Memetic Semantic Genetic Programming for Symbolic Regression - Archive ouverte HAL
Communication Dans Un Congrès Année : 2023

Memetic Semantic Genetic Programming for Symbolic Regression

Alessandro Leite
Marc Schoenauer

Résumé

This paper describes a new memetic semantic algorithm for symbolic regression (SR). While memetic computation offers a way to encode domain knowledge into a population-based process, semantic-based algorithms allow one to improve them locally to achieve a desired output. Hence, combining memetic and semantic enables us to (a) enhance the exploration and exploitation features of genetic programming (GP) and (b) discover short symbolic expressions that are easy to understand and interpret without losing the expressivity characteristics of symbolic regression. Experimental results show that our proposed memetic semantic algorithm can outperform traditional evolutionary and non-evolutionary methods on several real-world symbolic regression problems, paving a new direction to handle both the bloating and generalization endeavors of genetic programming.
Fichier principal
Vignette du fichier
MSGP___EuroGP.pdf (487.18 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-04563511 , version 1 (29-04-2024)

Identifiants

Citer

Alessandro Leite, Marc Schoenauer. Memetic Semantic Genetic Programming for Symbolic Regression. 26th EuroGP - Part of EvoStar 2023, Species Society, Apr 2023, Brno, Czech Republic. pp.198-212, ⟨10.1007/978-3-031-29573-7_13⟩. ⟨hal-04563511⟩
31 Consultations
37 Téléchargements

Altmetric

Partager

More