b] do
2 rand← random number in [0, 1];
3 if rand > 0.5 ∨B is empty ∧ A is non empty then
4 σ(i) = pop(A);
5 else
6 σ(i) = pop(B);
7 end
8 end
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Counting complete, compatible rankings At this point, we are ready to detail the expression of
p(n, k, r) in Eq. 6, both the intuition and the proof of uniformity. For this, we propose in Algorithm 2
to sample complete, compatible rankings and then adapt this sampling algorithm to a counting
algorithm in Theorem 1.

Notation We start by fixing the notation. Let β be a partial ranking of length k which includes item
j in rank r, β1 � . . . � βr = j � . . . � βk. Let η be a disjoint set of n − k items which have
not been ranked and which includes the unobserved item i. The goal is to generate (i) a compatible
ranking with β (a ranking σ of all the items in such a way that the relative ordering of the items of β
is maintained) and (ii) which ranks item i before item j. We denote the "s-head" of a list to the items
in the first s positions in that list.

Intuition We are now ready to explain the intuition. Each of the possible compatible permutations
that rank i before j is generated in the following way:

Algorithm 2 generates permutations that rank item j at position s, item i before j and we iterate for
all possible values of s. First, in line line 2 we select s− 1 items randomly from η, where order of the
items matter (i.e., a variation). Then, we insert item i in a random position of this list, denoted ηhead
in line 3. In line 4 we shuffle these two lists, i.e., ηhead and the r−head of β, βhead, i.e., the sublist
with the items that are ranked before j. The result of the shuffling process is the s+ r-head of the
output permutation σ. We permute the rest of the unobserved items denoting these list ηtail, in line 6.
Finally, we shuffle this list ηtail and the k − r-tail of η in line 7. The result of this shuffle is the tail
of σ. Finally, in line 8 we return the concatenation of σhead, j, σtail, which is clearly a compatible
permutation with β as the relative order of the items in β is maintained in the output.

Algorithm 2: Generate a random ranking among those compatible with β
1 for s ∈ [n] do
2 ηhead ← s− 1 items from η where the order matters ;
3 ηhead ← insert i in ηhead ;
4 σhead ← shuffle(ηhead, βhead) ;
5 ηtail ← η \ ηhead ;
6 ηtail ← permute(ηtail) ;
7 σtail ← shuffle(ηtail, βtail) ;
8 return (σhead � j � σtail) ;
9 end

It is easy to see that Algorithm 2 generates the target permutations uniformly at random. Following
a classic strategy on Enumerative Combinatorics [122, 128] we use this algorithm as a proof for
p(n, k, r).
Theorem 1. The number of complete permutations of n items compatible with partial ranking β that
rank the unobserved item i before the observed item j is given by the following expression,

p(n, k, r) =

n−k−1∑
i=0

V in−k−1 ∗ (i+ 1) ∗ Sri+1(n− k − i− 1)! ∗ Sn−k−i−1k−r−1 /t(n, k).

Proof. It is easy to see that in Algorithm 2 there is a bijection between the permutations in the target
(that is, the permutations compatible with β for which i � j) and each outcome of Algorithm 2.
Clearly, for uniform at random outcomes of the shuffle and permute operations, the outcome of
Algorithm 2 will be random as well. Therefore, the number of possible outcomes of the algorithm
equals the number of permutations in the target.

It follows that each term in p(n, k, r) Each term in the previous expression comes from a different
line in 2:

• Line 2: The number of variations of i items out of n− k − 1 is V in−k−1.

• Line 3: There are s+ 1 ways of inserting item i, thus the term (r + 1).

• Line 4: There are Srs+1 ways of shuffling ηhead and βhead.

• Line 6: There are (n− k − s− 1)! possible permutations of the items in ηtail.
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• Line 7: There are Sn−k−s−1k−r−1 ways of shuffling the two tails.

• Line 8: Finally, since we compute the proportion by dividing among the total number of
compatible permutations.

By repeating this process for all s < n− k − 1 the proof is completed.
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Figure 7: Number of systems in each dataset (log scale)
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Figure 8: Number of sentences in each dataset (log scale)
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Figure 9: Average number of sentences per system in each dataset (log scale)
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