
HAL Id: hal-04563511
https://hal.science/hal-04563511v1

Submitted on 29 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Memetic Semantic Genetic Programming for Symbolic
Regression

Alessandro Leite, Marc Schoenauer

To cite this version:
Alessandro Leite, Marc Schoenauer. Memetic Semantic Genetic Programming for Symbolic Regres-
sion. 26th EuroGP - Part of EvoStar 2023, Species Society, Apr 2023, Brno, Czech Republic. pp.198-
212, �10.1007/978-3-031-29573-7_13�. �hal-04563511�

https://hal.science/hal-04563511v1
https://hal.archives-ouvertes.fr

Memetic Semantic Genetic Programming for
Symbolic Regression

Alessandro Leite and Marc Schoenauer

TAU, Inria Saclay, LISN, Univ. Paris-Saclay, France
firstname.lastname@inria.fr

Abstract. This paper describes a new memetic semantic algorithm
for symbolic regression (SR). While memetic computation offers a way
to encode domain knowledge into a population-based process, semantic-
based algorithms allow one to improve them locally to achieve a desired
output. Hence, combining memetic and semantic enables us to (a) enhance
the exploration and exploitation features of genetic programming (GP)
and (b) discover short symbolic expressions that are easy to understand
and interpret without losing the expressivity characteristics of symbolic
regression. Experimental results show that our proposed memetic semantic
algorithm can outperform traditional evolutionary and non-evolutionary
methods on several real-world symbolic regression problems, paving a
new direction to handle both the bloating and generalization endeavors
of genetic programming.

Keywords: Genetic Programming · Memetic Semantic · Symbolic
Regression

1 Introduction

For a given dataset (X, y), symbolic regression (SR) aims to find a function
f(X) : Rn 7→ R that represents the underlying relationship between the input
features (X) and an output (y). Over the last few years, genetic programming
(GP) [13] has gained the attention of the machine learning (ML) community due
to its capacity to learn both the model structure and its parameters without
making assumptions about the data [25,33]. Moreover, the symbolic aspects of
its solutions and their flexible representation enable it to learn complex data
relationships. These properties have made it a candidate solution to replace
neural networks, which are usually considered black-box and, consequently,
hard to understand and explain. Symbolic regression is usually implemented
through genetic programming (GP).

Traditional GP-based methods rely on the outcome of a program to decide
how well it solves the task, ignoring intermediate results such as the semantics of
its subtrees [21,26]. However, one can consider them to guide the search during
its exploration process and, thus, to generalize on unseen data, and to favor
short expressions that are usually easier to understand and analyze by the users.
Furthermore, semantics can contribute to improving subtrees’ reuse based not

https://orcid.org/0000-0002-3071-8019
https://orcid.org/0000-0003-1450-6830

2 Alessandro Leite and Marc Schoenauer

only on the performance of the whole tree but also on their effectiveness in
approximating a desired output. Semantic backpropagation (SB) algorithm [26,8]
has shown to be an effective strategy for dealing with such endeavors. Semantic
backpropagation tries to find a set of subtrees that better approximate the desired
outputs for a given tree’s node in a supervised setting. In other words, it computes
the desired outputs for each node on the path from the root regarding the target
semantics and the semantics of the other subtrees in the tree.

At the same time, several mixtures of evolutionary and non-evolutionary
methods have been proposed over the last few years. One example is memetics
algorithms [25] that provide an effective way to compensate for the capability of
global exploration of general evolutionary methods with the increased exploitation
that can be obtained through local search. In this context, this paper proposes an
evolutionary multi-objective algorithm that combines both memetics and semantic
backpropagation algorithms for symbolic regression problems.

Different from traditional semantic backpropagation operators (e.g., random
desired operator (RDO) [26]), our memetic semantic GP for symbolic regression
(MSGP) approach (Section 4) only tunes the real-valued constants after a suitable
tree has been found for the problem. Likewise, it computes them through linear
scaling (LS) (i.e., regression) [10] and not randomly, and at each iteration,
as implemented by the RDO operator [26]. Linear scaling aims to minimize
the mean squared error (MSE) of a tree by performing a linear transformation
on its outputs [10,11]. Consequently, it frees GP from this time-consuming task,
allowing it to focus exclusively on the shape of the tree that fits the structure of
the data rather than on trying to find a scale that approximates the target output.
Last but not least, linear scaling helps in dealing with GP bloat problem [10,11].

Additionally, instead of trying to build a library with all possible pre-
computing subtrees up to a maximum height or a dynamic one, which increases
the computing cost and interpretability due to the bloat problem, MSGP relies
on a fixed library with a randomly generated population of subtrees up to a given
height.

Experimental results (Section 6) on various real-world benchmark datasets
show that MSGP either outperforms or is equal to traditional machine learn-
ing methods (e.g., decision tree (interpretable) and random forest (black-box
method) [2]), and established GP-based methods (e.g., gplearn). Likewise, our
approach leads to short expressions which improve the interpretability of the
model without including any new parameter to be specified by the users. MSGP’s
code is available at gitlab.inria.fr/trust-ai/memetics/msgp.

2 Semantic GP

In GP, semantics describes the behavior of a program on a specific dataset.
In other words, it is the outputs’ vector for the fitness cases of a problem [22].
More formally, in a supervised setting, assume the data is a set D made of N

https://orcid.org/0000-0002-3071-8019
https://orcid.org/0000-0003-1450-6830
http://gitlab.inria.fr/trust-ai/memetics/msgp

Memetic Semantic for Symbolic Regression 3

fitness cases: D = {(X1, y1), (X2, y2), · · · , (XN , yN)}, where Xi ∈ Rn and yi ∈ R1

are the inputs, and the corresponding desired outputs. The semantics (s) of a
program p is the vector of outputs values computed by p from the set of all fitness
cases D, defined as [26]:

s(p) = [p(X1), p(X2), · · · , p(XN)] (1)

Similar operations can be performed for every node of a given tree: the
semantics can be computed from the tree’s terminals up to the tree’s root
sequentially, defining the semantics for every node (i.e., subtree) of a GP tree.

Semantic backpropagation algorithms [26,8] try to find the subtrees whose
semantics better approximate the desired outputs (dN

i) of a node N ∈ p. A
prerequisite is that one can compute the desired outputs for every node in p,
conditional on the target output and the semantics of the other nodes in the
program. This operation can be done downward from the root node (where
the desired outputs are the target values oi of the problem definition given in
the initial dataset). For all the other nodes, this is done by performing the
inverse operation of the function implemented in the node, assuming that the
semantics of all other nodes are fixed: from the target values are the root, semantic
backpropagation recursively computes the desired output for a node N at depth
D as [26,14]:

dN
i = F −1

AD−1
(dAD−1 , Sd) (2)

where, A represents the ancestor of N at depth Di, S the siblings of A, and F −1

comprehends the inverse of the function implemented by node A.
It is fundamental to highlight the difference between the semantics of subtrees

and the semantics of contexts. On the one hand, in the semantics of subtrees,
the semantics of a node N only depends on its output for each fitness case,
which means that if nodes N1 and N2 have the same semantics and a program p
contains the former, replacing it with the latter will not change the semantics of
p. On the other hand, in the semantics of contexts, given a node N /∈ p, it
is usually hard to know how it will impact the semantics of the entire program
(i.e., tree) since such information is conditioned to the semantics of the node that
will be replaced, as well as the semantics of its ancestors and siblings [21]. In
some contexts, it can remain the same (i.e., a fixed context independent of the
replaced node) or change (i.e., variable context). Consequently, the semantics
of a node is uniquely defined by the function it implements and the value of its
arguments, and they are independent of the position in the tree. In contrast,
context semantics depend on the function implemented by the immediate parent,
the parent semantics, and the semantics of the siblings [21]. As a result, local
improvements may degrade the global performance.

1 We are focusing in this work on the specific case of SR, but Xi and yi could belong
to some other spaces, for instance, discrete spaces in the case of classification or
boolean functions.

4 Alessandro Leite and Marc Schoenauer

2.1 Library building and searching

For a given desired output at a given node, we want to search for a tree that
better approximates these outputs than the current subtree. One can be achieved
by building a library in a static or dynamic setting. In the static setting, the
semantics of all possible subtrees with a maximum height are pre-computed, and
redundant semantics are pruned to keep only one tree for each unique semantics.
In the dynamic setting, also known as population-based, new trees are added
based on the observed subtrees of every generation [26,4]. This strategy keeps
only the subtrees with the smallest number of nodes if different ones exist in the
population with the same output. Moreover, both strategies ignore the subtrees
with constant outputs.

Once a library has been built, the search process looks for the individuals
whose output o are the closest to the desired semantics dj

i based on some distance
metric (e.g., Euclidean or Minkowski distance). It means, finding a minimal
distance dj

i that minimizes |dj
i − oi|k, ∀k ∈ {1, 2, . . . , N} [26]. Additionally, if the

distance value remains the same, whatever the subtree, its value is defined as
zero (i.e., |∗−oi|k = 0). Finally, as subtrees with constant outputs are ignored, the
search process checks if a constant semantics could reduce the distance between
the tree outputs and the desired ones.

3 Memetic Algorithms

Memetic algorithms (MA) combine population-based search strategies with
local search heuristics inspired by the concept in genetics [6]. They have been used
across different domains due to their capacity to establish a good balance between
exploration and exploitation when finding a solution for a complex optimization
problem [23,5]. A meme, in this case, represents transferable knowledge built
through local refinement procedures, which can be seen as a form of domain-
specific expert knowledge on how a solution can be better improved [23]. For an
optimization viewpoint, prototypical memetic algorithms comprise three main
phases named creation, local improvement, and evolution (Algorithm 1)2. A
population of randomly created individuals is set up in the creation phase. Then,
each individual is locally improved up to a predefined level in the improvement
phase. Finally, the evolution phase is the usual phase of evolutionary algorithms
that starts by selecting individuals based on their fitness and combining/mutating
them through variation operators (e.g., crossover and mutation), enabling them
to share information in a cooperative manner. The last two phases repeat until
they meet a stopping criterion [23].

2 Though other types of hybridization between evolutionary computation (EC) and
local search have been proposed, like using the local search as pre- or post-processor,
as a mutation operator, among others that are beyond the focus of this work.

https://orcid.org/0000-0002-3071-8019
https://orcid.org/0000-0003-1450-6830

Memetic Semantic for Symbolic Regression 5

Algorithm 1 Memetic algorithm
create a population of individuals
repeat

improve some or all individuals with some local search algorithm
select, then combine and/or mutate the individuals

until stopping criteria

4 Memetic Semantic for Symbolic Regression

This section describes how semantic backpropagation and memetic algorithms
are combined to evolve GP models for symbolic regression problems that are
interpretable and have a lower learning error.

Although semantic backpropagations and memetic algorithmss have been
separately used on SR problems, combining them can improve the interpretability
and the generalization efficiency of GP-based model. While SB helps one in finding
programs (i.e., trees) with the approximated desired output, MA contribute to
improving them by considering the semantics of their parts (i.e., subtrees).

In a standard SB-based approach, once a subtree is selected to replace a
node in a tree, it adds some constants to enable the tree to output the desired
output. Consequently, as evolution proceeds, the trees often undergo excessive
growth, known as bloat, which penalizes the search process, drastically increases
the evaluation cost, and hinders the generalization of the trees (i.e., the accuracy
on unseen data). We handle these issues by using LS [10] to search for constants
that correct the residual errors of the tree. As a result, at each iteration, the SB
and memetic algorithmss can concentrate on the structure of the tree, leaving
the scaling of the coefficients to linear scaling.

Given a dataset composed of N independent samples (Xi) with m independent
input variables (Xi = [xi,1, xi,2, . . . , xi,m]) and a corresponding target output (yi),
the task of symbolic regression comprises in finding a tree (T (.)) that minimizes
the distance to an output (y) [30,12]. Such tree T (.) usually includes a set of
predefined functions and terminals (a.k.a constants and input variables).

Hence, using the mean squared error (MSE) as the distance metric (a.k.a fit-
ness function) for T (.), and denoting ŷ the outputs of tree T , the task of symbolic
regression is to find a tree T (.) that minimizes MSE(T) defined as:

MSE(T) ≡ MSE(y, ŷ) = 1
N

N∑
i=1

(yi − ŷi)2 (3)

4.1 Algorithm

Given a tree T with a set of subtrees S = {s1, s2, sn} and a library L composed
of l individuals (i.e., small subtrees), the goal of the proposed memetic semantic
GP for symbolic regression (MSGP) algorithm (Algorithm 2) is to interactively

6 Alessandro Leite and Marc Schoenauer

improve T by checking for each subtree si ∈ S if there exists a subtree s⋆ ∈ L
whose semantics are closest to the desired ones for si.

The starting tree T is usually created randomly. However, it can also be, for
instance, the output of another GP-based SR approach to make it simpler and
consequently easier to understand by the users. In other words, MSGP does not
make any assumption about the size or nature of the initial tree when it uses
the library (L) to search the nodes that can better replace the one of a tree.
Consequently, the size and heterogeneity of the library L can play an important
role.

Further, the memetic part of MSGP, linear scalings computes a scaled version
of the MSE [10] with a computing cost that is linear with the dataset size N , (i.e.,
O(n)):

MSEa,b(y, ŷ) = 1
N

n∑
i=1

(yi − (a + bŷi))2 (4)

With a and b defined as:

a = ȳ − b¯̂y (5)

b =
N∑

i=1

(yi − ȳi)(ŷi − ¯̂y)
(ŷi − ¯̂y)2

(6)

These coefficients a and b are then added to the final tree. Moreover, the algorithm
ignores trees with constant outputs.

Finally, to avoid consuming computing resources to an already optimal tree,
an early stopping strategy can be adopted in practice.

Algorithm 2 Memetic semantic for symbolic regression
Require: Initial tree (T), library (L)
Require: # epochs, and fitness cases (X, y)
1: T ′ ← clone(T)
2: Evaluate(T ′)
3: while e ≤ epochs do
4: T ⋆ ← lti(T ′,L, X, y) ▷ local tree improvement (Algorithm 3)
5: T ⋆ ←LS(T ⋆, y) ▷ linear scaling [10] computes the coefficients of T ⋆

(Equations (5) and (6))
6: T ′ ← best(T ⋆, T ′)

7: return T ′

4.2 Local tree improvement

Local tree improvement (LTI) algorithm (Algorithm 3) identifies the subtrees
with equal or better semantics than a randomly selected subtree of a given tree. It

https://orcid.org/0000-0002-3071-8019
https://orcid.org/0000-0003-1450-6830

Memetic Semantic for Symbolic Regression 7

performs an exhaustive search in a library L with a set of pre-computed semantics
using the ancestor’s semantics of a subtree as the target process. Hence, given a
library L and a tree T , LTI finds a subtree s⋆ in L that minimizes

arg min
s⋆∈L

min
t∈{ti,...tn}

d(t, s(s⋆)) (7)

where, t is the desired semantics and s represents the semantics of a subtree s⋆ ∈ L.
During the search process, the algorithm keeps track of the semantics distance
between the already analyzed subtrees to avoid replacing them several times. The
error function computes the distance between the semantics of the subtrees, which
in this case, comprises the semantics of the candidate subtree and the ancestor’s
semantics of the selected subtree. If no local improvement was identified, the
algorithm randomly replaces a subtree in T by the one also randomly selected
from the library, which in this case, can be seen as a mutation operation. One
can observe that local enhancement may degrade global criteria (e.g., accuracy,
height, and generalization). Thus, it is up to the superior level to keep or ignore
the new proposed tree. A further investigation may evolve each proposed tree
during a predefined number of generations and then crossover them using the LTI
algorithm.

We consider a static library composed of trees up to a certain height and
with heterogeneous semantics. Only the smallest tree is included in the library
when two candidate ones have the same semantics. Moreover, we also individually
include the features of the problems, as well as the operators (i.e., functions),
into the library.

5 Experimental Setup

We evaluated the proposed algorithm on different real-world regression dataset
benchmarks. They have a heterogeneous number of features and sample sizes, as
depicted in Table 1. Moreover, they are commonly used in the GP literature [35,18]
as overfitting the training set occurs either when complex models are learned
or when models are built using discontinuous functions. Furthermore, Dow
Chemical and Tower datasets are recommended as benchmarks [36]. They come
from the UCI machine learning repository (archive.ics.uci.edu) and from the
repository (shortest.link/8n9V) provided by Martins et al. [20].

Table 2 includes the parameters settings to define the library, the initial tree,
and the one used in standard GP experiments. We use analytical quotient (AQ)
instead of protected division to avoid discontinuous behaviors [24], but keeping
the same general properties of division. Likewise, the literature has shown that
using it helps generalize at prediction time [24,3,35]. It is defined as:

AQ(x1, x2) = x1√
1 + x2

2
(8)

As baseline, we considered evolutionary (i.e., GP) and non-evolutionary (i.e., deci-
sion tree (DT) and random forest (RF) [2]) approaches. We relied on gplearn [32]

http://archive.ics.uci.edu
http://shortest.link/8n9V

8 Alessandro Leite and Marc Schoenauer

Algorithm 3 Local tree improvement
Require: Tree (T), library (L)
1: compute-semantics(T) ▷ ∀ node N ∈ T
2: S ← subtrees(T)
3: τ ← sort(S) ▷ by error ascending and height descending
4: s← rank-select(τ)
5: best[s]← ∅
6: for all s⋆ ∈ L do
7: if (s, s⋆) ∈ k then
8: continue
9: e← error(s, s⋆)

10: if e < min_error then
11: best[s] ← (s⋆, 0)
12: min_error ← e
13: else if e == min_error then
14: best[s] best[s] ← ∪ {(s⋆, e)}
15: if |best[s]| > 0 then
16: k ← k ∪ {(s, s⋆)}
17: T ⋆ ← crossover(ancestor(s), s⋆, T)
18: SemanticBackprogration(ancestor(s), s⋆, T ⋆)
19: return T ⋆

20: s← random(τ)
21: s⋆ ← random(L)
22: T ⋆ ← crossover(ancestor(s), s⋆, T)
23: SemanticBackprogration(ancestor(s), s⋆, T ⋆)
24: k ← k ∪ {(s, s⋆)}
25: return T ⋆

https://orcid.org/0000-0002-3071-8019
https://orcid.org/0000-0003-1450-6830

Memetic Semantic for Symbolic Regression 9

as the GP-based model, and on the scikit-learn [27] implementation of decision
tree and random forests as they are commonly used in the GP and machine learn-
ing literature [7,31,29]. While decision trees are normally considered interpretable
models, random forests are defined as black-box. Nevertheless, the latter often
outperforms the former. Consequently, they are usually employed by practitioners
across different domains. For these models, we used the default parameter values
defined by scikit-learn. Each experiment comprised 30 independent runs, and
the median of the results is reported. MSGP was implemented in python using
the DEAP library [9]. Finally, we run the experiments on a MacBook Pro with
one Apple M1 processor (8 cores) and 16 GB of RAM memory.

Table 1: Regression datasets benchmarks considered by this work
Name Acronym # Features # Samples

Airfoil AF 5 1503
Boston housing BH 13 506

Concrete compressing strength CCS 8 1030
Dow chemical DC 57 1066

Energy cooling EC 8 768
Energy heating EH 8 768

Tower TW 25 4999
Wine red WR 11 1599

Wine white WW 11 4898
Yacht hydrodynamics YH 6 308

Table 2: Parameter settings
Parameter Value

Function set {+,−,×,÷(AQ)}
Terminal set Features

Initial tree height 2
epochs 1e4
Max time 500 seconds

Trials 30
Loss function MSE

Library size 200
Initialization Ramped H&H [1-2]

Train-validation-test-split 50%-25%-25%
Data normalization L2

10 Alessandro Leite and Marc Schoenauer

6 Results

Table 3 shows the error on the testing set, and the symbolic expressions
outputted by MSGP. The experiments reveal that MSGP outperformed the
baseline methods except for the Boston housing (BH) dataset. Additionally,
the expressions are short, showing that our proposed method could handle GP
bloating on the selected problems. Moreover, it required less than 2000 epochs
to find the best trees on most datasets, as depicted in Fig. 1. An early stopping
strategy or other automatic options can be added to avoid running without
further improvement. However, one can keep to users the decision of which tree
to pick up for a given problem as an option to help them explore alternative
solutions, as they all have distinct semantics.

Table 3: Performance on the test set for each benchmark

DS DT RF GP MSGP Expression

AR 82.88 75.89 30587 24.58 −90.09∗ (X1 +X3−X4 +X5)+129.9

BH 10.96 75.89 36.9 27.99 1598 ∗X6 ∗ (−X13 + X6) + 19.47

CCS 583.32 349.41 441.13 141.52 2052.89∗(X1+X8)∗(X5+X6)+15.52

DC 0.59 0.49 0.1 0.07 −166.12 ∗ (X17 −X49 −
X49

X4
)− 7.16

EC 101.27 115.46 179.51 14.68 558.67∗((X1 ∗X7)+X2 +X5)−56.23

EH 143.78 94.88 162.33 15.37 576.3 ∗ (X2 + X3 ∗X7 + X5)− 60.97

TW 10586.48 10214.52 33253 2783.19±369.93 −27120.74 ∗ (X1 + X16−X23−X6) +
346.49

WR 2.48 1.53 0.7 0.49 43.26∗X11−21.63∗X2−21.63∗X8 +
5.65

WW 1.6 1.01 0.71 0.62 127.95− (125.5 ∗X2)2

YH 791.61 699.25 100.77 32.65 −28008.75 + 28014.61 ∗ X6

X2

Consequently, it is essential to check the contribution of the features chosen
by the model from the prediction viewpoint. A common strategy comprises
computing a score measure for all the input features. Examples include the
Gini and mutual information measures. We used the random forest algorithm
to compute the feature importance of the datasets. The goal was to understand
if MSGP was relying on the relevant ones.

Figure 2 illustrates the feature importance computed by random forest for
each dataset. We can observe that based on this metric, MSGP symbolic expres-
sions (Table 3) include the important ones identified by random forest without
needing external support. Indeed, we observed with some experiments that

https://orcid.org/0000-0002-3071-8019
https://orcid.org/0000-0003-1450-6830

Memetic Semantic for Symbolic Regression 11

0 2000 4000 6000 8000 10000
Epoch

25

30

35

40

45

50

Tr
ai

n
M

SE

Airfoil (AF)

Trial 1
Trial 2
Trial 3
Trial 4
Trial 5
Trial 6

Trial 7
Trial 8
Trial 9
Trial 10
Trial 11
Trial 12

Trial 13
Trial 14
Trial 15
Trial 16
Trial 17
Trial 18

Trial 19
Trial 20
Trial 21
Trial 22
Trial 23
Trial 24

Trial 25
Trial 26
Trial 27
Trial 28
Trial 29
Trial 30

0 2000 4000 6000 8000 10000
Epoch

30

40

50

60

Tr
ai

n
M

SE

Boston housing (BH)

Trial 1
Trial 2
Trial 3
Trial 4
Trial 5
Trial 6

Trial 7
Trial 8
Trial 9
Trial 10
Trial 11
Trial 12

Trial 13
Trial 14
Trial 15
Trial 16
Trial 17
Trial 18

Trial 19
Trial 20
Trial 21
Trial 22
Trial 23
Trial 24

Trial 25
Trial 26
Trial 27
Trial 28
Trial 29
Trial 30

0 2000 4000 6000 8000 10000
Epoch

140

160

180

200

220

240

260

Tr
ai

n
M

SE

Concrete compressing strength (CCS)

Trial 1
Trial 2
Trial 3
Trial 4
Trial 5
Trial 6

Trial 7
Trial 8
Trial 9
Trial 10
Trial 11
Trial 12

Trial 13
Trial 14
Trial 15
Trial 16
Trial 17
Trial 18

Trial 19
Trial 20
Trial 21
Trial 22
Trial 23
Trial 24

Trial 25
Trial 26
Trial 27
Trial 28
Trial 29
Trial 30

0 2000 4000 6000 8000 10000
Epoch

0.05

0.06

0.07

0.08

0.09

0.10

0.11

Tr
ai

n
M

SE

Dow chemical (DC)

Trial 1
Trial 2
Trial 3
Trial 4
Trial 5
Trial 6

Trial 7
Trial 8
Trial 9
Trial 10
Trial 11
Trial 12

Trial 13
Trial 14
Trial 15
Trial 16
Trial 17
Trial 18

Trial 19
Trial 20
Trial 21
Trial 22
Trial 23
Trial 24

Trial 25
Trial 26
Trial 27
Trial 28
Trial 29
Trial 30

0 2000 4000 6000 8000 10000
Epoch

10

20

30

40

50

60

70

80

90

Tr
ai

n
M

SE

Energy cooling (EC)

Trial 1
Trial 2
Trial 3
Trial 4
Trial 5
Trial 6

Trial 7
Trial 8
Trial 9
Trial 10
Trial 11
Trial 12

Trial 13
Trial 14
Trial 15
Trial 16
Trial 17
Trial 18

Trial 19
Trial 20
Trial 21
Trial 22
Trial 23
Trial 24

Trial 25
Trial 26
Trial 27
Trial 28
Trial 29
Trial 30

0 2000 4000 6000 8000 10000
Epoch

20

40

60

80

100

Tr
ai

n
M

SE

Energy heating (EH)

Trial 1
Trial 2
Trial 3
Trial 4
Trial 5
Trial 6

Trial 7
Trial 8
Trial 9
Trial 10
Trial 11
Trial 12

Trial 13
Trial 14
Trial 15
Trial 16
Trial 17
Trial 18

Trial 19
Trial 20
Trial 21
Trial 22
Trial 23
Trial 24

Trial 25
Trial 26
Trial 27
Trial 28
Trial 29
Trial 30

0 2000 4000 6000 8000 10000
Epoch

2000

3000

4000

5000

6000

7000

8000

Tr
ai

n
M

SE

Tower (TW)

Trial 1
Trial 2
Trial 3
Trial 4
Trial 5
Trial 6

Trial 7
Trial 8
Trial 9
Trial 10
Trial 11
Trial 12

Trial 13
Trial 14
Trial 15
Trial 16
Trial 17
Trial 18

Trial 19
Trial 20
Trial 21
Trial 22
Trial 23
Trial 24

Trial 25
Trial 26
Trial 27
Trial 28
Trial 29
Trial 30

0 2000 4000 6000 8000 10000
Epoch

0.45

0.50

0.55

0.60

0.65

Tr
ai

n
M

SE

Wine red (WR)

Trial 1
Trial 2
Trial 3
Trial 4
Trial 5
Trial 6

Trial 7
Trial 8
Trial 9
Trial 10
Trial 11
Trial 12

Trial 13
Trial 14
Trial 15
Trial 16
Trial 17
Trial 18

Trial 19
Trial 20
Trial 21
Trial 22
Trial 23
Trial 24

Trial 25
Trial 26
Trial 27
Trial 28
Trial 29
Trial 30

0 2000 4000 6000 8000 10000
Epoch

0.600

0.625

0.650

0.675

0.700

0.725

0.750

0.775

Tr
ai

n
M

SE

Wine white (WW)

Trial 1
Trial 2
Trial 3
Trial 4
Trial 5
Trial 6

Trial 7
Trial 8
Trial 9
Trial 10
Trial 11
Trial 12

Trial 13
Trial 14
Trial 15
Trial 16
Trial 17
Trial 18

Trial 19
Trial 20
Trial 21
Trial 22
Trial 23
Trial 24

Trial 25
Trial 26
Trial 27
Trial 28
Trial 29
Trial 30

Fig. 1: Learning curves of the trees on the training set for each trial

12 Alessandro Leite and Marc Schoenauer

building a library with only the most important features degrades the model’s
performance and increases the output expressions’ size. This behavior suggests
that the proposed method requires some freedom to explore the search space.
However, further analyses are still necessary to understand the reasons. Further-
more, complementary studies can be done to assess the performance of MSGP
as a feature selection approach, which plays a fundamental role in post-hoc
explanation methods, including SHapley Additive exPlanations (SHAP) [19]
and Local Interpretable Model-Agnostic Explanations (LIME) [28].

In addition, the results showed that for some problems (e.g., CCS and DC),
the algorithm stays stuck in a local minimum. Such behavior suggests the need
to be able to identify and handle such behavior by, for instance, introducing some
transformations to enhance exploration. Finally, another improvement comprises
quantifying the impact of replacing a subtree with another one by considering
the semantics of the tree. It means identifying which operations are necessary to
change it to the desired one in an optimization setting.

7 Related Work

Several works have tried to handle the bloat problem of genetic programming.
For example, Bleuler et al. [1] used SPEA2 to identify candidate solutions based
on fitness and size. Experimental results showed that the proposed strategy could
reduce GP bloat and speed up convergence. In [17], the authors proposed a pseudo-
hill-climbing strategy to control trees’ size during the crossover operation. In this
case, the proposed approach discards an offspring if it either degrades the fitness
or increases a tree’s size. Although this approach can slow down GP bloating,
it penalizes the running time of GP algorithms. Other works have proposed
semantic-based operators to handle both bloating and generalization issues. Some
examples include [15,34,22,26] among others. Uy et al. [34] proposed to semantic-
based crossover operators, named semantic aware crossover (SAC) and semantic
similarity-based crossover (SSC). Their main difference is in the definition of
the semantic distances, which, when exchanging two subtrees, must be different
but not widely different. Similarly, Moraglio et al. [22] suggested a semantic
crossover operator that creates offsprings with a weighted average of their parents’
semantics. Notwithstanding, it cannot handle GP bloating properly without
further simplification procedures. Geometric semantic crossover (AGX) [16] tries
to handle these endeavors by replacing parents’ subtrees with other ones that are
semantically closed to their parents’ midpoint semantic. Random desired operator
(RDO) [26] introduces back-propagation. In this case, after a crossover operation,
the semantics of the new subtree is back-propagated as described in Section 2.
Different studies have shown that RDO outperforms the other operators on both
regression [26] and boolean [8] problems.

This work is closest to the RDO operator [26]. Nonetheless, we use a similar
idea to improve a candidate solution’s fitness locally instead of relying on crossover
operation. Likewise, we use linear scaling [16] to compute the coefficients scale
once a candidate solution was found. Finally, a memetic algorithm selects the

https://orcid.org/0000-0002-3071-8019
https://orcid.org/0000-0003-1450-6830

Memetic Semantic for Symbolic Regression 13

0.0 0.2 0.4

X2

X4

X3

X1

X5

Airfoil (AF)

0.0 0.2 0.4

X4

X2

X9

X3

X5

X11

X7

X12

X10

X8

X1

X6

X13

Boston housing (BH)

0.0 0.1 0.2 0.3

X3

X6

X7

X2

X5

X4

X1

X8

Concrete compressing strength (CCS)

0.0 0.1 0.2 0.3

X13X8X18X26X19X21X17X27X4X23X42X3X28X5X24X46X2X51X25X29X22X57X20X45X11X43X14X52X9X50X30X41X15X40X34X39X53X44X12X6X16X54X33X36X32X48X7X37X55X56X10X35X47X1X31X38X49

Dow chemical (DC)

0.0 0.1 0.2 0.3

X6

X8

X3

X7

X2

X5

X4

X1

Energy cooling (EC)

0.0 0.1 0.2

X6

X8

X3

X7

X4

X1

X5

X2

Energy heating (EH)

0.0 0.2 0.4

X18
X5

X19
X20
X14
X15
X21
X7

X11
X4
X3

X10
X16
X9

X12
X13
X24
X22
X25
X23
X17
X8
X2
X1
X6

Tower (TW)

0.0 0.1 0.2

X6

X3

X4

X8

X5

X9

X1

X7

X10

X2

X11

Wine red (WR)

0.0 0.1 0.2

X8

X4

X10

X5

X3

X9

X1

X7

X2

X6

X11

Wine white (WW)

Fig. 2: Feature importance for each dataset obtained through random forest

14 Alessandro Leite and Marc Schoenauer

solutions based on their fitness on a validation set and size. To the best of
our knowledge, this is the first work to propose a memetic semantic algorithm
for symbolic regression problems.

8 Conclusion

Symbolic regression (SR) searches for a set of mathematical expressions that
better approximate a target variable of a given dataset. It is commonly im-
plemented through genetic programming due to its characteristics in exploring
the search space free of constraints’ assumptions about the underlying data
distribution. Nevertheless, GP-based approaches still face the challenge of over-
fitting the data expressed through complicated symbolic expressions (a.k.abloat).
Semantic-based strategies [16,26] have been seen as a way to handle this is-
sue. In this context, this paper proposed and evaluated a memetic semantic
algorithm for symbolic regression (MSGP). The proposed approach combines
a population-based search strategy with semantics-guided ones to output short
symbolic expressions without penalizing the accuracy.

Experimental results demonstrated that in addition to favoring short and
interpretable expressions, the proposed algorithm could outperform traditional
machine learning models (i.e., decision tree (DT) and random forest (RF) [2]) and
evolutionary one on different real-world datasets. Additionally, they demonstrated
that the proposed algorithm only required a few iterations to identify the most
predictive features. Further works include employing it to search for counterfactual
outputs, as the counterfactual response can be framed as desired semantics.
Another one comprises investigating new strategies to guide the construction
of the semantics library to enhance the exploration and exploitation features of
memetic semantic-based algorithms.

Acknowledgements

This research was partially funded by the European Commission within the HORI-
ZON program (TRUST-AI Project, Contract No. 952060).

References

1. Bleuler, S., Brack, M., Thiele, L., Zitzler, E.: Multiobjective genetic programming:
Reducing bloat using SPEA2. In: Congress on Evolutionary Computation. vol. 1,
pp. 536–543 (2001)

2. Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001)
3. Chen, Q., Xue, B., Niu, B., Zhang, M.: Improving generalisation of genetic pro-

gramming for high-dimensional symbolic regression with feature selection. In: IEEE
Congress on Evolutionary Computation. pp. 3793–3800 (2016)

4. Chen, Q., Zhang, M., Xue, B.: Geometric semantic genetic programming with
perpendicular crossover and random segment mutation for symbolic regression. In:
Asia-Pacific Conference on Simulated Evolution and Learning. pp. 422–434 (2017)

https://orcid.org/0000-0002-3071-8019
https://orcid.org/0000-0003-1450-6830

Memetic Semantic for Symbolic Regression 15

5. Chen, X., Ong, Y.S., Lim, M.H., Tan, K.C.: A multi-facet survey on memetic
computation. IEEE Transactions on Evolutionary Computation 15(5), 591–607
(2011)

6. Dawkins, R.: The Selfish Gene. Oxford University Press (1976)
7. Ferreira, J., Pedemonte, M., Torres, A.I.: A genetic programming approach for

construction of surrogate models. In: Computer Aided Chemical Engineering, vol. 47,
pp. 451–456. Elsevier (2019)

8. Ffrancon, R., Schoenauer, M.: Memetic semantic genetic programming. In: Annual
Conference on Genetic and Evolutionary Computation. pp. 1023–1030 (2015)

9. Fortin, F.A., De Rainville, F.M., Gardner, M.A.G., Parizeau, M., Gagné, C.: DEAP:
Evolutionary algorithms made easy. Journal of Machine Learning Research 13(1),
2171–2175 (jul 2012)

10. Keijzer, M.: Improving symbolic regression with interval arithmetic and linear
scaling. In: European Conference on Genetic Programming. pp. 70–82 (2003)

11. Keijzer, M.: Scaled symbolic regression. Genetic Programming and Evolvable
Machines 5(3), 259–269 (2004)

12. Korns, M.F.: A baseline symbolic regression algorithm. In: Genetic Programming
Theory and Practice X, pp. 117–137. Springer (2013)

13. Koza, J.R.: Genetic Programming: On the Programming of Computers by means
of Natural Evolution. MIT Press, Massachusetts (1992)

14. Krawiec, K.: Semantic genetic programming. In: Behavioral program synthesis with
genetic programming, pp. 55–66. Springer (2016)

15. Krawiec, K., Lichocki, P.: Approximating geometric crossover in semantic space. In:
11th Annual conference on Genetic and Evolutionary Computation. pp. 987–994
(2009)

16. Krawiec, K., Pawlak, T.: Approximating geometric crossover by semantic backprop-
agation. In: 15th annual conference on Genetic and evolutionary computation. pp.
941–948 (2013)

17. Langdon, W.B., Poli, R.: Genetic programming bloat with dynamic fitness. In: First
European Workshop on Genetic Programming. pp. 97–112 (1998)

18. Liu, D., Virgolin, M., Alderliesten, T., Bosman, P.A.N.: Evolvability degeneration
in multi-objective genetic programming for symbolic regression. In: Genetic and
Evolutionary Computation Conference. pp. 973–981 (2022)

19. Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions. In:
NeurIPS. pp. 4768–4777 (2017)

20. Martins, J.F.B., Oliveira, L.O.V., Miranda, L.F., Casadei, F., Pappa, G.L.: Solving
the exponential growth of symbolic regression trees in geometric semantic genetic
programming. In: Genetic and Evolutionary Computation Conference. pp. 1151–
1158 (2018)

21. McPhee, N.F., Ohs, B., Hutchison, T.: Semantic building blocks in genetic pro-
gramming. In: European Conference on Genetic Programming. pp. 134–145 (2008)

22. Moraglio, A., Krawiec, K., Johnson, C.G.: Geometric semantic genetic programming.
In: International Conference on Parallel Problem Solving from Nature. pp. 21–31
(2012)

23. Moscato, P.: On evolution, search, optimization, genetic algorithms and martial arts:
Towards memetic algorithms. Tech. Rep. 826, Caltech Concurrent Computation
Program, California Institute of Technology (1989)

24. Ni, J., Drieberg, R.H., Rockett, P.I.: The use of an analytic quotient operator in
genetic programming. IEEE Transactions on Evolutionary Computation 17(1),
146–152 (2013)

16 Alessandro Leite and Marc Schoenauer

25. Ong, Y.S., Lim, M.H., Neri, F., Ishibuchi, H.: Special issue on emerging trends in
soft computing: memetic algorithms. Soft Computing 13(8), 739–740 (2009)

26. Pawlak, T.P., Wieloch, B., Krawiec, K.: Semantic backpropagation for designing
search operators in genetic programming. IEEE Transactions on Evolutionary
Computation 19(3), 326–340 (2014)

27. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research 12, 2825–2830 (2011)

28. Ribeiro, M.T., Singh, S., Guestrin, C.: Why should I trust you? explaining the
predictions of any classifier. In: SIGKDD. pp. 1135–1144 (2016)

29. Sathia, V., Ganesh, V., Nanditale, S.R.T.: Accelerating genetic programming using
gpus (2021)

30. Schmidt, M., Lipson, H.: Distilling free-form natural laws from experimental data.
Science 324(5923), 81–85 (2009)

31. Sipper, M., Moore, J.H.: Symbolic-regression boosting. Genetic Programming and
Evolvable Machines 22, 357–381 (2021)

32. Stephens, T.: Genetic programming in python with a scikit-learn inspired API:
gplearn. github.com/trevorstephens/gplearn (2016)

33. Udrescu, S.M., Tegmark, M.: Ai feynman: A physics-inspired method for symbolic
regression. Science Advances 6(16), eaay2631 (2020)

34. Uy, N.Q., Hoai, N.X., O’Neill, M., McKay, R.I., Galván-López, E.: Semantically-
based crossover in genetic programming: application to real-valued symbolic regres-
sion. Genetic Programming and Evolvable Machines 12(2), 91–119 (2011)

35. Virgolin, M., Alderliesten, T., Witteveen, C., Bosman, P.A.: Improving model-based
genetic programming for symbolic regression of small expressions. Evolutionary
computation 29(2), 211–237 (2021)

36. White, D.R., McDermott, J., Castelli, M., Manzoni, L., Goldman, B.W., Kronberger,
G., Jaśkowski, W., O’Reilly, U.M., Luke, S.: Better GP benchmarks: community
survey results and proposals. Genetic Programming and Evolvable Machines 14(1),
3–29 (2013)

https://orcid.org/0000-0002-3071-8019
https://orcid.org/0000-0003-1450-6830

	Memetic Semantic Genetic Programming for Symbolic Regression

