A stabilized hybridized Nitsche method for sign-changing elliptic PDEs - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2024

A stabilized hybridized Nitsche method for sign-changing elliptic PDEs

Résumé

We present and analyze a stabilized hybridized Nitsche method for elliptic problems with sign-changing coefficients without imposing symmetry assumptions on the mesh around the material interfaces. The use of a stabilized primal-dual formulation allows us to cope with the sign-changing nature of the problem and to prove optimal error estimates under two assumptions on the continuous problem, namely that it admits a unique solution and that the contrast at the sign-changing interface lies outside a certain critical interval. The method can be used on arbitrary shape-regular meshes (fitted to material interfaces) and yields optimal convergence rates for smooth solutions. As an illustration, the method is applied to simulate a realistic acoustic cloaking device.
Fichier principal
Vignette du fichier
main-m3as-hal.pdf (997.35 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04571185 , version 1 (07-05-2024)
hal-04571185 , version 2 (18-12-2024)

Identifiants

  • HAL Id : hal-04571185 , version 2

Citer

Erik Burman, Alexandre Ern, Janosch Preuss. A stabilized hybridized Nitsche method for sign-changing elliptic PDEs. 2024. ⟨hal-04571185v2⟩
74 Consultations
155 Téléchargements

Partager

More