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Abstract
Recently, Jecker has introduced and studied the regular -length of a monoid, as the length of its
longest chain of regular -classes. We use this parameter in order to improve the construction,
originally proposed by Colcombet, of a deterministic automaton that allows to map a word to one
of its forward Ramsey splits: these are a relaxation of factorisation forests that enjoy prefix stability,
thus allowing a compositional construction. For certain monoids that have a small regular -length,
our construction produces an exponentially more succinct deterministic automaton. Finally, we apply
it to obtain better complexity result for the problem of fast infix evaluation.

1. Introduction
Computing Ramsey-type information of finite sequences

of elements in a finite semigroup or monoid, e.g. the idempo-
tent factors the sequence contains, can be performed by using
forest factorisation, introduced by Simon [1]: he proved that
every morphism from words to a finite semigroup admits a
Ramsey factorisation forest (where all internal nodes that
are not binary coincide with the presence of consecutive
factors which all evaluate to the same idempotent element) of
linear height with respect to the cardinality of the semigroup.
Another way to describe such a factorisation forest is to use
the notion of Ramsey split, introduced by Colcombet [2],
that maps each position of the word to a natural number,
called height. As such, a factorisation forest is tailored for
the study of each input word independently. Moreover, the
construction of factorisation forests a priori lacks composi-
tionality: given a factorisation forest for some word 𝑢 and a
letter 𝑎, it may not be easy to directly build a factorisation
forest for the word 𝑢 ⋅ 𝑎, fulfilling the requirement on the
height.

To cope with this problem, Gastin and Krishna [3] use
an unambiguous automaton that associates with each word
a particular Ramsey split. At each step of the computation
of the automaton, a bounded number of candidate splits are
kept in memory. Alternatively, Colcombet proposed in [4, 2]
the weaker notion of forward Ramsey split to trade unambi-
guity of the previously cited automaton for determinism: this
permits to keep in memory a single split along the compu-
tation. From this split, interesting combinatorial properties
like idempotent factors can still be deduced, though we do
no longer have the factorisation forest, that might be fully
needed for some other purpose.

Our goal is to reduce the size of the deterministic au-
tomaton computing a forward Ramsey split. To do so, we use
a new complexity parameter, the regular -length 𝐿(𝑀) of
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a finite monoid (or semigroup) 𝑀 , recently highlighted by
Jecker [5]: it is the length of the longest chain of regular
-classes (-classes containing an idempotent element).
Jecker uses this new measure to bound more tightly the
Ramsey function associated to 𝑀 , that gives the minimal
size of a word having sufficiently many consecutive factors
with the same idempotent element (like non-binary nodes
of factorisation forests). We revisit the construction of the
deterministic automaton to obtain a smaller one, having
only |𝑀|

min(2𝐿(𝑀)−1,|𝑀|) states (instead of |𝑀|

|𝑀| for Col-
combet), |𝑀| being the cardinality of 𝑀 . Whereas 𝐿(𝑀)
is always at most |𝑀|, Jecker gives examples where it is
much smaller. As a simple example, the regular -length of
the transformation monoid over 𝑘 elements (containing all
mappings from {1, 2,… , 𝑘} to itself) is 𝑘+1 [5, 6] whereas
its cardinality is 𝑘𝑘.

We define in Section 2 a coarser version of forward
Ramsey splits, that we call forward Ramsey labelled splits.
It will reduce the number of possible heights (the natural
numbers mapped by the split) from |𝑀| to 2𝐿(𝑀) − 1,
at the price of keeping an additionnal label. Hence, our
contribution is twofold: we reduce the size of the automaton
computing the splits, and we reduce the number of heights.
Yet, we explain in Remark 7 why our automaton can also
compute a forward Ramsey split by using the height function
defined by Colcombet.

Computing deterministic Ramsey factorisations has sev-
eral applications. For instance, it has been used for MSO
query enumeration [7, 8]: given an MSO query 𝜑, and a
finite word 𝑢, the task is to precompute a data structure in
time linear in the length of 𝑢 that allows one to enumerate all
factors satisfying 𝜑 with constant delay. Another example,
that we study in more details in Section 3, is the infix
evaluation problem: given a regular language 𝐿 and a finite
word 𝑢, an infix query is of the form “does the factor of 𝑢
between positions 𝑖 and 𝑗 belong to 𝐿?”. Once the word 𝑢 is
known, the problem is to quickly answer such infix queries.
The basic approach would be to precompute the answer for
all factors of 𝑢. However it requires quadratic time with
respect to the length of the word, which is not doable in
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practice when the word represents large inputs. The fast infix
evaluation problem asks to pre-compute a data structure
in time linear in 𝑢 that allows one to answer infix queries
in constant time (relative to 𝑢). The constants in both the
precomputation and the query evaluation depend on the
representation of 𝐿. Ramsey factorisations, with respect to
the syntactic monoid of the language𝐿, give a framework for
quick computation. In [9, 10], factorisation forests are used
for the data structure, while in [4], Colcombet uses forward
Ramsey splits. We study how forward Ramsey labelled
splits can be used in this context, with an improved query
evaluation.

2. An improved forward Ramsey factorisation
We start by recalling useful algebraic definitions. A semi-

group (𝑀, ⋅) is given by a set and an associative product
operation. When 𝑀 contains additionally a neutral element
𝟏 for the product (for all 𝑚 in 𝑀 , 𝟏 ⋅ 𝑚 = 𝑚 ⋅ 𝟏 = 𝑚), then
(𝑀, ⋅, 𝟏) is called a monoid. An element 𝑚 of 𝑀 is said to
be idempotent if 𝑚 ⋅𝑚 = 𝑚. We let |𝑀| be the cardinality of
a finite monoid 𝑀 .

For a finite monoid (𝑀, ⋅, 𝟏) (in case of a semigroup,
a neutral element is added if necessary), we define the
preorder1 ≤ by letting, for all (𝑚,𝑚′) ∈ 𝑀2, 𝑚 ≤ 𝑚′ if
there exists (𝑝, 𝑝′) ∈ 𝑀2 such that𝑚 = 𝑝⋅𝑚′⋅𝑝′. This induces
an equivalence relation ∼ on 𝑀 defined as 𝑚 ∼ 𝑚′ if
𝑚 ≤ 𝑚′ and 𝑚′ ≤ 𝑚. The -classes (or shortly classes,
since we are only preoccupied with -classes in this article)
of 𝑀 are the equivalence classes defined by ∼. We say that
a class is regular if it contains an idempotent element. The
preorder ≤ can also be extended to compare classes: for
two classes 𝐷1 and 𝐷2, we have 𝐷1 ≤ 𝐷2 if 𝑚 ≤𝐷 𝑚′ for
some elements 𝑚 ∈ 𝐷1 and 𝑚′ ∈ 𝐷2. We denote by < the
strict preorder relation associated with ≤ (on elements of
𝑀 or their classes). Following Jecker [5], we note 𝐿(𝑀) the
regular -length of a finite monoid 𝑀 , that is the number of
classes in one of its longest chains (i.e. increasing sequences)
of regular classes.
Running examples Consider the language 𝐾 = (𝑎𝑏)∗ ∪
𝑐Σ∗ ∪ Σ∗𝑑 over the alphabet Σ = {𝑎, 𝑏, 𝑐, 𝑑}. Its syntactic
monoid 𝑀𝐾 is the set of words Σ∗ quotiented by the follow-
ing equations:
𝑎𝑏𝑎 = 𝑎 𝑏𝑎𝑏 = 𝑏 𝑐 = 𝑐𝑎 = 𝑐𝑏 = 𝑐𝑐
𝑎𝑎 = 𝑏𝑏 = 𝑎𝑐 = 𝑏𝑐 = 𝑑𝑎 = 𝑑𝑏 = 𝑑𝑐 = 𝑎𝑎𝑎 = 𝑎𝑎𝑏 = 𝑏𝑎𝑎
𝑑 = 𝑎𝑑 = 𝑏𝑑 = 𝑑𝑑

In Figure 1, we group elements by classes. The regular -
length of 𝑀𝐾 is 𝐿(𝑀𝐾 ) = 3.

For some integer 𝑝 ≥ 2, consider the language 𝐿𝑝 =
𝑏∗𝑎𝑝𝑎∗𝑏∗ of words over the alphabet {𝑎, 𝑏} with exactly one
block of 𝑎’s, which is of size at least 𝑝. Its syntactic monoid
𝑀𝐿𝑝

is the set of words Σ∗ quotiented by the following
1This relation could be more properly denoted as ≤ since it should be

associated with the  -Green’s relation. However,  and  coincide when
𝑀 is finite, as recalled in [11, Lemma 5].

∗ 𝜀

∗ 𝑎 𝑏 𝑎𝑏 𝑏𝑎

∗ 𝑎𝑎 𝑐 𝑑 𝑐𝑑

4

2

0

Figure 1: Classes of 𝑀𝐾 , where stars denote classes containing
idempotent elements, and where idempotent elements have
been underlined. Grey numbers denote the height function we
define afterwards.

∗ 𝜀

𝑎

𝑎𝑎

∗ 𝑏∗ 𝑎𝑎𝑎

𝑎𝑏𝑏𝑎

𝑎𝑎𝑏𝑏𝑎𝑎

𝑎𝑎𝑎𝑏𝑏𝑎𝑎𝑎

𝑏𝑎𝑎𝑎𝑏

∗ 𝑎𝑏𝑎

4

3
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1

0

Figure 2: Classes of 𝑀𝐿3

equations:
𝑏 = 𝑏𝑏 𝑎𝑝 = 𝑎𝑝𝑎
𝑎𝑏𝑎 = 𝑎𝑏𝑎𝑎 = 𝑎𝑎𝑏𝑎 = 𝑎𝑏𝑎𝑏 = 𝑏𝑎𝑏𝑎
𝑎𝑏𝑎 = 𝑏𝑎𝑖𝑏 for all 1 ≤ 𝑖 < 𝑝

The diagram of classes is represented in Figure 2 in the case
𝑝 = 3. Remark that all classes contain exactly one element.
The regular -length of 𝑀𝐿𝑝

is 𝐿(𝑀𝐿𝑝
) = 3, and there

are two distinct maximal regular -chains: (𝑎𝑏𝑎, 𝑎𝑝, 𝜀) and
(𝑎𝑏𝑎, 𝑏, 𝜀).
Forward Ramsey splits. Let Σ be a finite alphabet and
Σ∗ the set of words over Σ. We denote by 𝐍 the set of
all natural numbers and by [𝑘, 𝑚], with 𝑘 ≤ 𝑚, the set of
natural numbers {𝑘, 𝑘 + 1,… , 𝑚}. Then, we let [0, 𝑛] to be
the set of positions of the word, where position 0 denotes
the one before the beginning of the word, position 1 denotes
the position in-between letters 𝑎1 and 𝑎2, while position 𝑛
denotes the one after the end of the word. We let 𝑢𝑖,𝑗 =
𝑎𝑖+1𝑎𝑖+2⋯ 𝑎𝑗 be the factor between positions 𝑖 and 𝑗.

Let 𝑀 be a finite monoid, and 𝜑∶ Σ∗ → 𝑀 be a
morphism of monoids. Ramsey theory aims at associating
with a word 𝑢 = 𝑎1⋯ 𝑎𝑛 ∈ Σ∗ enough information so
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as to be able to track idempotent factors of the sequence
𝜑(𝑎1),… , 𝜑(𝑎𝑛). To achieve this, Simon [1] showed the
existence of factorisation forests of linear height with respect
to the cardinality |𝑀| of 𝑀 for any word 𝑢. An alternative
presentation was proposed by Colcombet [2, 4] as the notion
of Ramsey split. A split is a mapping 𝑠∶ [0, 𝑛] → 𝐍 associ-
ating a height with each position in a word 𝑢 = 𝑎1⋯ 𝑎𝑛. We
have depicted one such split in Figure 5. A split defines an
equivalence relation ∼𝑠 such that for all positions 𝑥 ≤ 𝑦:2

𝑥 ∼𝑠 𝑦 iff 𝑠(𝑥) = 𝑠(𝑦) and ∀𝑥 ≤ 𝑧 ≤ 𝑦 𝑠(𝑥) ≤ 𝑠(𝑧)

Then, a split is said to be Ramsey if for all ∼𝑠-equivalence
classes, there exists an idempotent element 𝑒 ∈ 𝑀 such
that all positions 𝑥 < 𝑦 in the class delimitate the element
𝜑(𝑢𝑥,𝑦) = 𝑒. The problem of computing, for a given word, a
factorisation forest of linear height translates into the search
for a Ramsey split with a maximal height bounded linearly
with respect to 𝑀 .

Unfortunately, those approaches do not provide methods
to compute such Ramsey splits in a compositional way,
i.e. being able to compute the split of a word 𝑢𝑎 solely with
respect to the split of 𝑢 with a time complexity independent
on the length of 𝑢. Such a compositional computation is not
known, and a priori difficult because there are many Ramsey
splits for a given word, some being easily extendable when
reading a new letter 𝑎 (while maintaining the linear bound
on the maximal height), some not.

To address this issue, Colcombet relaxed the Ramsey
condition on splits, to introduce forward Ramsey splits. A
split is said to be forward Ramsey if all positions 𝑥 < 𝑦
and 𝑥′ < 𝑦′ in the same ∼𝑠-equivalence class are such that
𝜑(𝑢𝑥,𝑦) ⋅ 𝜑(𝑢𝑥′,𝑦′ ) = 𝜑(𝑢𝑥,𝑦). Notice that for all positions
𝑥 < 𝑦 < 𝑧 of the same∼𝑠-equivalence class, this implies that
𝜑(𝑢𝑥,𝑧) = 𝜑(𝑢𝑥,𝑦) ⋅𝜑(𝑢𝑦,𝑧) = 𝜑(𝑢𝑥,𝑦). Forward Ramsey splits
contain less information than factorisation forests, but are
at least sufficient to detect some idempotent factors. Indeed,
taking 𝑥 = 𝑥′ and 𝑦 = 𝑦′ in the forward Ramsey property,
𝜑(𝑢𝑥,𝑦) is an idempotent element of 𝑀 , for all 𝑥 < 𝑦 of the
same ∼𝑠-equivalence class.

The main result of Colcombet [2, 4] is to compute
such a forward Ramsey split by means of a deterministic
automaton: the automaton labels each position of the word
with some state (from a set 𝑄) which is a finite sequence
⟨𝑚1,… , 𝑚𝑘⟩ of elements of 𝑀 , each state being associated
with a height. Writing 𝜆∶ [0, 𝑛] → 𝑄 the labelling, and
ℎ∶ 𝑄 → 𝐍 the height of states, we call labelled split the
pair (𝜆, ℎ). The underlying split 𝑠 is then obtained as the
composition ℎ◦𝜆.

The height is obtained by associating with each ele-
ment 𝑚 of 𝑀 a height ℎ0(𝑚), and then by stating that
ℎ(⟨𝑚1,… , 𝑚𝑘⟩) = ℎ0(𝑚𝑘). In the work of Colcombet, it is
required that the height ℎ0 is an injective mapping such that

∀(𝑚,𝑚′) ∈ 𝑀2 𝑚 ≤ 𝑚′ ⟹ ℎ0(𝑚) ≤ ℎ0(𝑚′) (1)
2With respect to the original definition (𝑥 ∼𝑠 𝑦 if 𝑠(𝑥) = 𝑠(𝑦) and

∀𝑥 ≤ 𝑧 ≤ 𝑦 𝑠(𝑥) ≥ 𝑠(𝑧)), we inverted the order of heights to be coherent
with the choice we do afterwards.

A first improvement that we propose is to remove the injec-
tive requirement, in order to diminish the range of heights.

This is the basis for the reduction of the size of 𝑄 we
then obtain. Indeed, the state space 𝑄 of Colcombet consists
of valid sequences ⟨𝑚1,… , 𝑚𝑘⟩ of elements of 𝑀 , where
validity means that

• the classes of elements form a Chain:
𝑚1 < 𝑚2 < ⋯ < 𝑚𝑘 (C)

• the Product of consecutive elements of the sequence
is in the same class as the first element:

∀1 ≤ 𝑖 < 𝑗 ≤ 𝑘 𝑚𝑖 ∼ 𝑚𝑖 ⋅ 𝑚𝑖+1⋯𝑚𝑗 (P)
The length 𝑘 of each valid sequence is thus bounded by |𝑀|,
which also bounds the number of states of 𝑄 by |𝑀|

|𝑀|.
Assuming that we design a height function ℎ0 in a way

that diminishes the maximal height, a natural alternative def-
inition of validity consists in only requiring that sequences
⟨𝑚1,… , 𝑚𝑘⟩ are such that

ℎ0(𝑚1) < ℎ0(𝑚2) < ⋯ < ℎ0(𝑚𝑘) (H)
To distinguish the cases, we will speak of CP-validity for the
one of Colcombet, and H-validity for ours.

The loss of injectivity for the height mapping ℎ0 will
force us to strengthen the forward Ramsey condition on the
labelled split (in order to keep the desired combinatorial
properties, like idempotency). First, we refine the equiva-
lence relation ∼𝑠, with 𝑠 being the split ℎ◦𝜆; to do so, we
take into account the labels and enforce that two equivalent
positions must have the same label and not only the same
height: ∼𝜆,ℎ is the smallest equivalence relation such that for
all 𝑥 ≤ 𝑦:

𝑥 ∼𝜆,ℎ 𝑦 if 𝜆(𝑥) = 𝜆(𝑦) and 𝑥 ∼ℎ◦𝜆 𝑦

The labelled split (𝜆, ℎ) is then called forward Ramsey for the
word 𝑢 if the split ℎ◦𝜆 is forward Ramsey with respect to the
equivalence class ∼𝜆,ℎ, i.e. if all positions 𝑥 < 𝑦 and 𝑥′ < 𝑦′
in the same ∼𝜆,ℎ-equivalence class are such that 𝜑(𝑢𝑥,𝑦) ⋅
𝜑(𝑢𝑥′,𝑦′ ) = 𝜑(𝑢𝑥,𝑦). Clearly, if ℎ◦𝜆 is a forward Ramsey split,
then (𝜆, ℎ) is a forward Ramsey labelled split. The reciprocal
implication does not always hold (see Remark 4).
New height mapping We start by defining the height
mapping ℎ0 ∶ 𝑀 → 𝐍, associating with each element of the
monoid a height, satisfying the monotonous condition (1).
Intuitively, it measures the longest chain of regular classes
below an element, differentiating elements that belong to a
regular class (giving them an even height) and others (giving
them an odd height).
Definition 1. For a monoid 𝑀 , the function ℎ0 ∶ 𝑀 → 𝐍
is defined as follows: for an element 𝑚 ∈ 𝑀 , letting 𝑘 be the
maximal length of a chain (𝐷1,… , 𝐷𝑘) of regular classes
such that 𝑒 ≤ 𝑚 for some 𝑒 ∈ 𝐷𝑘, we let

ℎ0(𝑚) =

{

2𝑘 − 2 if 𝑚 belongs to a regular class
2𝑘 − 1 otherwise
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If an element 𝑚 ∈ 𝑀 belongs to a regular class, the length
𝑘 is at least 1, so that ℎ0(𝑚) ≥ 0. Moreover, the mini-
mal classes, with respect to the ≤ preorder, are regular,3
which explains why the height of all elements is indeed
non-negative. Moreover, the maximal class, with respect to
the ≤ preorder, is the class of the neutral element of the
monoid, and is thus regular. Its associated length 𝑘 is 𝐿(𝑀)
by definition of the regular -length, which implies that the
maximal height is 2𝐿(𝑀) − 2. The height of all elements
thus belongs to [0, 2𝐿(𝑀) − 2]. Heights of elements (that
only depend on the decomposition into classes) are depicted
in the examples of Figures 1 and 2.
Lemma 2. Let (𝑚1, 𝑚2) ∈ 𝑀2. Then, the following proper-
ties hold:

1. If 𝑚1 ≤ 𝑚2, then ℎ0(𝑚1) ≤ ℎ0(𝑚2).

2. If ℎ0(𝑚1) = ℎ0(𝑚2) and 𝑚1 ⋅ 𝑚2 = 𝑚1, then 𝑚1 and
𝑚2 are in the same class, which is moreover regular.

PROOF. 1. Consider a maximal chain (𝐷1,… , 𝐷𝑘) of
regular classes such that 𝑒 ≤ 𝑚1 for any 𝑒 ∈ 𝐷𝑘, so
that ℎ0(𝑚1) ∈ {2𝑘−2, 2𝑘−1}. Since 𝑒 ≤ 𝑚1 ≤ 𝑚2,
this sequence is also below 𝑚2, and thus ℎ0(𝑚2) ≥
2𝑘 − 2. The only contradiction to the conclusion
ℎ0(𝑚1) ≤ ℎ0(𝑚2) would be if ℎ0(𝑚1) = 2𝑘 − 1 and
ℎ0(𝑚2) = 2𝑘 − 2, i.e. if 𝑚1 is not in a regular class
while 𝑚2 is. But then, the sequence (𝐷1,… , 𝐷𝑘, 𝐷)
with 𝐷 the class of 𝑚2 would be a chain of regular
classes below 𝑚2 of length 𝑘 + 1, which would imply
that ℎ0(𝑚2) ≥ 2(𝑘 + 1) − 2.

2. Let 𝑛 be such that 𝑒 = (𝑚2)𝑛 is idempotent. From
𝑚1 ⋅ 𝑚2 = 𝑚1, we deduce that 𝑚1 ⋅ 𝑒 = 𝑚1. Thus,
we have 𝑚1 ≤ 𝑒 ≤ 𝑚2. Hence, if 𝑚1 and 𝑚2 are in
the same class, then it is regular. It remains to prove
that 𝑚1 ∼ 𝑚2.
Towards a contradiction, let us assume that 𝑚1 and 𝑚2are not in the same class and thus (as 𝑚1 ≤ 𝑚2) that
𝑚1 < 𝑚2. We distinguish two cases, depending on
the regularity of the class containing 𝑚1.
If 𝑚1 is in a regular class, let (𝐷1,… , 𝐷𝑘) be a
maximal chain of regular classes below 𝑚1, with 𝑘
such that ℎ0(𝑚1) = 2𝑘 − 2: in particular, 𝐷𝑘 is the
class of 𝑚1. Let us consider two cases. If the class
𝐷 of 𝑚2 is regular, then (𝐷1,… , 𝐷𝑘, 𝐷) is a chain
of regular classes below 𝑚2, showing that ℎ0(𝑚2) ≥
2(𝑘+1)−2 > ℎ0(𝑚1), which is a contradiction. If𝑚2 is
not in a regular class, then ℎ0(𝑚2) ≥ 2𝑘− 1 > ℎ0(𝑚1)which is again a contradiction.
Thus, 𝑚1 cannot be in a regular class. Then, we have
𝑚1 < 𝑒 since the idempotent 𝑒 cannot be in the same
class as𝑚1. As above, from a maximal chain of regular
classes below 𝑚1, of length 𝑘, we can add the regular

3Indeed, if 𝑚 is an element of a minimal class, since we have 𝑚 ≥
𝑚2 ≥ 𝑚3 ≥ ⋯ letting 𝑘 = |𝑀|!, we have that 𝑚𝑘 is an idempotent
element in the same class as 𝑚.

class of 𝑒 and thus get that ℎ0(𝑒) ≥ 2(𝑘 + 1) − 2 >
2𝑘−1 = ℎ0(𝑚1). Since 𝑒 ≤ 𝑚2, from (1), we deduce
that ℎ0(𝑒) ≤ ℎ0(𝑚2). In the overall, we have that
ℎ0(𝑚1) < ℎ0(𝑚2) which contradicts the hypothesis.
□

A new deterministic automaton The labelling 𝜆∶ [0, 𝑛] →
𝑄 of a word 𝑢 = 𝑎1⋯ 𝑎𝑛 is obtained as the run of a determin-
istic automaton = (𝑄, 𝑞0, 𝛿). As already recalled, the finite
set 𝑄 of states consists in H-valid sequences ⟨𝑚1,… , 𝑚𝑘⟩of elements of 𝑀 . By (H), the height of elements of 𝑀
lying in [0, 2𝐿(𝑀) − 2], the length of an H-valid sequence
is bounded by 2𝐿(𝑀) − 1. It is also bounded by |𝑀|

since all elements of the sequence are different. Hence,
there are at most |𝑀|

min(2𝐿(𝑀)−1,|𝑀|) states. This must be
compared with the bound |𝑀|

|𝑀| originally obtained by
Colcombet. For the example of 𝑀 being the transformation
monoid mentioned in the introduction, we thus obtain an
exponentially smaller machine.4 The initial state 𝑞0 can
be chosen arbitrarily, a natural choice being the sequence
only containing the neutral element of 𝑀 , having maximal
height. The (deterministic) transition function 𝛿∶ 𝑄 × Σ →
𝑄 is defined as follows: for a valid sequence ⟨𝑚1,… , 𝑚𝑘⟩and a letter 𝑎 ∈ Σ, the unique successor of the sequence by
reading 𝑎 for the transition function is the valid sequence
𝛿(⟨𝑚1,… , 𝑚𝑘⟩ , 𝑎) =

⟨

𝑚1,… , 𝑚𝑖, (𝑚𝑖+1 ⋅ ⋯ ⋅ 𝑚𝑘 ⋅ 𝜑(𝑎))
⟩

with 𝑖 chosen maximal. Notice that all singleton sequences
are valid, in particular this is the case for ⟨𝑚1 ⋅ ⋯ ⋅ 𝑚𝑘 ⋅ 𝜑(𝑎)⟩,hence the successor is always well-defined.

A run of  on a word 𝑢 = 𝑎1⋯ 𝑎𝑛 consists in a labelling
𝜆∶ [0, 𝑛] → 𝑄 of positions of the word with states such that
𝜆(0) = 𝑞0 and for all 𝑖 ∈ [1, 𝑛], 𝜆(𝑖) = 𝛿(𝜆(𝑖 − 1), 𝑎𝑖).
Example 3. For the monoid 𝑀𝐾 , the height of all elements
was already depicted in the class diagram of Figure 1. The
associated automaton is depicted in Figure 3. We remark
that with another choice of initial state (like ⟨𝑐⟩ or ⟨𝑎𝑎⟩), the
number of reachable states would drop to 10 states instead
of 24.

The forward Ramsey labelled split obtained on a given
input word is depicted in Figure 4: recall that the height
is computed solely by considering the last element of the
sequence contained in the current state of the run, which
is exactly the label we depict in the height drawing. All
positions labelled ⟨𝑎𝑎⟩ are ∼𝜆,ℎ-equivalent. This ensures
that 𝜑(𝑎𝑏𝑎𝑏𝑎𝑎) = 𝑎𝑎 (the word read between the first
and second occurrence of label 𝑎𝑎) and 𝜑(𝑐) = 𝑐 (the
word read between the second and third occurrence of label
𝑎𝑎), e.g., are idempotent elements. Notice though that these
idempotent elements may be different, as it is the case for this
example, but they belong to the same class, as expected. The
three last positions of label 𝑏 are ∼𝜆,ℎ-equivalent, but the
one before is not equivalent to them, as there is a position

4Notice that for the example of 𝑀 = {1, 2,… , 𝑛} with the maximum
operation, 𝐿(𝑀) = 𝑛 and thus our automaton will have |𝑀|

|𝑀| states,
which is thus a worst case.
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Figure 3: The deterministic automaton associated with 𝑀𝐾 . Green transitions, labelled 𝑐 and 𝑑 are a shortcut to similar transitions
outgoing from all states of the green component. Similarly for the blue transitions. Red transitions are quadruplets of transitions
going to the same state.
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Figure 4: Forward Ramsey labelled split obtained by running the automaton associated with 𝑀𝐾 on a word

in-between of lower height. There are equivalent pairs (𝑥, 𝑦)
and (𝑧, 𝑡) of positions that overlap (i.e. 𝑥 < 𝑧 < 𝑦 < 𝑡),
for instance positions labelled with 𝑎𝑎 and 𝑑. In this case,
the idempotent elements they delimitate are also in the same
class: for instance, 𝜑(𝑐𝑎𝑏𝑎𝑏𝑎𝑎𝑐𝑑) = 𝑐𝑑 (in-between the first
two occurrences of label 𝑑) is equivalent to 𝜑(𝑑𝑑𝑑𝑏𝑏) = 𝑑
(in-between the two last occurrences of label 𝑎𝑎).

On Figure 5, we depict a forward Ramsey labelled split
for an input word with the monoid 𝑀𝐿3

, computing the
transitions of the automaton on-the-fly.

Remark 4. Even if (𝜆, ℎ) is a forward Ramsey labelled split,
it does not imply that ℎ◦𝜆 is a forward Ramsey split. For
instance, as shown by the previous example in Figure 4,

positions 8, 9 and 10 are ∼ℎ◦𝜆-equivalent, but 𝜑(𝑐) ≠
𝜑(𝑐) ⋅ 𝜑(𝑑). These three positions are not in the same ∼𝜆,ℎ-
equivalence class, since 𝜆(9) ≠ 𝜆(10).

Let us turn to the correctness of our construction: given
two states 𝑝 and 𝑞 of , and a word 𝑢, we write 𝑝

𝑢∶𝑘
←←←←←←←←←←←←←←→ 𝑞

to denote the fact that the automaton  goes from state 𝑝
to state 𝑞 when reading 𝑢, and 𝑘 is the minimal height of a
state appearing along the run (not counting the height of 𝑝).
Formally, when 𝑞 is the successor of 𝑝 when reading 𝑎 in
, then 𝑝

𝑎∶ℎ(𝑞)
←←←←←←←←←←←←←←←←←←←←←←←←→ 𝑞, and when 𝑝

𝑢∶𝑘
←←←←←←←←←←←←←←→ 𝑞 and 𝑞

𝑣∶𝓁
←←←←←←←←←←←←←←←→ 𝑟, then

𝑝
𝑢𝑣∶min(𝑘,𝓁)
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 𝑟. The notation 𝑝

𝑢∶𝑘
←←←←←←←←←←←←←←→ 𝑞 is extended to 𝑢 = 𝜀

by taking 𝑞 = 𝑝 and 𝑘 = +∞. The crucial argument allowing
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Figure 5: Forward Ramsey labelled split obtained by running the automaton associated with 𝑀𝐿3
on a word

Colcombet to show the correctness of his construction is
Lemma 5.4 of [4], that we adapt in our case:
Lemma 5. Let 𝑣 and 𝑤 be two valid sequences, 𝑚 be an
element of 𝑀 , and 𝑢 ∈ Σ+ be a non-empty word. If

⟨𝑣, 𝑚⟩
𝑢∶ℎ0(𝑚)
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ ⟨𝑤,𝑚⟩, then 𝑚 ⋅ 𝜑(𝑢) = 𝑚 and 𝑚 ∼ 𝜑(𝑢).

Moreover, 𝑣 = 𝑤.

PROOF. We prove by induction on the length of 𝑢 the
stronger property that whenever ⟨𝑣, 𝑚⟩ 𝑢∶𝑓

←←←←←←←←←←←←←←←→ ⟨𝑤⟩ with 𝑓 ≥
ℎ0(𝑚), then

(1) ⟨𝑤⟩ = ⟨𝑣, 𝑚1,… , 𝑚𝑘⟩ for 𝑘 ≥ 1 and𝑚1,… , 𝑚𝑘 ∈ 𝑀 ;
(2) ℎ0(𝑚1) = ℎ0(𝑚) and 𝑚1 ≤ 𝑚;
(3) 𝑚1⋯𝑚𝑘 = 𝑚 ⋅ 𝜑(𝑢);
(4) if 𝑘 > 1, there exists a decomposition 𝑢 = 𝑢1𝑢2

and 𝑓 ′ ≤ 𝑓 such that ⟨𝑣, 𝑚⟩
𝑢1∶𝑓 ′

←←←←←←←←←←←←←←←←←←←←←←→ ⟨𝑣, 𝑚1⟩ and
𝜑(𝑢2) = 𝑚2⋯𝑚𝑘;

(5) if 𝑢 ≠ 𝜀, 𝑘 = 1 and 𝑚1 = 𝑚, then 𝑚 ∼ 𝜑(𝑢).
The result of the lemma holds by (1), (2) that implies that
𝑘 = 1, and then (3) and (5).

The statement trivially holds for 𝑢 = 𝜀. Assume now (1),
. . . , (5) holds for some non-empty 𝑢 such that

⟨𝑣, 𝑚⟩
𝑢∶𝑓 ′

←←←←←←←←←←←←←←←←←←→
⟨

𝑣, 𝑚′
1,… , 𝑚′

𝑘′
⟩

with 𝑓 ′ ≥ ℎ0(𝑚). Let 𝑎 be a letter such that
⟨

𝑣, 𝑚′
1,… , 𝑚′

𝑘′
⟩ 𝑎∶𝑓
←←←←←←←←←←←←←←←→ ⟨𝑤⟩

for some 𝑓 = ℎ(𝑤) ≥ ℎ0(𝑚). We aim at establishing the
claim for the word 𝑢𝑎.

(1) Assume that 𝑣 = ⟨𝑑1,… , 𝑑𝑖⟩ is not a strict prefix
of 𝑤. Then, by definition of the transition function,
there is some 𝓁 ≤ 𝑖 such that 𝑤 = ⟨𝑑1,… , 𝑑𝓁−1, 𝑑⟩

with 𝑑 = 𝑑𝓁 ⋯ 𝑑𝑖 ⋅ 𝑚′
1⋯𝑚′

𝑘′ ⋅ 𝜑(𝑎). In particular,
this means that 𝑑 ≤ 𝑑𝑖, so ℎ0(𝑑) ≤ ℎ0(𝑑𝑖) by
Lemma 2(1). Furthermore, ℎ0(𝑑𝑖) < ℎ0(𝑚′

1) since
⟨

𝑑1,… , 𝑑𝑖, 𝑚′
1,… , 𝑚′

𝑘′

⟩

is a valid sequence. Us-
ing (2) of the induction hypothesis, ℎ0(𝑚′

1) = ℎ0(𝑚).So ℎ0(𝑑) < ℎ0(𝑚) which contradicts the hypothesis
that 𝑓 = ℎ(𝑤) ≥ ℎ0(𝑚). Hence, 𝑣 is a strict prefix of
𝑤, and thus (1) holds: let 𝑚1,… , 𝑚𝑘 be such that

⟨

𝑣, 𝑚′
1,… , 𝑚′

𝑘′
⟩ 𝑎∶𝑓
←←←←←←←←←←←←←←←→ ⟨𝑤⟩ = ⟨𝑣, 𝑚1,… , 𝑚𝑘⟩

(2) According to the definition of 𝑎∶𝑓
←←←←←←←←←←←←←←←→, two cases can

happen. Either 𝑘 > 1 and by definition of the transition
function 𝑚1 = 𝑚′

1. We directly obtain ℎ0(𝑚1) =
ℎ0(𝑚′

1) = ℎ0(𝑚), by the induction hypothesis. Oth-
erwise, 𝑘 = 1 and we have 𝑚1 = 𝑚′

1⋯𝑚′
𝑘′ ⋅ 𝜑(𝑎)and 𝑓 = ℎ0(𝑚1). This implies 𝑚1 ≤ 𝑚′
1, hence,

by Lemma 2(1), 𝑓 = ℎ0(𝑚1) ≤ ℎ0(𝑚′
1) = ℎ0(𝑚).Moreover, by hypothesis, 𝑓 ≥ ℎ0(𝑚) so that ℎ0(𝑚1) =

ℎ0(𝑚). By induction, we also have 𝑚′
1 ≤ 𝑚. Overall,

(2) holds.
(3) By (3) of the induction hypothesis, 𝑚′

1⋯𝑚′
𝑘′ = 𝑚 ⋅

𝜑(𝑢). By definition of the transition function of , we
obtain 𝑚1⋯𝑚𝑘 = 𝑚′

1⋯𝑚′
𝑘′ ⋅𝜑(𝑎) = 𝑚 ⋅𝜑(𝑢) ⋅𝜑(𝑎) =

𝑚 ⋅ 𝜑(𝑢𝑎). Hence (3) holds.
(4) Assume that 𝑘 > 1. Two cases can happen. If 𝑘′ = 1,

then 𝑘 = 2, 𝑚1 = 𝑚′
1, and 𝑚2 = 𝜑(𝑎). It follows

that 𝑢𝑎 = 𝑢1𝑢2 with 𝑢1 = 𝑢 and 𝑢2 = 𝑎 is a witness
for (4). Otherwise 𝑘′ > 1 (and thus 𝑚1 = 𝑚′

1). Let
𝑢 = 𝑢1𝑢2 be the witness decomposition of (4) obtained
by the induction hypothesis. Using the definition of
the transition function we obtain 𝜑(𝑢2𝑎) = 𝜑(𝑢2) ⋅
𝜑(𝑎) = 𝑚′

2⋯𝑚′
𝑘′ ⋅ 𝜑(𝑎) = 𝑚2⋯𝑚𝑘. Therefore, the

decomposition 𝑢𝑎 = 𝑢′1𝑢
′
2 with 𝑢′1 = 𝑢1 and 𝑢′2 = 𝑢2𝑎is a witness for (4).

(5) Finally, assume 𝑘 = 1 and 𝑚1 = 𝑚. Then, letting
𝑑 = 𝑚′

2⋯𝑚′
𝑘′ ⋅ 𝜑(𝑎), we have 𝑚′

1 ⋅ 𝑑 = 𝑚1 = 𝑚.
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By definition of the transition function, ⟨𝑣, 𝑚′
1, 𝑑

⟩ is
not a valid sequence while ⟨

𝑣, 𝑚′
1 ⋅ 𝑑

⟩ is valid. The
reason why ⟨

𝑣, 𝑚′
1, 𝑑

⟩ is not valid is that ℎ0(𝑑) ≤
ℎ0(𝑚′

1) = ℎ0(𝑚). As𝑚′
1 ⋅𝑑 = 𝑚, we have 𝑑 ≥ 𝑚, thus

ℎ0(𝑑) ≥ ℎ0(𝑚) by Lemma 2(1). Therefore ℎ0(𝑑) =
ℎ0(𝑚). Using (4) of the induction hypothesis for 𝑢, we
get:

⟨𝑣, 𝑚⟩
𝑢1∶𝑓1
←←←←←←←←←←←←←←←←←←←←←←→

⟨

𝑣, 𝑚′
1
⟩ 𝑢2𝑎∶𝑓2
←←←←←←←←←←←←←←←←←←←←←←←←←←→ ⟨𝑣, 𝑚⟩

We have
ℎ0(𝜑(𝑢𝑎)) = ℎ0(𝜑(𝑢1) ⋅ 𝜑(𝑢2) ⋅ 𝜑(𝑎))

= ℎ0(𝜑(𝑢1) ⋅ 𝑚′
2⋯𝑚′

𝑘′ ⋅ 𝜑(𝑎))

= ℎ0(𝜑(𝑢1) ⋅ 𝑑) ≤ ℎ0(𝑑)
(since 𝜑(𝑢1) ⋅ 𝑑 ≤ 𝑑)

ℎ0(𝜑(𝑢𝑎)) ≤ ℎ0(𝑚)

By (3), 𝑚1 = 𝑚 = 𝑚 ⋅ 𝜑(𝑢𝑎). Thus, by Lemma 2(1),
ℎ0(𝜑(𝑢𝑎)) ≥ ℎ0(𝑚), and we obtain that ℎ0(𝜑(𝑢𝑎)) =
ℎ0(𝑚). Using Lemma 2(2) with 𝑚1 = 𝑚 and 𝑚2 =
𝜑(𝑢𝑎), we obtain (5). □

We are finally able to show that  and ℎ define a forward
Ramsey labelled split for any word 𝑢.
Proposition 6. For all finite monoids 𝑀 , let ℎ and  be
respectively the height function and the deterministic au-
tomaton previously defined. For all words 𝑢 ∈ Σ+, let 𝜆 be
the unique run of  on 𝑢. Then, the labelled split (𝜆, ℎ) is
forward Ramsey.

PROOF. Denoting 𝑛 the length of 𝑢, let 𝑥 < 𝑦 and 𝑥′ < 𝑦′
be positions in [0, 𝑛] belonging to the same ∼𝜆,ℎ-equivalence
class. Since they are ∼𝜆,ℎ-equivalent, 𝜆(𝑥) = 𝜆(𝑦) = 𝜆(𝑥′) =
𝜆(𝑦′) is a sequence that ends with the same element 𝑚 of 𝑀 ,
and the height of labels along the run in-between positions
min(𝑥, 𝑥′) and max(𝑦, 𝑦′) is at least ℎ0(𝑚). By Lemma 5, we
deduce that 𝑚 ⋅𝜑(𝑢𝑥,𝑦) = 𝑚, 𝑚 ∼ 𝜑(𝑢𝑥,𝑦), 𝑚 ⋅𝜑(𝑢𝑥′,𝑦′ ) = 𝑚
(and 𝑚 ∼ 𝜑(𝑢𝑥′,𝑦′ ), which we do not use). Lemma 5.3 of
[4] states that for all (𝑚,𝑚′, 𝑚′′) ∈ 𝑀3 such that 𝑚 ⋅ 𝑚′ =
𝑚 ⋅ 𝑚′′ = 𝑚 and 𝑚 ∼ 𝑚′, it holds that 𝑚′ ⋅ 𝑚′′ = 𝑚′.
Applying it with 𝑚′ = 𝜑(𝑢𝑥,𝑦) and 𝑚′′ = 𝜑(𝑢𝑥′,𝑦′ ), we obtain
𝜑(𝑢𝑥,𝑦) ⋅ 𝜑(𝑢𝑥′,𝑦′ ) = 𝑚′ ⋅ 𝑚′′ = 𝑚′ = 𝜑(𝑢𝑥,𝑦) as expected. □
Remark 7. We notice that if we use the height function of
Colcombet defined at (1), mapping a different height to all
elements of the monoid, but keep our smaller automaton, we
can obtain a forward Ramsey split (and not labelled split).
Indeed, this more refined height would still allow us to obtain
Lemma 5, and thus Proposition 6 with a forward Ramsey
split.

Alternative validity conditions We enforced the finite-
ness of the automaton  by limiting ourselves to H-valid
sequences of elements in 𝑀 . As already mentioned, in [4],
Colcombet uses CP-validity.

We now consider the other alternative definitions of
validity, and the automata  they induce, when combining
the three properties H, C, and P. We consider combinations
{H,C}, and {H,C,P}. The combination {H,P} is identical
to the latter one, since (H) and (P) together imply (C).
Depending on the case, the obtained automaton could be
smaller for some validity conditions or another. We anyway
show that the alternative definitions would also give rise to
a forward Ramsey labelled split.

The only place where the specific definition of validity
matters is in the proof of (5) in the induction proof of
Lemma 5, when the sequence ⟨𝑣, 𝑚1, 𝑑⟩ is not valid but
⟨𝑣, 𝑚1 ⋅ 𝑑⟩ is. We thus reprove (5) of Lemma 5 for the two
alternative definitions of valid sequences, using the very
same notations as in the original proof.
PROOF (WITH {H,C}). Assume 𝑛 = 1 and 𝑚′

1 = 𝑚. Then,
letting 𝑑 = 𝑚2⋯𝑚𝑘 ⋅ 𝜑(𝑎), we have 𝑚1 ⋅ 𝑑 = 𝑚′

1 = 𝑚.
By definition of the transition function, ⟨𝑣, 𝑚1, 𝑑⟩ is not a
valid sequence while ⟨𝑣, 𝑚1 ⋅ 𝑑⟩ is valid. We only prove
that ℎ0(𝑑) = ℎ0(𝑚), the rest of the proof being the same.
Suppose that ⟨𝑣, 𝑚1, 𝑑⟩ does not satisfy (C), then 𝑚1 ≮ 𝑑.
Meanwhile, by (2), 𝑚1 ∼ 𝑚 = 𝑚1 ⋅ 𝑑, hence 𝑚1 ≤ 𝑑. So,
𝑚1 ∼ 𝑑 ∼ 𝑚 thus ℎ0(𝑚1) = ℎ0(𝑑) = ℎ0(𝑚). Otherwise,
suppose that ⟨𝑣, 𝑚1, 𝑑⟩ does not satisfy (H), then as in the
original proof, ℎ0(𝑑) ≤ ℎ0(𝑚1) = ℎ0(𝑚). As 𝑚1 ⋅ 𝑑 = 𝑚, we
have 𝑑 ≥ 𝑚 thus ℎ0(𝑑) ≥ ℎ0(𝑚), so that ℎ0(𝑑) = ℎ0(𝑚).□
PROOF (WITH {H,C,P}). Assume 𝑛 = 1 and 𝑚′

1 = 𝑚.
Then, letting 𝑑 = 𝑚2⋯𝑚𝑘 ⋅𝜑(𝑎), we have 𝑚1 ⋅𝑑 = 𝑚′

1 = 𝑚.
By definition of the transition function, ⟨𝑣, 𝑚1, 𝑑⟩ is not a
valid sequence while ⟨𝑣, 𝑚1 ⋅ 𝑑⟩ is valid. Also, 𝑚1 ⋅ 𝑑 = 𝑚
thus 𝑚1 ≥ 𝑚. By (2), 𝑚1 ≤ 𝑚, thus 𝑚 ∼ 𝑚1. Hence
⟨𝑣, 𝑚1, 𝑑⟩ satisfies (P). Hence, ⟨𝑣, 𝑚1, 𝑑⟩ does not satisfy
either (C) or (H). The rest of the proof is the same as for
{H,C}. □

Computing the labelled split of a word We are now
interested in understanding what is the time complexity for
computing the pair (𝜆, ℎ), with respect to 𝑀 and 𝑢. For that,
we suppose that products in 𝑀 are performed in time given
by some parameter 𝑇𝑀 (that we may consider polylogarith-
mic in the size of 𝑀). We suppose also that the lattice of
-classes of 𝜑(Σ∗) has been precomputed (in time linear in
|𝑀| by using the bi-Cayley graph of 𝜑(Σ∗), the submonoid
of 𝑀 generated by 𝜑(Σ)). The height ℎ0(𝑚) of each element
𝑚 ∈ 𝑀 can be obtained from the bi-Cayley graph by
computing its strongly connected components as well as the
direct acyclic graph relating them, in linear time in |𝑀|: we
thus now suppose that ℎ0(𝑚) has been precomputed and thus
can be questionned in constant time. We only present the
computation when considering the 𝐻-validity: it would be
entirely similar with the two other validity conditions.

First, notice that when computing the labelled split of a
word 𝑢, the automaton does not need to be entirely computed
a priori, but may rather be computed on-the-fly with a
possible storage of already computed values. Given a state
⟨𝑚1,… , 𝑚𝑘⟩, and a letter 𝑎, the successor state can be
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computed by iteratively checking validity of sequences of
the form ⟨

𝑚1,… , 𝑚𝑖, (𝑚𝑖+1⋯𝑚𝑘 ⋅ 𝜑(𝑎))
⟩ for decreasing 𝑖:

for each step 𝑖, this costs 𝑇𝑀 to compute the product (since
the comparison of heights is then supposed to be performed
in constant time). Considering amortised complexity, each
element that is added to the sequence is later aggregated at
most once during a validity check. Overall, the complexity is
thus of the form 𝑛 𝑇𝑀 , where 𝑛 is the size of the input word.

3. Fast infix evaluation
In this last section, we consider an application of the

previous construction, proposed in [4, 9]: given a regular
language 𝐿 and some fixed word 𝑢, an 𝐿-infix query in 𝑢
is a query of the form “given positions 𝑖 ≤ 𝑗 in 𝑢, does 𝑢𝑖,𝑗belong to 𝐿?”. After a precomputation that must be linear in
the length 𝑛 of 𝑢, the goal is to be able to answer any infix
query in constant time (with respect to 𝑛).

In [9], Bojańczyk answers positively to this goal, in the
case where 𝐿 is defined by a morphism 𝜑∶ Σ∗ → 𝑀
of monoids: 𝐿 is then the preimage 𝜑−1(𝐴) of a subset
𝐴 of the finite monoid 𝑀 . To do so, he precomputes a
factorisation forest for the word 𝑢, in time linear in |𝑀| and
𝑛, then allowing queries to be answered in time linear in |𝑀|.
By computing forward Ramsey splits as in [4], one would
also obtain an algorithm answering queries in time linear
in |𝑀|. The accelerating pointers techniques developed for
non-deterministic automata in [10] could allow one to obtain
a (𝑇𝑀 log2 |𝑀|) complexity. The precomputation time
would be the same as the one described in the end of the
previous section, i.e. 𝑛 𝑇𝑀 .

We present a new algorithm for solving the𝐿-infix query
problem. The precomputation consists in building a forward
Ramsey labelled split for 𝑢 as well as some additional infor-
mation. The query answering can then be performed in time
logarithmic in 𝐿(𝑀), leading to an improvement of one or
two exponentials with respect to previous results, depending
on 𝑀 .
A new precomputation Consider a monoid 𝑀 and a word
𝑢 = 𝑎1⋯ 𝑎𝑛. First, the forward Ramsey labelled split
(𝜆, ℎ) for the word 𝑢 is computed as explained in Section 2.
Before moving to the query, we need to compute additional
information, inspired by the accelerating pointers of [10], as
follows.

• A suffix operator
𝗌𝗎𝖿𝖿 ∶ [0, 𝑛] ×𝑀 → ([0, 𝑛] ×𝑀) ∪ {⊥}

that associates with each pair (𝑖, 𝑚) of position and
monoid element, the pair (𝑗, 𝑚′) composed of the
smallest position 𝑗 > 𝑖 labelled with a sequence
ending with 𝑚, and the value 𝑚′ = 𝜑(𝑢𝑖,𝑗). When there
is no such position 𝑗, we let 𝗌𝗎𝖿𝖿 (𝑖, 𝑐) be the dummy
element⊥. We can compute 𝗌𝗎𝖿𝖿 efficiently, in a single
pass of the word from right to left. For all 𝑚 ∈ 𝑀 , we
let 𝗌𝗎𝖿𝖿 (𝑛, 𝑚) = ⊥, and for all 0 ≤ 𝑖 ≤ 𝑛−1, 𝗌𝗎𝖿𝖿 (𝑖, 𝑚)

being equal to
⎧

⎪

⎨

⎪

⎩

(𝑖 + 1, 𝜑(𝑎𝑖)) if 𝜆(𝑖 + 1) ends with 𝑚
⊥ otherwise, if 𝗌𝗎𝖿𝖿 (𝑖+1, 𝑚) = ⊥
(𝑗, 𝜑(𝑎𝑖) ⋅ 𝑚′) otherwise, if 𝗌𝗎𝖿𝖿 (𝑖+1, 𝑚) = (𝑗, 𝑚′)

• A prefix operator
𝗉𝗋𝖾∶ [0, 𝑛]×{0,… , 2𝐿(𝑀)−2} → ([0, 𝑛]×𝑀)∪{⊥}

that associates with each pair (𝑖,𝓁) of position and
height, the pair (𝑗, 𝑚′) composed of the greatest po-
sition 𝑗 < 𝑖 with a height at most 𝓁, and the value
𝑚′ = 𝜑(𝑢𝑗,𝑖). When there is no such position 𝑗, we
let 𝗉𝗋𝖾(𝑖, 𝑐) be the dummy element ⊥. As for 𝗌𝗎𝖿𝖿 ,
𝗉𝗋𝖾 can be efficiently computed, in a single pass from
left to right. For all 𝓁 ∈ {0,… , 2𝐿(𝑀) − 2}, we let
𝗉𝗋𝖾(0,𝓁) = ⊥, and for all 1 ≤ 𝑖 ≤ 𝑛, 𝗉𝗋𝖾(𝑖,𝓁) being
equal to
⎧

⎪

⎨

⎪

⎩

(𝑖 − 1, 𝜑(𝑎𝑖)) if ℎ◦𝜆(𝑖 − 1) ≤ 𝓁
⊥ otherwise, if 𝗉𝗋𝖾(𝑖−1,𝓁) = ⊥
(𝑗, 𝑚′ ⋅ 𝜑(𝑎𝑖)) otherwise, if 𝗉𝗋𝖾(𝑖−1,𝓁) = (𝑗, 𝑚′)

Computing the forward Ramsey labelled split (𝜆, ℎ),
as explained in Section 2, takes a time complexity 𝑛 𝑇𝑀 .
Moreover, one step in the computation of 𝗌𝗎𝖿𝖿 and 𝗉𝗋𝖾
requires a test of pairs in [0, 𝑛]×𝑀 and a product in 𝑀 , thus
a time of log2(𝑛|𝑀|) + 𝑇𝑀 . Thus, computing the mappings
𝗌𝗎𝖿𝖿 or 𝗉𝗋𝖾 requires total time


(

𝑛 |𝑀| (log2(𝑛|𝑀|) + 𝑇𝑀 )
)

that is the overall complexity of the precomputation. Notice
that this time is sufficient to also precompute the lattice of
-classes of 𝑀 , required at the beginning of the precompu-
tation.
A new algorithm to answer 𝐿-infix queries Using the
forward Ramsey labelled split (𝜆, ℎ), as well as operators
𝗌𝗎𝖿𝖿 and 𝗉𝗋𝖾, 𝐿-infix queries can be answered efficiently
as follows. Consider a pair (𝑖, 𝑗) of positions of 𝑢, the
evaluation of 𝜑(𝑢𝑖,𝑗) is performed by the three following
steps, graphically summarised in Figure 6.

1. Among the positions of {𝑖,… , 𝑗 − 1} with minimal
height 𝓁 (which we can compute by using a binary
search, as we explain afterwards), find 𝑘1 the max-
imal position. Notice that 𝑘1 can be computed as
𝗉𝗋𝖾(𝑗,𝓁) = (𝑘1, 𝑚1), and that 𝑘1 ∈ {𝑖,… , 𝑗 − 1} by
definition of 𝓁.

2. If 𝑘1 = 𝑖, the query can be directly answered:𝜑(𝑢𝑖,𝑗) =
𝑚1. Otherwise (𝑘1 > 𝑖), we let 𝑚 be the last element
of 𝜆(𝑘1), and we compute (𝑘2, 𝑚2) = 𝗌𝗎𝖿𝖿 (𝑖, 𝑚). By
construction ℎ◦𝜆(𝑘2) = ℎ◦𝜆(𝑘1) = ℎ0(𝑚) and all
states between 𝑘2 and 𝑘1 have a greater or equal
height; thus by Lemma 5, we obtain the much stronger
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𝑖 𝑗𝑘1𝑘2 𝑘3

⟨… , 𝑚⟩⟨… , 𝑚⟩ ⟨… , 𝑚⟩ 1 𝗉𝗋𝖾(𝑗,𝓁) = (𝑘1, 𝑚1)𝗌𝗎𝖿𝖿 (𝑖, 𝑚) = (𝑘2, 𝑚2) 2 3
𝗌𝗎𝖿𝖿 (𝑘2, 𝑚) = (𝑘3, 𝑚3)

𝑚2 𝑚3 𝑚1

= 𝑚3

by forward Ramsey

Figure 6: Infix evaluation

property that 𝜆(𝑘2) = 𝜆(𝑘1): not only the last elements
of the two sequences are equal, the whole sequences
are equal.

3. If 𝑘1 = 𝑘2, then, the query can be answered since
𝜑(𝑢𝑖,𝑗) = 𝜑(𝑢𝑖,𝑘2 )⋅𝜑(𝑢𝑘1,𝑗) = 𝑚2 ⋅𝑚1. Otherwise (𝑘2 <
𝑘1), we let (𝑘3, 𝑚3) = 𝗌𝗎𝖿𝖿 (𝑘2, 𝑚). The same remark
as before leads to 𝜆(𝑘1) = 𝜆(𝑘2) = 𝜆(𝑘3). By con-
struction, 𝑘1, 𝑘2, 𝑘3 are thus ∼𝜆,ℎ-equivalent. Using
the forward Ramsey property, 𝜑(𝑢𝑘2,𝑘3 ) = 𝜑(𝑢𝑘2,𝑘3 ) ⋅
𝜑(𝑢𝑘3,𝑘1 ) = 𝑚2, thus, the query can be answered:
𝜑(𝑢𝑖,𝑗) = 𝜑(𝑢𝑖,𝑘2 ) ⋅ 𝜑(𝑢𝑘2,𝑘3 ) ⋅ 𝜑(𝑢𝑘3,𝑘1 ) ⋅ 𝜑(𝑢𝑘1,𝑗) =
𝑚2 ⋅ 𝑚3 ⋅ 𝑚1.

The only operation in these steps requiring non-constant
complexity is the search of the height 𝓁, in order to find 𝑘1.
An immediate solution consists in inspecting

𝗉𝗋𝖾(𝑗, 0), 𝗉𝗋𝖾(𝑗, 1),… , 𝗉𝗋𝖾(𝑗, 2𝐿(𝑀) − 2)

sequentially, stopping the first time we get a pair with a
first component greater than or equal to 𝑖, the searched
height 𝓁 being the corresponding index. This would require
a complexity linear in 𝐿(𝑀) in the worst case. A more
clever solution consists in searching for 𝓁 with a binary
search. Indeed, letting 𝑖𝑧 the first component of 𝗉𝗋𝖾(𝑗, 𝑧)
for all 𝑧 ∈ {0, 1,… , 2𝐿(𝑀) − 2} if this is a pair, and −1
otherwise, we notice that 𝑖0 ≤ … ≤ 𝑖2𝐿(𝑀)−2 since every
position with a height at most 𝑧 has also a height at most
𝑧 + 1. We can therefore look for the leftmost index of a
position greater than or equal to 𝑖 in this ordered list, in time
log2(2𝐿(𝑀) − 1). In summary, we have obtained a query
evaluated in complexity 

(

𝑇𝑀 log2(𝐿(𝑀))
).

4. Conclusion
We introduced forward Ramsey labelled splits, a weaker

notion than forward Ramsey splits. We have explained how
they can be computed by deterministic automata, taking
profit of the regular -length to obtain smaller automata
than for forward Ramsey splits. As future works, it would be
interesting to find a variant of our construction with a param-
eter tractable complexity, i.e. with a number of states of the
form 𝑓 (𝐿(𝑀)) poly(|𝑀|) (compared with |𝑀|

2𝐿(𝑀)−1 in
our current construction). We also plan to study some other
tasks on words that can be answered by studying forward
Ramsey labelled splits, instead of forward Ramsey splits or
factorisation forests.
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