Notes and Comments on S. Mallat’s Lectures at Collège de France (2024) - Archive ouverte HAL
Cours Année : 2024

Notes and Comments on S. Mallat’s Lectures at Collège de France (2024)

Résumé

The 2024 course by Stéphane Mallat, Professor at the Collège de France, revisits the theme of understanding 'Why it works' in mathematical terms. It focuses on comprehending the very recent results of generative models through Score Diffusion. Thus, learning and generation through random sampling are addressed. The mathematical framework in high dimension is probabilistic, and the key concept is independence. Monte Carlo methods lie at the heart of calculations in high dimension (Metropolis), especially with the Markov chains introduced in 2023. Notions introduced by Fisher (model, inference, etc.) and Shannon (entropy) are reviewed before tackling Score Matching and Score Diffusion algorithms with the Ornstein-Uhlenbeck equation. Neural networks (U-Net) used for denoising provide an excellent tool in this perspective.
Fichier principal
Vignette du fichier
Resume-2024_EN.pdf (8.71 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04550771 , version 1 (18-04-2024)
hal-04550771 , version 2 (23-04-2024)

Licence

Identifiants

  • HAL Id : hal-04550771 , version 2

Citer

Jean-Eric Campagne. Notes and Comments on S. Mallat’s Lectures at Collège de France (2024). Master. Learning and generation through random sampling, https://www.college-de-france.fr/fr/agenda/cours/apprentissage-et-generation-par-echantillonnage-aleatoire, France. 2024, pp.162. ⟨hal-04550771v2⟩
53 Consultations
24 Téléchargements

Partager

More