Regular ${D}$-length: A tool for improved prefix-stable forward Ramsey factorisations - Archive ouverte HAL
Article Dans Une Revue Information Processing Letters Année : 2024

Regular ${D}$-length: A tool for improved prefix-stable forward Ramsey factorisations

Résumé

Recently, Jecker has introduced and studied the regular ${D}$-length of a monoid, as the length of its longest chain of regular ${D}$-classes. We use this parameter in order to improve the construction, originally proposed by Colcombet, of a deterministic automaton that allows to map a word to one of its forward Ramsey splits: these are a relaxation of factorisation forests that enjoy prefix stability, thus allowing a compositional construction. For certain monoids that have a small regular ${D}$-length, our construction produces an exponentially more succinct deterministic automaton. Finally, we apply it to obtain better complexity result for the problem of fast infix evaluation.
Fichier principal
Vignette du fichier
note-IPL.pdf (359.8 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence

Dates et versions

hal-04562306 , version 1 (30-04-2024)

Licence

Identifiants

Citer

Théodore Lopez, Benjamin Monmege, Jean-Marc Talbot. Regular ${D}$-length: A tool for improved prefix-stable forward Ramsey factorisations. Information Processing Letters, 2024, 187, pp.106497. ⟨10.1016/j.ipl.2024.106497⟩. ⟨hal-04562306⟩
175 Consultations
80 Téléchargements

Altmetric

Partager

More