
HAL Id: hal-04550771
https://hal.science/hal-04550771v2

Submitted on 23 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Notes and Comments on S. Mallat’s Lectures at Collège
de France (2024)
Jean-Eric Campagne

To cite this version:
Jean-Eric Campagne. Notes and Comments on S. Mallat’s Lectures at Collège de France
(2024). Master. Learning and generation through random sampling, https://www.college-de-
france.fr/fr/agenda/cours/apprentissage-et-generation-par-echantillonnage-aleatoire, France. 2024,
pp.162. �hal-04550771v2�

https://hal.science/hal-04550771v2
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

Notes and Comments on S. Mallat’s Lectures at
Collège de France (2024)

Learning and generation using random sampling

J.E Campagne ∗

Janv. 2024; rév. 19 avril 2024

∗If you have any comments or suggestions, please send them to jeaneric DOT campagne AT gmail
DOT com

2

Table des matières

1 Foreword 6

2 Lecture of January 17th 6

2.1 Introduction . 6

2.2 Digressions around two emblematic examples with GPT-4 7

2.3 What is the mathematical framework? . 13

2.4 Link between supervised and unsupervised training 15

2.5 What are the issues? . 17

2.6 Panorama of the Mathematical Domain . 18

2.6.1 Modeling . 18

2.6.2 Sampling . 21

2.7 Some illustrations . 23

2.8 Course Outline . 27

3 Lecture of January 24th 27

3.1 Random Models: Why? . 27

3.2 The Monte Carlo Method . 29

3.2.1 Volume Calculation . 32

3.2.2 Why Not Perform a Deterministic Calculation? 34

3.2.3 Quasi-Monte Carlo Method . 36

3.2.4 Limits of the Monte Carlo Method 37

3.3 Probability Modeling, Learning/Inference 38

3.3.1 Small Example: Spam Detection . 38

3

3.3.2 Learning: Finding the Best Approximation 39

3.3.3 Inference . 41

3.3.4 Which type of modeling to choose? Examples 41

4 Lecture of January 31st 47

4.1 Causal and Non-causal Schemes . 48

4.2 Markov Field . 49

4.2.1 Definition and Properties . 49

4.2.2 Two Generic Examples . 52

4.3 Independence Properties . 56

5 Lecture of Feb. 7th 63

5.1 Introduction . 63

5.2 Parameter Learning . 64

5.2.1 Fisher and Shannon Frameworks 64

5.2.2 Optimization to find θ∗ . 66

5.3 The linear case . 69

5.4 Score Matching . 71

5.5 Study of an example: ϕ4 potential . 73

6 Lecture of February 14th 75

6.1 Total variation distance . 76

6.2 The Hessian of DKL in the Linear Case . 79

6.3 Fisher Divergence (Score Matching) . 80

6.4 Rewriting of I(p, pθ) . 81

4

6.5 Example: Linear Energy Case . 82

6.6 Convergence of Score Matching . 83

6.7 An Illustrative Example of the Score Matching Problem 85

6.8 Conditions for Using Score Matching . 87

7 Session of Feb. 28th 93

7.1 Introduction . 93

7.2 The One-Dimensional Case . 94

7.3 Ergodicity of a Deterministic Transformation 95

7.4 Uniform Measure on [0, 1] . 98

7.5 Rejection Techniques . 102

7.5.1 Simple Version . 102

7.5.2 Version based on q(x) . 103

7.5.3 Acceptance Probability . 104

7.6 Importance Sampling . 105

7.7 Beyond "Rejection": Progression of Ideas 107

7.8 Markov Chain . 109

8 Session of March 6 111

8.1 Markov Chains: Example . 112

8.2 Invariant Law . 114

8.3 Reversibility Conditions . 115

8.4 Convergence towards the invariant distribution 117

8.5 Spectral analysis viewpoint of the invariant measure 120

8.6 Metropolis-Hastings Algorithm . 121

5

9 Session of March 13 126

9.1 Ornstein-Uhlenbeck Equation . 128

9.2 Denoising Problem . 130

9.3 Denoising Network . 132

9.4 Transition from Memorization to Generalization 133

9.5 Opening towards some research directions 137

9.5.1 Return to denoising: wavelet bases 137

9.5.2 Denoising networks: What do they do? 140

9.5.3 Results of numerical experiments 141

9.5.4 Reflections on the generative model by score diffusion 143

9.5.5 Case study: turbulence . 146

9.6 Conclusion of this year . 150

10 NDJE. Quelques ajouts personnels 151

10.1 NDJE. Hybrid/Hamiltonian Monte Carlo 151

10.2 Normalizing Flows . 157

6

1. Foreword

Disclaimer:In the following, you will find my notes taken in a free style as they
come, and reshaped with some comments ("ndje" or dedicated sections). It is clear that
errors may have slipped in, and I apologize in advance for them. You can use the email
address provided on the cover page to send them to me. I wish you a good reading.

Please note that on the website of the Collège de France, you will find all the videos
of the courses, seminars, as well as the course notes not only for this year but also for
previous years 1.

I would like to thank the entire team of the Collège de France who records and edits
the videos without which the editing of these notes would be less comfortable.

Also note that S. Mallat 2 provides free access to chapters of his book "A Wavelet
Tour of Signal Processing", 3rd edition, as well as other materials on his ENS website.

This year, 2024, marks the seventh of the Data Science chair cycle by S. Mallat,
with the theme being: Learning and generation by random sampling.

Finally, in the GitHub repository 3, I have put notebooks of numerical applications
illustrating the course since 2022. As much as possible, the notebooks can be run on
Google Colab.

2. Lecture of January 17th

2.1 Introduction

The theme of this year Learning and generation by random sampling fits perfectly
with the recent developments of the previous years, which have been marked by the release
starting from 2022 of the conversational assistant ChatGPT 4 designed by the American

1. https://www.college-de-france.fr/chaire/stephane-mallat-sciences-des-donnees-chaire-statutaire/
events

2. https://www.di.ens.fr/~mallat/CoursCollege.html
3. https://colab.research.google.com/github/jecampagne/cours_mallat_cdf
4. https://openai.com/blog/chatgpt

https://www.college-de-france.fr/chaire/stephane-mallat-sciences-des-donnees-chaire-statutaire/events
https://www.college-de-france.fr/chaire/stephane-mallat-sciences-des-donnees-chaire-statutaire/events
https://www.di.ens.fr/~mallat/CoursCollege.html
https://colab.research.google.com/github/jecampagne/cours_mallat_cdf
https://openai.com/blog/chatgpt

7

company OpenAI, specialized in the field of artificial intelligence. ChatGPT is built around
a language model encoded in an architecture called transformer 5 with an enormous
number of parameters (> 1018). Now, alternative models to ChatGPT and its counterpart
Gemini from Google exist, and you can find French-origin alternatives.

In addition to tasks related to language processing, images, sounds, etc., the possi-
bilities of generation and interpretation are two functionalities that pose challenges. It
is worth noting that the possibility of generation can lead to drifts as often highlighted
in the media. However, within the scope of the course, these language models challenge
conventional wisdom. Not only can we question ’how’ and ’why’ these models are so ef-
fective even though they can make mistakes, but they also disrupt the way tasks are
traditionally divided in statistical learning.

Indeed, it is customary to distinguish (one can refer to previous courses such as
2018, 2019 for example):
• Supervised learning where we have data x, and we want to find a response y:

e.g., the class of an object for a classification task, or the value of a quantity for
a regression task. Supervision lies in the fact that to perform a task, we have a
training set {xi, yi}i≤n where we know the response yi for each data xi.

• Unsupervised learning for which the aim is to build a model of the data x. We will
see that in this case, the question arises of modeling the probability density p(x)
which allows for generating new data through sampling.

However, we observe that these two types of learning tend to be used complementarily,
especially in the approach of transformers.

2.2 Digressions around two emblematic examples with GPT-4

S. Mallat gives us two examples of results from GPT-4 following his requests. The
first example concerns an image generation. He submitted the request (the original was in
French): Image illustrating a course at the Collège de France on: "Learning and Generation
by Random Sampling". The result is visible in Figure 1. It is clear that the image is of very
good quality and above all that it has a lot of indirect semantic content. We clearly have

5. NDJE: architecture related to the attention mechanism, its implementation dates back to 2017:
https://arxiv.org/pdf/1706.03762.pdf

https://arxiv.org/pdf/1706.03762.pdf

8

Figure 1 – Generation of an image by Chat GPT-4 from a simple request formulated in
natural language. The image is accompanied by a short text explaining what the Collège
de France is.

a model of the world which, particularized by the request, gives according to this model
a course at the Collège de France. We can see a sort of temple of knowledge with Greek
statues, an amphitheater where we can distinguish a certain diversity of the audience
with characteristics of people more or less old (e.g., hair color) which may differ from the
actual audience. The male gender is clearly in the majority, which, however, reflects reality
quite well. We note a language bias since the title of the course has been translated into
English, which was not requested, furthermore, we clearly distinguish a blackboard with
formulas/graphs which denotes a mathematics course, which was not directly suggested
either. Finally, the person giving the course is a white man wearing glasses, which reflects
the present situation quite well. Of course, we could further detail this image which is
extremely rich in underlying information (note the diversity of the participants behind
the speaker). How are such capabilities possible?

9

Figure 2 – Image for which ChatGPT-4 is asked: "Can you describe this image for me?".

The second example concerns the ability to interpret the image (Fig. 2) taken
by a 16M pixel (8-bits RGB) mobile phone and uploaded to the site through the Dari
interface, for which the simple natural language request is given (original was in French):
"Can you describe this image for me?". The response given is as follows (NDJE. except
for transcription error(s), and the GPT response was in French too):

The image shows a well-appointed room with wooden furniture. In the center, there
is a turned-off television placed on a low cabinet with light-colored drawers. On each
side of the cabinet, wooden cupboards are integrated into the wall, painted in yellow
with orange and green borders. On the right, a bookshelf filled with books is against
the wall, and there seems to be a door or a wardrobe adjacent to this bookshelf. The
room appears to be illuminated by soft light, and you can see a piece of blanket or
sheet, suggesting that the photo was taken from a bed.

Note that this type of task of describing an image is not new; it dates back to the early
work on computer vision. Five to six years ago, S. Mallat tells us, for such requests, there
were a few labels given as responses (e.g., "image of an apple"). Here, with GPT-4, we
are clearly not playing in the same category, if we use a sports vocabulary. Not only is
the formulated response grammatically correct, but what is impressive is the accuracy of

10

all the details mentioned, and the finesse of the analysis with the underlying context to
formulate the last proposition.

The trained language model is therefore capable of generating and interpreting,
but also of answering all kinds of questions. This is quite impressive even if there can
be errors, and we understand the multiple questions that such capabilities raise, and the
possibility of multiple uses. There is a considerable gap between, on one hand, what is
produced by the industry which increasingly uses such systems that are being developed
to be adapted to specific problems of this or that domain, and on the other hand, the
research that is being done in parallel on algorithms and on understanding performance.

On the industrial side, to train such systems, it is necessary not only to acquire data,
organize it, sometimes sort it, eliminate, select, etc., which requires a lot of human re-
sources, but also, due to their gigantism, these networks can only be trained in specialized
centers requiring very important material resources 6 with equally considerable operating
costs. S. Mallat tells us that we don’t even have the figures anymore because they become
sensitive. For example, Gemini 7 from Google and GPT-4 are composed of approxima-
tely 1 trillion parameters, i.e., 1018 (Fig. 3). And Serge Escalè from the ITSocial website
indicates that "the learning time of OpenAI is about 6 months. Thus the 10,000 Nvidia
V100 GPUs (graphics processing units) used for computation consume 7,200 Mwh," which
corresponds to an associated electrical cost, not to mention the environmental cost.

It should be noted that from an engineering (management) point of view, companies
developing such architectures are reorganizing themselves to optimize their developments
in order to ensure their sustainability. But this also entails a change in the way the
performance of these models is disseminated: see for example the comparison rendering
of Gemini Ultra and GPT-4 by D. Hassabis (CEO and co-founder of Google Deepmind)
and S. Pichai (CEO of Google and Alphabet) on the site https://blog.google/technology/
ai/google-gemini-ai/#sundar-note. How can we verify what is being claimed? Until now,
S. Mallat tells us, algorithms were in the public domain, not out of openness but simply
because the value resided in the data, so it was interesting to let the algorithms develop
in the public domain. From now on, the value is in the algorithms. This is what happens
in language models (conversational assistants) where we have access (paid for the most

6. NDJE: see https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8
7. https://deepmind.google/technologies/gemini

https://blog.google/technology/ai/google-gemini-ai/#sundar-note
https://blog.google/technology/ai/google-gemini-ai/#sundar-note
https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8
https://deepmind.google/technologies/gemini

11

Figure 3 – Evolution of the number of parameters of AI architectures over time.

recent versions) to a simple interface. The case of OpenAI is somewhat exemplary for
this company which, as its name indicates, initially had the intention of producing free
software benefiting all humanity. After March 2019, it is a whole different story because
the company must give dividends to shareholders. The game changes completely, but in
a way it is a natural development (business model) of a company that needs capital to
maintain its leadership and support competition.

All this still poses problems when conducting research on such language model ar-
chitectures. Firstly, we generally do not have access to the same resources (financial,
human, material), and secondly, imagine that a development allows you to obtain slightly
better results for ImageNet-type image classification 8, your result will go completely un-
noticed, simply because the problem is much less difficult than the ones involved in the
two aforementioned examples. So, what is the relevance of "academic" research, what
is the impact of a researcher, how can he/she advance knowledge? These are important
questions, and the good news is that there are many possible research directions.

For example, by addressing domains where the data resource is not as important as
that used to train language models, and where algorithms must integrate more a priori

8. https://www.image-net.org/

https://www.image-net.org/

12

information 9 and where the architectures are much smaller. Another research direction
is in a way a transfer of know-how. Indeed, if transformer architectures are suitable for
processing language, it is interesting to try them in other fields. For example, chemistry
to produce new molecules, or pharmacology to obtain new drugs, materials science, fluid
mechanics, physics of the infinitely small and infinitely large, and many others, all these
fields benefit from the qualities of these new architectures.

Finally, there is a research domain that has been the subject of the lecture se-
ries since 2017, it is trying to understand. Where do emerging phenomena come from?
ChatGPT/Gemini systems are trained in an unsupervised manner. Typically with texts
collected on the Web, one can initially do training of the type "give me the missing word",
then "the next sentence", etc. But currently, training is more complex with unsupervised
phases and reinforcement phases, in order to control aspects related to "ethics" and/or
"compliance with the law" for example. But understanding what happens in these archi-
tectures once trained is a difficult subject. S. Mallat mentions Benoit Sagot’s lecture on
language model engineering aspects 10.

This year’s and next year’s course is aimed at building the mathematics that
help understand what happens when modeling for the purpose of generating new data.
Mathematics, S. Mallat tells us, are established over the long term, so patience.

NDJE. Before continuing, I would like to address a topic that could of course be
developed further. You may wonder at this point: what is the relevance of these lecture
notes? Indeed, why not have GPT-4/Gemini watch S. Mallat’s lecture and ask it to trans-
cribe it, summarize it, clarify/illustrate a point, etc. I have no doubt that one day this will
be done. The added value does not lie in simply transcribing the lecture. It is a rendering
that, if it seems clear to me, will undoubtedly resonate with the reader. For example, you
will sometimes see referenced articles, illustrations different from those presented, or di-
gressions that tend to explain certain points that S. Mallat does not have time to address.
Furthermore, having written the notes since 2017, I relate these lectures because S. Mallat
cannot revisit what he has done in previous years every year, it would not make sense. The
GitHub repository was implemented with the same intention of providing illustrations of
concepts/algorithms in the form of Python code with light numerical experiments, related

9. NDJE: see the 2020 Course on A Priori Information in High Dimension.
10. https://www.college-de-france.fr/fr/chaire/benoit-sagot-informatique-et-sciences-numeriques-chaire-annuelle.

https://www.college-de-france.fr/fr/chaire/benoit-sagot-informatique-et-sciences-numeriques-chaire-annuelle.

13

to the theoretical points of the course. It is clear that a model capable of answering all
queries can exactly do the same work. But the parallel can be drawn between having all
possible math books available and the added value of a teacher who, to develop his/her
course, selects chosen excerpts with a certain bias, to create a coherent outline that can
be understood by his/her audience. Moreover, the energy expenditure of a brain is 20 to
40 Watts which is nothing compared to the usage of current models.

2.3 What is the mathematical framework?

We are working within a probabilistic framework, which has immediate conse-
quences on the tools used. However, why choose such a framework? We can refer to
the discussions in the 2022 Course Sec. 2.2 and the 2023 Course Sec. 3.1 and Sec. 3.2.
In fact, in the case of supervised learning, the response y can be seen as the result of a
deterministic function of the data (y = f(x)), and where x ∈ Rd can even be confined to a
low-dimensional manifold which tends to simplify the problem. Therefore, the probabilis-
tic framework is motivated by the choice of modeling above all (unsupervised learning).
But in itself, this choice of modeling is not one for the following reasons.

First, we have data for which we want to establish a model, that is to say, naturally
we are in the framework of statistical estimation, i.e., we want to calculate probabilities.

However, more fundamentally, the point that tilts the balance towards a probabilistic
framework is that we are dealing with data of very high dimension by the nature of the
data. We know that d is of the order of a few million for common images. However, we
want to estimate probabilities of the type p(x) (or p(x|y)), which is "impossible" in general,
because of the sacred curse of dimensionality 11. For memory, it translates into the fact
that the number of necessary samples n grows exponentially with the dimension d. In
order for the problem to be manageable, we need to inject a priori knowledge based on
the fact that emergence must be the result of underlying structuring.

The ubiquitous notion that allows us to get out of this is independence (cf. Courses
2022 and 2023). Indeed, if a data point x is a vector of dimension d, (x1, . . . , xd) and if

11. NDJE. See specifically the 2018 Course but it is a recurring theme in other courses as well.

14

each component xj follows a distribution pj, then

p(x) = p(x1, . . . , xd) =
d∏

j=1
pj(xj) (1)

which means that we have replaced the problem of finding a function of d variables with
the search for d functions of only one variable. Breaking down the difficult problem into
d easier problems helps combat the curse of dimensionality.

That being said, this "total" independence is illusory in many practical cases: you
can imagine, for example, the contours of an object in an image naturally relate pixels
that do not necessarily have to be neighbors; or you are likely feeling the influence on our
daily lives right now (e.g., oil prices) of decisions made by leaders of countries that are
physically very distant from us. What to do in these cases? We can always write 12

p(x) = p(x1)p(x2|x1)p(x3|x1, x2) · · · = p(x1)
d∏

j=2
p(xj|x1, . . . , xj−1) (2)

However, conditional probabilities become high-dimensional as j approaches d. The ques-
tion is whether we can make assumptions about the dependence of xj on all the variables
(x1, . . . , xj−1)? Can’t we invoke reduction? Probably, for example: pixels involved in the
contours of an object are not dependent on all pixels in the image (and vice versa); si-
milarly, the price of oil, in a first approximation, depends on decisions made by a few
large oil-producing countries to turn the tap on or off, and on the volume of demand
from consumer countries (admittedly more numerous). Thus, we feel that we can make
assumptions about the level of interdependence of the variables x, or we can look for
representations x → x′ such that the variables x′ are less interactive than the original
variables.

The challenge in each problem is to understand the structures of conditional
probabilities. What is remarkable about the aforementioned large language models is
that, in essence, they calculate nothing more or less than conditional probabilities. For
example, to generate the image y in Figure 1 to satisfy the query x (the sentence submitted
to GPT-4), it first calculated p(y|x) from p found during training, and then sampled the
said conditional probability to give the response. Naturally, calculating the probability

12. NDJE. To simplify notation, we remove the indices from the probabilities.

15

p(y|x) and sampling it in very high dimensions makes the task naturally very complex.
So, it is necessary to understand the mechanism that allows practical realization and
ask the question: what are the structures at different scales (cf. Course 2019 Sec. 3.7) of
conditional probabilities that allow combating the curse of dimensionality.

Finally, an important point that will be discussed in the course concerns the com-
putational complexity in high dimensions. Indeed, to perform calculations of means,
marginal probabilities, etc., we need to carry out integrals in high dimensions. A priori,
the number of operations must grow exponentially with the dimension d, unless we use
random methods called Monte Carlo 13. These techniques involve not computing these
integrals on grids of the space Rd but rather randomly sampling and summing/averaging
them. We will see why we avoid the curse of dimensionality, although it remains true
that generation can be difficult in practical cases in high dimensions (e.g., the case of
multi-modal distributions).

Thus, we have reviewed why the probabilistic framework is central and directly
related to the fact that we are constrained to operate in high dimensions.

2.4 Link between supervised and unsupervised training

The link in question is not new as it arises from the Bayesian perspective, as we
will see.

Regarding supervised learning where we are interested in obtaining the response y
from x, in the probabilistic framework, we then desire to obtain p(y|x). If we are interested
in a classification problem, the Bayes classifier 14 is the one that on average produces the
minimum error, it maximizes p(y|x):

ŷ = argmax
y

p(y|x) (3)

On the other hand, regarding unsupervised learning in the probabilistic framework,
we are rather interested in modeling the probability p(x). But there is a link with the

13. NDJE. In 2023, I developed examples of such techniques in the Python notebook
Monte_Carlo_Sampling. The notebook is accessible here: https://github.com/jecampagne/cours_mallat_
cdf/blob/main/cours2023/Monte_Carlo_Sampling.ipynb.

14. NDJE. see e.g., Course 2022 Sec. 2.2 or/and Course 2023 Sec. 3.4.2

https://github.com/jecampagne/cours_mallat_cdf/blob/main/cours2023/Monte_Carlo_Sampling.ipynb
https://github.com/jecampagne/cours_mallat_cdf/blob/main/cours2023/Monte_Carlo_Sampling.ipynb
https://github.com/jecampagne/cours_mallat_cdf/blob/main/cours2023/Monte_Carlo_Sampling.ipynb

16

previous because we have Bayes’ formula 15:

p(y|x) = p(x|y)p(y)
p(x) (4)

in which we recognize p(y|x) the posterior probability, p(x|y) the likelihood, p(y) the prior
probability (e.g., the prior probability of being in one class rather than another), and p(x)
the evidence. If we want to maximize p(y|x) according to y then

ŷ = argmax
y

p(x|y)p(y) (5)

but p(y) is rather to be seen as data, and therefore in this problem the practical and
delicate point is to maximize the likelihood p(x|y).

Schematically, one can then think of proceeding according to the following sequence
of operations: take the data x, group them into different classes y, and model each of
the classes. That is to say, in the end, we could be able to generate new elements from
the different classes. But, in practice, for some problems, it is not necessary to do this
work and we can use another approach. Think of the case of classifying an image into
two categories depending on whether it contains a fire truck or a black car. Modeling all
images that contain either a fire truck or a black car is a priori extremely complex given
the diversity of situations in which these vehicles operate. In contrast, it is very likely
that simply counting the number of red and black pixels is sufficient to provide a good
indicator of the image class.

In fact, extracting discriminative elements (features) for a given problem is a first
approach that can be very effective and naturally contributes to dimensionality reduction.
It is clear that the modeling approach was not at all the one implemented a few years ago,
and so there were two different philosophies/approaches. In a way, computing p(x|y) to
distinguish between two classes can be considered a very brute force approach. However,
in the case of an image, besides knowing if it contains a fire truck or a black car, one
can potentially ask many other questions, so the modeling approach becomes much more
effective.

It is the necessity to answer all sorts of questions that imposes the modeling of

15. NDJE. Reminder: p(x, y) the joint probability is equal to the products p(y|x)p(x) and p(x|y)p(y).

17

p(x), p(y|x). That’s why the two learning domains tend to converge. We are currently
tackling complex domains where shortcuts, even clever ones, like implementing low-
dimensional representations, are no longer effective. However, it is important to keep
in mind that not all problems are of the same nature, and in many cases, for example,
those where obtaining a large number of data points is difficult, these low-dimensional
representations are very useful.

2.5 What are the issues?

We can mention three types of problems that will interest us, starting with modeling.
Recall that we need to model p(x) or p(y|x). The use of parameterized families {pθ(x)}θ

is used quite naturally 16.

However, we need to choose a family of functions that is well-suited. This is an
approximation problem, because we must be able to find the best θ, denoted θ∗, and
ensure that pθ∗ is a good approximation of the actual distribution p(x) (which is assumed
to exist a priori). The metric used during training is the Kullback-Leibler "distance",
defined as follows 17:

DKL(p||pθ) =
∫
p(x) log p(x)

pθ(x)dx ≥ 0 (6)

(reminder: if it is zero then p = pθ). To find θ∗, we need to minimize DKL(p||pθ) over all
values of θ, so it is an optimization problem. More precisely, it is a maximum likelihood
problem, which is fundamental in statistical estimation introduced by Ronald A. Fisher
in 1922 (see e.g., Course 2022 Secs. 2.1 and 2.3).

Finally, we can use this modeling and approximation/optimization scheme to per-
form inference. For example, in the medical field, we typically have symptoms (the data
x) such as cough, nausea, fever, vomiting, diarrhea, difficulty breathing, heart palpita-
tions, etc., and we want to provide a response (y) in terms of diagnosis such as COVID,
flu, pneumonia, tachycardia, any type of failure, etc. In this context, we may have data-

16. NDJE: See the 2022 Course with R. Fisher’s approach
17. NDJE. See also the 2019 Course Sec. 7.2.3, for example.

18

bases, such as the Quick Medical Reference 18, which describes 573 diagnoses, recognizes
4,100 patient observations, and includes over 4,000 links detailing causal, temporal, and
probable relationships between disorders. A doctor, of course, wants to be able to provide
a diagnosis based on a few symptoms of their patient. Let (x1, x2) be the symptoms, we
need to be able to calculate p(y|x1, x2) and, for example, select the y with the maximum
probability. Now, if we have the conditional probability p(y|x1, x2, . . . , xd) then we need
to perform the (marginal) integral 19:

p(y|x1, x2) =
∫
p(y|x1, x2, . . . , xd)

d∏
j=3

dxj (7)

Therefore, making an inference from the model will require performing integrals
(in high dimensions) of conditional probabilities, which brings us to the issues of Monte
Carlo sampling. In doing so, mentioning Monte Carlo implies performing sampling, and
therefore being able to do generation.

2.6 Panorama of the Mathematical Domain

2.6.1 Modeling

When tackling the problems mentioned in the previous sections, there are many
different concepts, and we will take the time to address them. Initially, the Monte Carlo
techniques will occupy us. It’s certainly not necessarily obvious, but we will see that it
can be done well. However, what is more complicated is the modeling.

However, it is clear that modeling p(x) in 1D is much easier. We can view this as an
interpolation problem. In this context, the 2021 Course provides some entry points. For
example, throughout the field of low-dimensional analysis, orthogonal bases are chosen
according to the regularities of the function p(x) to be approximated. The vector Θ
consists of the coefficients in the chosen basis. Where the problem becomes complicated
is when x ∈ Rd. Indeed, trying to consider functions in the space L2(Rd), we come back
to the curse of dimensionality, namely that the number of basis elements becomes far too

18. https://www.nlm.nih.gov/research/umls/sourcereleasedocs/current/QMR/index.html
19. NDJE. for simplicity, we have ordered the variables (xi)i.

https://www.nlm.nih.gov/research/umls/sourcereleasedocs/current/QMR/index.html

19

large. We need to proceed differently, and for that, we will use a tool already implemented
especially in the 2023 course, namely Gibbs probabilities:

pΘ(x) = Z−1
Θ exp

{
−
∑

k

θkϕk(x)
}

= Z−1
Θ e−ΘT Φ(x) = Z−1

Θ e−Uθ(x) (8)

with Φ(x) = (ϕk(x))k≤K . The constant ZΘ, the Gibbs partition function, ensures the
normalization of the probability. By analogy with Statistical Physics, we denote Uθ(x) =
ΘT Φ(x) the internal energy and Fθ = − logZθ the free energy. The underlying idea is
that through the functions ϕk (and thus Uθ), we can inject a lot of a priori information
that accounts for structures.

In this framework, Markov fields will be an important subject of study, as with
these, we can conceive a first type of models that allow us to understand modeling in
high dimensions. In fact, with Markov fields, we favor local interactions, which breaks the
curse of dimensionality. We will see the Hammersley-Clifford theorem, which gives the
necessary and sufficient conditions under which a strictly positive probability distribution
can be represented as events generated by a Markov field. This theorem links conditional
independence and the way to write p(x) in the form of a Gibbs distribution, with a
particular expression that reflects this independence. However, this locality assumption
is not sufficient in itself because we have previously mentioned examples where clearly
non-local interactions are not negligible. However, we will try to find transformations that
will make this locality assumption more viable.

Beyond representations that place us in a framework of local interactions, there
is the notion of multi-scale problems that is important (Fig. 4). Underlying this is the
assumption of a hierarchical organization of the world. This is somewhat true in Physics
when we look at structures on small, medium, and large scales, i.e., from Elementary
Particle Physics to Cosmology, passing through the intermediate scales of life. There
is a manifest organization at all scales, and to some extent, we can study each scale
independently, at least in a first approximation. However, this hierarchy can also serve
as an approximation of the evolution of agents in a social network, for example. The
fundamental concept that emerged from Physics is the Renormalization Group 20. Note

20. NDJE. We will not cover this area in this year’s course.

20

Figure 4 – Schematization of local interactions between the red agent and its neighbors,
and the consideration of interactions on larger scales by grouping agents. This allows for
modeling in O(log d) terms.

that we will not address this domain in this year’s course.

If we want to further complexify the modeling of U(x), we can use neural networks.
An incidental remark: neural networks fit into the modeling approach. In this regard,
neural networks are not "separate" as intruders. And if they are effective, then the ideas
presented above must emerge in one way or another. In fact, it is the architecture that
carries concepts like hierarchy (e.g., U-Net architecture), local interactions through small-
dimensional convolutional filters, and non-linearities that reinforce the complexity of the
modeling.

Finally, an additional idea that has enabled the development of large language mo-
dels lies in transformers with the notion of attention. When considering Markov fields,
we look at local interactions. However, it is known that in some cases, this is not sufficient
because distant information can propagate and lead to interactions of the same order of
magnitude (or even larger). Other examples than those already mentioned to illustrate
the point: a small crack in a material can propagate and break the structure; a negation
in a sentence can change the meaning of an entire paragraph (the same could be true
with the placement of a comma), etc. Therefore, in order to capture such phenomena, it
is necessary to look beyond neighbors. This is actually quite natural. S. Mallat describes
how the brain provides an image of a scene from the constant and imperceptible move-
ments of the eyes: we constantly make rapid movements of our eyes that allow important
elements of our environment to be placed within the fovea, which perceives the details of
a scene finely but is very small (1.5mm in diameter at the center of the macula). These

21

rapid movements are not random; they are points of attention where there is important
information to understand the structure of the scene. Therefore, the notion of attention
has always been at the heart of cognitive psychology; what is new is that a way has been
found to implement it and make it effective. These transformers have allowed for a sort
of generalization of the notion of neighborhood which is no longer a priori (as in setting
a grid and a distance) but learned.

2.6.2 Sampling

In parallel with the modeling of probabilities, we have seen in the previous sections
how important it is to be able to generate new data through sampling.

Just as we feel that methods for modeling p(x) in 1D are well understood, sam-
pling in 1D, while not obvious, is not difficult. Initially, we focus on creating a uniform
random variable from a chaotic system, which involves the notion of ergodicity already
discussed during the 2023 Course (e.g., Sec. 6.2). Then, it is necessary to transform the
uniform distribution to obtain the desired distribution. In this case, there are methods
and algorithms such as inverse transform sampling, rejection-acceptance (hit and miss),
or importance sampling 21. This step will allow us to introduce important concepts in the
course.

That said, we need to address the challenging case of high dimensionality. The
central tool we will use, also covered in the 2023 course (e.g., Sec. 6.4 and Sec. 7), consists
of Markov chains. The idea is to start from a probability distribution p0 that is easy to
generate (e.g., uniform distribution, Gaussian, ...), then to apply a transport (T) that
iteratively should lead us to the target distribution. Thus, starting from x0 a sample from
p0, we iterate to obtain xt = T t(x0), and if we have chosen T well, then x∞ is a sample
from p.

In fact, if the distribution p is an invariant (fixed point 22) of the transport and if
convergence is fast, then generating samples according to p(x) is achievable in practice.
We will study a number of algorithms (Metropolis, Metropolis-Hastings 23, and Gibbs

21. NDJE: see the notebook https://github.com/jecampagne/cours_mallat_cdf/blob/main/
cours2023/Monte_Carlo_Sampling.ipynb.

22. NDJE. See Course 2023 Sec. 6.5.
23. NDJE. See the notebook of the footnote 21.

https://github.com/jecampagne/cours_mallat_cdf/blob/main/cours2023/Monte_Carlo_Sampling.ipynb
https://github.com/jecampagne/cours_mallat_cdf/blob/main/cours2023/Monte_Carlo_Sampling.ipynb
https://github.com/jecampagne/cours_mallat_cdf/blob/main/cours2023/Monte_Carlo_Sampling.ipynb

22

Figure 5 – Overview of diffusion models. The forward process, the inverse process,
and the sampling procedure are the three main components of diffusion models, which
are responsible for adding noise, training networks, and generating samples, respectively
(source arxiv:2306.04542).

sampling,...) and their convergence. To do this, it is easier to view t as a continuous time.
This transition from discrete to continuous allows us to use many more mathematical tools.
We will thus obtain stochastic differential equations, including those of Paul Langevin
(1872-1946) and Adriaan Fokker (1887-1972) and Max Planck (1858-1947), both developed
to understand Brownian motion.

These equations are somewhat gradient descents of the energy (∇xU(x)) with added
noise. The analysis then yields very nice results where convergence is characterized by
"log-Sobolev" constants. The mathematical object that emerges from this analysis is the
Hessian 24 of U . This is not surprising, indeed recall that we seek to minimize Uθ(x)
(increase p(x), cf. maximum likelihood), hence the gradient descent whose convergence is
all the faster as the Hessian is well-conditioned 25.

To get closer to large generative models, there are "Score Diffusion" algorithms 26.

24. NDJE. see e.g., Course 2022 Sec. 3.6.2 and Sec. 4.2.
25. NDJE. See the theorem (Th. 4) discussed in Course 2022 Sec. 3.6.2
26. NDJE: Here are two references for interested readers: J. Sohl-Dickstein, E. Weiss, N. Maheswarana-

than, and S. Ganguli, "Deep unsupervised learning using nonequilibrium thermodynamics,” in Internatio-
nal Conference on Machine Learning. PMLR, 2015, pp. 2256–2265 (arXiv:1503.03585), and Chang, Ziyi;

23

In short, this sampling technique is an adaptation of Langevin’s method by means of a
homotopic method, i.e., one continuously evolves an initial distribution towards a final
distribution (Fig. 5). For example, one starts with an image containing a lot of noise
that is gradually reduced. And instead of minimizing the Kullback-Leibler divergence,
one optimizes the Fisher Information (Course 2022 Sec. 5.3) using the "score matching"
method 27. It turns out that this method is much more efficient and faster but it only
works if Uθ satisfies certain conditions.

2.7 Some illustrations

NDJE. At this stage of the course S. Mallat presented us with some results using
the video-projector. For some of them I refer you to the video put on line on the Collège
de France (after 1:04:18).

First of all, S. Mallat lets us hear sound frames, or see images of turbulence making
the link with the 2023 Course Sec. 2.9. This illustrates the fact that Gaussian models
(Uθ = 1

2x
TC−1x) are not capable of capturing structures (in audio it is the intermittency).

Having said that, it is not easy to go beyond these simple models. S. Mallat tells us that 30
years ago all modelling was basic Gaussian and the question was to study small deviations.

Once we have understood how to model non-local interactions with correlations
between scales, we can, for example, generate images of non-Gaussian fields as shown in
figure 6. Scattering networks of order 2 can also be implemented (Course 2023 Sec. 9.9).
However, S. Mallat tells us that he looks at these results, in which he took part, with a
certain air of amusement in the face of the results of generative models of the GPT-4 type.
But he tells us that there is a need to really understand what is going on, and it’s not
a question of generating pretty pictures. This process requires mathematics and starting
with simple (but not simplistic) examples.

Going further, as mentioned in the previous section, involves modelling with diffusion
models, using a stochastic differential equation (Langevin) that we will invert 28. Initially

Koulieris, George Alex; Shum, Hubert P. H. (2023). "On the Design Fundamentals of Diffusion Models:
A Survey". arXiv:2306.04542

27. NDJE: where the score is ∇θ log pθ(x).
28. NDJE: see for example Yang Song et al. (2021) arXiv:2011.13456.

24

Figure 6 – Example of generation of non-Gaussian fields by wavelet models: turbulence,
cosmic web, etc. (source arxiv:2306.17210)

(Fig. 7), we start with an image of a face without noise, then progressively through the
evolution (forward) of the Ornstein-Uhlenbeck equation 29, the noise is injected up to the
point where only noise is visible. Then the process is reversed (backward) and the original
image is restored. Once the expression for the energy U(x) is known, when generating
an image (backward phase) from (white) noise, the term ∇xU(x) = −∇x log p(x) is there
naturally to maximise the probability, and to give typical examples of p(x). If mathematics
seem clear and established since around the 1930s, the point emphasized by S. Mallat is
that the estimation of the score was once thought to be impossible. However, the situation
has changed with neural networks, which make it possible to compute the gradient of U(x).
The network optimization is done through "score matching".

Note that for each new noise image x0, there corresponds a new image generated
from p(x) after the denoising process, allowing for the generation of new portraits of
"people who do not exist," as well as scenes of landscapes, interiors of houses, etc. But the
legitimate question arises: if we have a database of faces, then train a neural network using

29. Leonard Salomon Ornstein (1880-1941) and Eugene Uhlenbeck (1900-88), both physicists

25

Figure 7 – Example of the evolution of an image by the stochastic process of a diffusion
model: on the left, a progression where noise is injected (forward) and on the right, where
denoising is carried out

.

score matching, and synthesize new faces through backward diffusion, do we ultimately
obtain for each new face a kind of mixture of all the faces in the database? What
happens if the training database is divided into two sets, S1 and S2, the sizes of which
vary, and after training two models, new faces are generated from the same noise image?
The underlying question is that of generalization.

The answer to this question may lie in a recent article by Kadkhodaie et al. from
2023, to which S. Mallat contributed 30, which is an example of ongoing research. Figure 8
tends to show that with small training databases (N ≤ 10), the models only "memorize"
the database and are unable to produce new faces (overfitting). If the generation process is
initialized with the same noise image, the final images produced by the two models display
faces from their respective databases and are naturally different by construction. For
databases containing O(100) different faces, the models start to produce new "faces," but
these do not correspond to the reality of a well-formed face. It is only from databases with
sizes of O(104) that the models generate new faces that conform to reality. Furthermore,
even more strikingly, models trained with the S1 and S2 sets of this size, which, we recall,
have no images in common, each produce a new face that turns out to be almost identical if
the two models are initialized with the same noise image. This is truly generalization. The
interpretation is that the transport of white noise to the final image learned by the two

30. Kadkhodaie, Z., Guth, F., Simoncelli, E. P., Mallat, S. (2023). Generalization in diffusion models
arises from geometry-adaptive harmonic representation. arXiv.2310.02557

26

Figure 8 – Diffusion models are trained on distinct subsets S1 and S2 of a face dataset.
The subset sizes N range from 1 to 104. Then, a sample from each model is generated
using deterministic inverse diffusion initialized with the same noise image. For training
set sizes N = 1 and N = 10, the networks memorize, producing samples drawn from the
training set. For N = 100, the generated samples do not match any image in the training
set but are heavily corrupted. This corresponds to a regime where the networks transition
from memorization to generalization. For N = 104, the two networks generate almost
identical images.

independent models is the same, and it is the same distribution p(x) (or equivalently
U(x)) that is learned, once a sufficient number of training images are available. There
is a kind of smooth transition from a state where the models are simple "parrots" to a
state where they become autonomous "speakers".

NDJE: I allow myself a small addition. It is not uncommon in supervised learning
to divide the dataset into multiple sets: for example, a training set, a test set to tune
model parameters, and finally a validation set to ultimately derive top-5 accuracy values
in the case of a classification task, for example. Moreover, one can have multiple models
and disjoint training sets in the same line to ultimately compare performances. One can
even use two models of identical architectures but with different parameter initializations.
In this context, it is common and appropriate to find that the performances of two models
are statistically identical; otherwise, one invokes bias, systematic error, etc. Kadkhodaie
et al.’s result is of a different nature as it is within the framework of unsupervised learning.

The important consequence, contrary to the initial criticisms expressed by "experts,"

27

S. Mallat tells us, is that GPT-4-like language models are not just large memories that
would simply amalgamate different elements of the database during new queries. There
is something much deeper.

2.8 Course Outline

To conclude this presentation session on this year’s theme, S. Mallat quickly outlines
the course plan:

• We will start with Monte Carlo methods.
• We will then review modeling, learning, and sampling concepts in a general manner.
• Next, we will delve into modeling using Markov fields,
• followed by sampling, first in 1D, then via Markov chains.
• To delve deeper, after transitioning to continuous time, we will study the Langevin

equation.
• Then, we will address the theme of "score." However, if time is lacking, this will be

postponed until next year.

Reminder: seminars are important to shed light on current practices.

3. Lecture of January 24th

During this session, we revisit the motivations for using random models, then we
delve into Monte Carlo methods for high-dimensional calculations. Finally, we address the
triptych of "Modeling, Learning, Inference."

3.1 Random Models: Why?

We are considering, as illustrated in the last session, high dimensionality. But let
us recall that it is not obvious a priori that we should adopt a probabilistic framework.
Let’s consider the example of Gaussian white noise 31.

31. NDJE. See also Course 2023 Sec.2.6

28

From a probabilistic standpoint, Gaussian white noise is a probability distribution of
d independent variables, each of which is distributed according to a Gaussian distribution,
for example, xi ∼ N (0, σ2/d). Thus,

p(x1, x2, . . . , xd) =
d∏

i=1
pi(xi) =

d∏
i=1

exp
{
−x

2
i d

2σ2

}
= exp

{
−
∑d

i=1 x
2
i d

2σ2

}
= exp

{
−∥x∥

2d

2σ2

}
(9)

Now, z = ∑d
i=1 x

2
i is a random variable. If the xi are iid according to N (0, 1), we obtain

that p(z) is the distribution of the χ2 with d degrees of freedom 32 whose expectation is
E[z] = d. By change of variables, we then obtain

∥x∥2 =
d∑

i=1
x2

i −−−→
d→∞

σ2 (10)

and similarly, the variance of the χ2 with d degrees is 2d, thus

V ar(∥x∥2) −−−→
d→∞

2σ4

d
(11)

Thus, the localization of samples of Gaussian white noise occurs on a spherical shell
whose thickness tends to 0 as d increases. Therefore, in high dimensions, this localization
can be seen as a spherical manifold (Fig. 9). This is quite general; in high dimensions,
thanks to the independence property of variables, we witness concentration phenomena
on manifolds. We could therefore adopt a purely deterministic perspective, which is
essentially the usual perception we have of the world. Note that during the 2023 course,
we demonstrated how, in statistical physics, macroscopic phenomena emerge due to the
law of large numbers.

However, this deterministic view would lead us to perform geometry (on manifolds)
in very high dimensions. However, this is very complicated. Let’s take the case of the
sphere in Figure 9. Imagine a unit vector v emanating from the center of the sphere, and
let’s take a point x on this sphere. Let’s examine the dot product ⟨v, x⟩:

z = ⟨v, x⟩ =
d∑

i=1
xivi (12)

32. NDJE. The χ2(d) distribution is (1/2)d/2/Γ(d/2)zd/2−1e−z/2.

29

Figure 9 – Localization of ∥x∥2 if all components are iid xi ∼ N (0, σ2/d) in dimension
d.

Since the xi are iid Gaussian random variables, it follows that z is also a Gaussian
random variable, namely N (0, σ2/d). So, when d is large, not only is the mean zero, but
the variance of the dot product ⟨v, x⟩ also tends to 0. Thus, the x are as if they were
concentrated on the equator perpendicular to the vector v. Thus, these concentration
phenomena are not necessarily intuitive.

Therefore, it’s not so much that the deterministic framework would be unfeasible,
but rather it would be very complex to implement. In the last session, we discussed
the reasons related to the very high dimension that lead us to adopt the probabilistic
framework. For example, the need to compute integrals is only made practicable by using
the Monte Carlo method(s).

3.2 The Monte Carlo Method

This technique is not very old; its beginnings can be traced back to the 1940s
during the nuclear bomb development program at Los Alamos. The initial problem was
described by a deterministic scheme: counting the number of scatterings of a neutron
before it collides with an atom nucleus in a reactor core and estimating the energy lost in
the collision. Similar deterministic schemes can be used in game theory, where the rules
are deterministic. It’s somewhat a counting problem. However, the practical problem
that interested atomic physicists was impossible to solve using these classical techniques.

30

NDJE. The simulation methods, now called Bayesian in Particle Physics & Cosmology in
particular, are very natural. Take for example the interactions of the neutron or any other
type of particles: we draw the probability of occurrence of such or such phenomenon as
we progress through the different materials encountered by the particle. These techniques
are of course at work, for example, to study the progression of secondary particles during
collisions of proton beams in the CERN LHC in the detectors Atlas, CMS, LHCb and
Alice.

Following the ideas of Stanisław Marcin Ulam (1909-84) and John von Neumann
(1903-57) at Los Alamos, there were articles, notably those of Nicholas Metropolis (1915-
99) around Markov chains that allowed for random simulations such as the Monte Carlo
Markov Chain (MCMC). In this way, one can calculate expectations by simulation. Recall,
for instance, the Buffon’s needle experiment 33 in 1733, which also computed the decimals
of the number π by an expectation calculation performed by simulation.

In fact, computing an expectation amounts to calculating an integral:

Ep[X] =
∫
x p(x) dx = µ (13)

Now, if we sample p(x) by producing n values (xi)i≤n, then we can define an estimator
of the mean:

µ̂n = 1
n

n∑
i=1

xi (14)

It is unbiased, meaning Ep[µ̂n] is equal to µ. Moreover, if the random variables (xi)i

are iid with finite variance σ2, then the variance of µ̂n is given by

σ2(µ̂n) = σ2

n
−−−→
n→∞

0 (15)

Finally, the law of large numbers 34 tells us that

P
[
µ̂n −−−→

n→∞
Ep[X]

]
= 1 (16)

33. Georges-Louis Leclerc, comte de Buffon (1707-88).
34. NDJE. Course 2022 Sec. 3.3

31

As the random variables (xi)i are iid, we have a little more via the following theorem:

Theorem 1 (Central Limit Theorem)

√
n(µ̂n − Ep[X]) cv. in law−−−−−→

n→∞
N (0, σ2) (17)

which means

lim
n→∞

P
(√

n(µ̂n − Ep[X]) ≤ z
)

= Φ(z/σ2) (18)

where Φ(z) is the cumulative distribution function of the normal distribution:

Φ(z) = 1√
2π

∫ z

0
e−x2/2 dx = 1

2

(
1 + erf

(
z√
2

))
(19)

with erf being the Gauss error function a. Therefore, we can obtain asymptotic
confidence intervals. In particular,

|µn − Ep[X]| ≃ σ√
n

(20)

a. Milton Abramowitz and Irene Stegun, Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables, section "Error Function and Fresnel Integrals"

Why does this interest us? In fact, we can always see an integral as follows:

∫
D
f(x) dx =

∫
Rd

1D(x)f(x) dx (21)

where 1D is the indicator function of the set D. Now, we can always define a uniform
probability density on D as follows 35:

p(x) = 1D(x)
|D|

(22)

35. NDJE. nb. It is customary to denote the volume of a set A as: |A|.

32

Thus,

∫
D
f(x) dx = |D|

∫
Rd
f(x) p(x) dx = |D| × Ep[f [X]] (23)

which gives us access to the value of the integral via the calculation of an expecta-
tion. Let U be a uniformly distributed random variable on D, then by drawing n samples
(ui)i≤n from this uniform distribution, we have the following convergence:

(ui)i≤n iid U,
1
n

n∑
i=1

f(ui) −−−→
n→∞

Ep[f [X]] (24)

The convergence is ensured if the random variable X = f(U) has bounded variance.
Moreover, the convergence rate is directly related to the variance of X. If, for example,
the infinity norm is bounded:

∥f∥∞ = sup
x∈D
|f(x)| <∞ (25)

then the variance of f [X] is bounded 36. Then, the approximation error is bounded
by:

∣∣∣∣∣ 1n
n∑

i=1
f(ui)− Ep[f [X]]

∣∣∣∣∣ ≤ ∥f∥∞√n (26)

So, in principle, if we have enough examples/samples, then the average provides a good
estimator of the expectation.

3.2.1 Volume Calculation

Using the averaging technique, we can compute volumes, for example:

|Ω| =
∫
D

1Ω(x) dx (27)

36. NDJE. We can attempt a small proof. On the one hand, for a random variable Y , V ar[Y] ≤
E[Y 2]. Assuming that f(E(X) = 0 possibly by redefining f , then by taking Y = f(X), we deduce that
V ar[f(X)] ≤ E[f(X)], which is obviously smaller than or equal to ∥f∥∞.

33

Figure 10 – Calculating the volume of Ω ⊂ D = [0,∆]d.

where D = [0,∆]d. By sampling (ui)i uniformly in the box D, we obtain

|Ω| ≈ ∆d × 1
n

n∑
i=1

1Ω(ui) (28)

This is known as the hit & miss method (or acceptance-rejection). Note. It is implied that
one must be able to determine whether ui belongs to the domain Ω or not. Note that one
can calculate π/4 by uniformly sampling points in the square [0, 1]2 and counting how
many fall on average inside the quarter circle of radius 1.

Such calculations are ubiquitous in machine learning, for example, for error compu-
tation. One can also consider how AlphaGo or a chess simulator calculates the "value" of
a position by considering, from the current position, the proportion of simulated games
that are ultimately winning. With such examples, it is clear that simulating all possible
games is not feasible, and thus clever strategies are necessary. We will see how such consi-
derations are at work in MCMC methods. Indeed, performing a uniform exploration is
not always efficient. 37

37. NDJE. In the notebook https://github.com/jecampagne/cours_mallat_cdf/blob/main/
cours2023/Monte_Carlo_Sampling.ipynb, you will see how importance sampling, for example,
helps solve problems of integral computation where there are large "dead" zones if one considers a domain
D encompassing Ω that is poorly adapted.

https://github.com/jecampagne/cours_mallat_cdf/blob/main/cours2023/Monte_Carlo_Sampling.ipynb
https://github.com/jecampagne/cours_mallat_cdf/blob/main/cours2023/Monte_Carlo_Sampling.ipynb
https://github.com/jecampagne/cours_mallat_cdf/blob/main/cours2023/Monte_Carlo_Sampling.ipynb

34

Figure 11 – Integral calculation of f(x) where x ∈ Ω ⊂ D = [0,∆]d using a uniform
grid.

3.2.2 Why Not Perform a Deterministic Calculation?

One can imagine performing an integral calculation using a uniform grid as shown
in Figure 11, using the Riemann method. The error incurred is then

ε =
∣∣∣∣∣ 1
|D|

∫
D
f(x)dx− 1

n

n∑
i=1

f(xi)
∣∣∣∣∣ (29)

where the xi are the points of the grid. We can partition the volume D into small volumes,
each containing only one point xi, which allows us to write:

∫
D
f(x)dx =

n∑
i=1

∫
Vi

f(x)dx (30)

hence
ε =

∣∣∣∣∣
n∑

i=1

(
1
|D|

∫
Vi

f(x)dx− 1
n
f(xi)

)∣∣∣∣∣ (31)

Noting that n|Vi| = |D|, then

ε = 1
|D|

∣∣∣∣∣
n∑

i=1

∫
Vi

(f(x)− f(xi)) dx
∣∣∣∣∣ (32)

35

The factor |D|, equivalent to ∆d seen previously, is not essential for the subsequent dis-
cussion. What interests us is whether the asymptotic behavior of deterministic calculation
is more or less advantageous compared to a Monte Carlo technique.

Let’s assume that f ∈ C1 (bounded derivative), then

∥f(x)− f(xi)∥ ≤
(

sup
x∈Vi

|f ′(x)|
)
× |x− xi| (33)

Thus

ε ≤ 1
|D|

∑
i

∫
Vi

|f(x)− f(xi)| dx

≤ 1
|D|

d∑
i=1

(
sup
x∈Vi

|f ′(x)|
)
×
(

sup
x∈Vi

|x− xi|
)
× |Vi| (34)

However, |Vi| = |D|/n, so

ε ≤ sup
x∈D
|f ′(x)| × 1

n

n∑
i=1

sup
x∈Vi

|x− xi| (35)

However, if let’s say |D| = 1, the maximum distance from the points inside each small
volume is of the order of n−1/d. Finally, we obtain the result

ε ≤ sup
x∈D
|f ′(x)| × Cn−1/d (36)

So, in the case of Monte Carlo calculation, we have a scaling of n−1/2 independent
of the dimension, while deterministic calculation yields a scaling of n−1/d which for large
dimension d becomes exponentially limiting. However, note that this result is obtained
by imposing a stronger constraint on the regularity of f . Therefore, to achieve a given
error, one needs a colossal number of samples (n ∝ ε−d). The deterministic viewpoint is
confronted with the curse of dimensionality whereas by using the Monte Carlo method,
we overcome it.

Now, why do we have this difference in scaling between the two methods? The funda-
mental reason is that in high dimension, the distribution of points in the deterministic

36

grid is not uniform at all. Clearly, it is not at all suitable for estimating a function for
which we know a priori only that it is regular. In this case, the uniform distribution is
much better suited. But the question remains, can we deterministically design uniform
point distributions?

Even by taking a "quincunx" grid, the scaling is n−2/d, but can we achieve an opti-
mum?

3.2.3 Quasi-Monte Carlo Method

The question is to optimally choose the points xi such that the error 38 ε (Eq. 29) is as
small as possible. If Monte Carlo methods use a sequence of random points, quasi-Monte
Carlo methods will choose a suitable sequence.

Theorem 2 (Quasi-Monte Carlo)
Let the total variation of the function be defined as

∥f∥T V =
∫
Rd
∥∇f(x)∥ dx (37)

which we assume to be finite. Under this assumption, we can define {xi}i≤n such
that

ε ≤ ∥f∥T V × Cn,d n
−1 (38)

with
C ′d (log n)d−1 ≤ Cn,d ≤ Cd (log n)d−1/2 (39)

So, at best we have a bound of n−1(log n)d−1/2 which is better than that obtained with
the Monte Carlo technique but for this n ≥ ed due to the dependence of the constants
"C" on the dimension, which makes these methods much less efficient than the Monte
Carlo method.

Certainly, the quasi-Monte Carlo method appears to be efficient due to its scaling in
n, but the constants are huge and we also assume a fairly strong regularity assumption on
f , as it underlies a form of sparsity. In practice, "mixed" methods are used in this context

38. NDJE. In the course, |D| is implicitly taken as 1 in the formulas.

37

where we start with a deterministic grid that is randomly refined to improve the scaling
of the constants. But it remains true that the uniformity of the distribution of grid points
is the most difficult aspect. This is why calculations via Monte Carlo are much easier to
implement. However, what are their limits?

3.2.4 Limits of the Monte Carlo Method

In high dimensions, as mentioned earlier, we have concentration phenomena 39. The-
refore, we will want to calculate integrals for which the measure of the support Ω of the
functions is almost zero. If the integral is non-zero (let’s say f is positive), then this implies
that f(x) has large amplitudes such that the integral of f 2(x) is very large (variance), as
is ∥f∥∞. Therefore, the error bound by Monte Carlo ε (Eq. 26) is very large, requiring
many samples.

Another way to see the problem generated by data concentration is to consider the
rejection method. If we enclose the domain where the data concentrate with a "box" D, the
efficiency of the method is governed by the ratio |Ω|/|D| which is very small. Therefore,
we have a practical problem of generating many points to achieve a given error.

To solve this problem, D must adapt 40 as closely as possible to Ω (Fig. 12). For
this, it is necessary to find probability distributions that adapt to the geometry, and
they must be samplable. In a sense, we can then perform the following calculation

∫
Rd
f(x) dx =

∫
D

f(x)
p(x)︸ ︷︷ ︸
w(x)

p(x)dx ≈ 1
n

n∑
i=1

w(xi) xi ∼ p(x) (40)

So, the problem is to find probability distributions p(x) that can approximate an arbi-
trary domain Ω, and from which samples can be drawn.

39. NDJE. See Courses 2022, 2023, on the theme of Shannon’s typical sets.
40. NDJE. Hence the Importance Sampling method, an example of which is given in the notebook of

the footnote on page 37.

38

Figure 12 – Schematic representation of adjusting to the geometry of the data space Ω,
of the enclosing space in which points are sampled: transition from [0,∆]d to D.

3.3 Probability Modeling, Learning/Inference

We want to approximate a probability p(x1, . . . , xd) as well as p(y|x1, . . . , xd) the
conditional probability of y given the data x, in high dimensions. The previous section
suggests that a priori this is a difficult problem.

3.3.1 Small Example: Spam Detection

Consider the problem of spam detection: given an email composed of words from the
French language, we want to determine if it is spam (y = 1) or not (y = 0). We encode
xi = 1 if word i (from the dictionary) is present in the email (and xi = 0 otherwise).
So, we have a problem with d binary variables, and the combinatorics tell us that there
are 2d possibilities. It is not feasible to compute all corresponding probabilities when d

represents the size of the current French language dictionary. Therefore, approximations
need to be made.

In the case of the spam problem, we use the "naive Bayes assumption". According

39

to Bayes’ formula, we have

p(y|x1, . . . , xd) = p(x1, . . . , xd|y)p(y)
p(x1, . . . , xd) (41)

and the assumption is to write

p(x1, . . . , xd|y) =
d∏

i=1
p(xi|y) (42)

meaning that the words are independent of each other under the assumption of being part
of spam or not. To obtain the score of the email, we maximize the a posteriori probability,
so we want to obtain

y∗ = argmax
y

p(y)
d∏

i=1
p(xi|y) (43)

In this approximation framework to estimate p(xi|y), there are 4 states to consider for the
pair (xi, y) but actually only 2 degrees of freedom (note: p(x|y = 1) + p(x|y = 0) = 1).
Ultimately, we have d probabilities to estimate which makes a significant difference.

In practice, this independence-based method is quite effective for the spam detection
problem. However, when it comes to image classification, the assumption of considering
only p(xi|y) raises the question: given the value of pixel i (i.e., xi), are we dealing with
an image of a dog vs. cat, car vs. airplane, etc.? It is clear that the assumption does
not hold. Instead, we need to be able to analyze the correlations of pixels to identify
structures.

3.3.2 Learning: Finding the Best Approximation

To address problems like image generation/classification, as discussed during the
introductory session, we need to use much more sophisticated parametrized families
{pθ(x)}, such as Markov random fields. We will explore this further.

Once a parametrized family of probabilities is defined, we need to find the best θ
such that pθ∗(x) best approximates p(x). There are many possible approaches that involve

40

minimizing an objective function, such as the Kullback-Leibler divergence 41 defined as

DKL(p||pθ) =
∫
p(x) log p(x)

pθ(x)dx ≥ 0 (44)

and DKL = 0 if and only if p = pθ. We can rewrite the expression of DKL(p||pθ) as follows

DKL(p||pθ) =
∫
p(x) log p(x) dx︸ ︷︷ ︸

−H[p]

−
∫
p(x) log pθ(x) dx︸ ︷︷ ︸

Ep[log pθ(x)]

≥ 0 (45)

where Ep[log pθ(x)] is the likelihood and H[p] is the differential entropy of p in the sense
of Shannon 42, which is a constant with respect to the problem of optimizing the value of
θ. The idea dates back to R. Fisher because maximizing the likelihood, i.e., the ability
of the distribution pθ(x) to account for the data distribution, minimizes the Kullback-
Leibler divergence. If we have data (xi)i≤n supposed to be representative of the underlying
probability p(x) then

Ep[log pθ(x)] ≈ 1
n

n∑
i=1

log pθ(xi) (46)

The objective is therefore to maximize this quantity (or minimize it if we consider the "-"
sign).

The Bayesian hypothesis adds an assumption about the possible values of θ (prior)
which is a form of regularization in terms of estimation. In fact, we would like to maximize
the posterior probability p(θ|x) (the best θ given the data x). Recalling Bayes’ formula
(Eq. 4):

p(θ|x) = p(x|θ)p(θ)
p(x) (47)

optimizing p(θ|x) amounts to optimizing the product of the likelihood (p(x|θ)) and the
prior (p(θ)). Now, the likelihood is by construction what we denoted pθ(x). Maximizing
p(θ|x) therefore amounts to maximizing the log, and since we have a sample basis, we can
maximize on average. It follows that

θ∗ = argmax
θ

Ep[log p(θ|x)] = argmax
θ

(
Ep[log pθ(x)] + log p(θ)

)
(48)

41. NDJE. see the 2019 Course Sec. 7.2.3 for example
42. NDJE. see, for example, Course 2022 Sec. 5 and Course 2023 Sec. 5.1

41

We therefore add a priori information that we have about the values of θ. This informa-
tion acts in Bayesian optimization like regularization 43 (in L2 norm ridge regression 44,
or in L1 norm to increase sparsity in the parameters) in a deterministic algorithm of
linear regression (or SVM)) or in parameter optimization of a neural network, to avoid
overfitting.

Once the objective function to be optimized is defined, the optimization method is
usually a gradient descent (note: minimization taking into account the "-" sign) that we
have already covered in previous years’ courses 45.

3.3.3 Inference

Consider the spam detection problem, inference consists, for example, of calculating
the probability that an email containing the words k and j is spam or not. Thus,

p(y|xk, xj) = p(y, xk, xj)
p(xk, xj)

=
∫
p(y, x1, . . . , xd))∏i ̸=k,j dxi∫
p(x1, . . . , xd)∏i ̸=k,j dxi

(49)

The two integrals are in high dimension and Monte Carlo techniques are therefore used. As
S. Mallat tells us, in this field of mathematics, "we spend our lives calculating integrals".

3.3.4 Which type of modeling to choose? Examples

This is the most open, still within the realm of research, and the most difficult part:
which families of probabilities are best suited to approximate data distributions. It is in
this problem that neural networks have made the difference.

In the 2000s, S. Mallat tells us, roughly for applications, modeling was done using
Gaussian models. In this type of modeling, we use the following expression 46, assuming
that E[x] = 0 for simplicity of notation:

p(x) = Z−1 exp
(
−1

2x
TKx

)
(50)

43. NDJE. See Course 2018 Sec. 7.3.2 and/or Course 2019 Sec. 7.2.4.2
44. NDJE. e.g., if we seek to minimize θT ϕ(x) + λ∥θ∥2 this is equivalent to defining a prior of the form

p(θ) ∝ e−λ∥θ∥2 .
45. NDJE. see, for example, Course 2018 Sec. 10.1
46. NDJE. See for example Course 2022 Sec. 2.6 and/or Course 2023 Sec.8.1

42

where K is a kernel (symmetric positive definite d × d matrix), and thus, in terms of
energy, we have a quadratic function in x. It can be shown 47 that K is related to the
covariance matrix C = Ep(xxT), i.e., 48 C = K−1 (centered second-order moments), and
its elements are the parameters θ to be optimized.

A particularly important example used, for instance, in signal processing is the
stationarity assumption (translation invariance). If we index by i the coordinate of a
pixel in an image or a sample in a time frame, according to this assumption:

∀k ≥ 0,∀τ, p(xi1−τ , xi2−τ , . . . , xik−τ) = p(xi1 , xi2 , . . . , xik
) (51)

This assumption is often verified. S. Mallat, for example, illustrates it by considering the
case of an image without a reference point; we can also mention in cosmology that the
properties of the cosmic microwave background (CMB) are approximately invariant in
the direction pointed by the instruments (translation in the right ascension-declination
space). However, centered face images like passport photos are not stationary at all.

In this stationary framework, we have the following property:

Ep(xix
T
j) = Ep(xi−jx

T
0) = f(i− j) (52)

meaning that the covariance depends only on the translation parameter, thus it is a
Toeplitz matrix (diagonal elements identical).

Now, since K = C−1 is symmetric positive definite, we can look at the distributions
in the base that diagonalizes it. This is the principal component analysis (PCA) base.
The stationary assumption indicates that the PCA base is the Fourier base 49. Indeed,
neglecting edge effects, if e is an eigenvector of C, then by definition:

Cx = λx ⇒ ∀j,
∑

i

C(i− j)ei = λej =
∑

k

C(k)ek+j (53)

hence the k-th component of a vector in the base is a sine wave ek(ω) = eikω, and the
positive eigenvalue λ can be written as a variance σ2

ω, which is nothing but Ĉ(ω), the

47. NDJE. here x = (x1, . . . , xd)T so x is of dimension d× 1.
48. NDJE hint: K is diagonalizable with P an orthogonal matrix, such that K = P T DP , and we

perform a change of variable y = Px.
49. NDJE. See Course 2021 Sec. 4.4

43

Figure 13 – On the left, an image of turbulent fluid in a pipe (Credit: Piotr Siedle-
cki/public domain); in the center: the power spectrum derived from the image (∝ k−2.2)
where k here is the norm of the wave vector which is the notation commonly used in
Cosmology; on the right: a Gaussian field generated from this power spectrum.

power spectrum (or spectral power) 50. This is the basic model that essentially states
that probability distributions are concentrated - typical sets are ellipsoids - along the
principal axes of the covariance matrix.

However, this model is not sufficient, and to illustrate this, let’s take the example
of turbulence 51. In Figure 13, on the left, we have an example image of turbulent fluid 52,
in the center its power spectrum, and on the right, a realization of a Gaussian field
generated from this power spectrum. To do this, we simply need to measure the two-
point correlation function (Fourier transform of the power spectrum), that is, estimate
the covariance matrix. If we see granularity, we have lost all the structures of the original
image. Yet note that vortices can occur anywhere in the image, so we are indeed dealing
with a stationary field. Therefore, something is missing in the modeling. But what?

In fact, the Gaussian model corresponds to a maximum entropy model 53, that
is, a form of maximum disorder given the information it has on the values of the cova-

50. NDJE. In cosmology, the power spectrum is rather denoted P (k) where k is the wave vector norm.
51. NDJE. This is an example from the 2022 Course Sec. 4.5, which I have made avai-

lable in the notebook https://github.com/jecampagne/cours_mallat_cdf/blob/main/2023/gaussian_
vs_turbulent_fow.ipynb.

52. NDJE. Image from the article https://phys.org/news/2015-10-key-features-transition-liquid-smooth.
html.

53. NDJE. This is Gibbs’s theorem seen in the 2023 Course Sec. 7.6

https://github.com/jecampagne/cours_mallat_cdf/blob/main/2023/gaussian_vs_turbulent_fow.ipynb
https://github.com/jecampagne/cours_mallat_cdf/blob/main/2023/gaussian_vs_turbulent_fow.ipynb
https://github.com/jecampagne/cours_mallat_cdf/blob/main/2023/gaussian_vs_turbulent_fow.ipynb
https://phys.org/news/2015-10-key-features-transition-liquid-smooth.html
https://phys.org/news/2015-10-key-features-transition-liquid-smooth.html

44

Figure 14 – Example of textures that can be synthesized by going beyond Gaussian field
modeling (wavelet networks).

riance matrix coefficients. However, turbulence is structured and thus typical sets are not
ellipsoids.

By going further into modeling, during the introduction S. Mallat showed us that we
could synthesize stationary fields, such as physical fields (Fig. 6), or textures like those
in Figure 14 using wavelet networks 54.

The current research domain is to understand how to synthesize non-stationary
(non-ergodic) fields. S. Mallat invites us to look at the seminars by Marylou Gabrié who
talks about models in the framework of Statistical Physics and Markov fields, and by
Francis Bach who discusses face and other image modelings with Score Diffusion models.
The two big differences lie in the estimation technique, but above all in the Markov vs.
Neural Network modeling.

S. Mallat shows us an application of the latest modeling, namely inpainting (Fig. 15)
which presents itself here as the generation of an image y according to the probability
p(y|x), where x is a degraded image and p is a model trained with a very large database
of images. The image y is a reconstruction of the image x (note: it is not necessarily
the original image, but the chosen examples illustrate the possibilities). The model has
captured all forms of regularity.

54. NDJE. You can see how this is done via the notebook https://github.com/jecampagne/cours_
mallat_cdf/blob/main/2023/TextureSynthesis.ipynb.

https://github.com/jecampagne/cours_mallat_cdf/blob/main/2023/TextureSynthesis.ipynb
https://github.com/jecampagne/cours_mallat_cdf/blob/main/2023/TextureSynthesis.ipynb
https://github.com/jecampagne/cours_mallat_cdf/blob/main/2023/TextureSynthesis.ipynb

45

Figure 15 – Illustration of inpainting, where from a model trained with a very large
database of images, it manages to generate an image y from an image with whitened
parts.

We can also perform denoising of an image as shown in Figure 16. This is a cell,
and typically in X-ray imaging, we do not want to expose tissues to high doses, so the
signal-to-noise ratio is not optimal.

Despite these nice results, there is a big caveat or even a "danger" as S. Mallat
puts it. Usages are very cautious, especially in medical imaging, because of hallucination
phenomena. Indeed, with diffusion models, similar to denoising, starting from noise, one
can gradually make an image appear that is geometrically on a typical space (but not
an ellipsoid) as shown in Figure 17. The question arises: what can be said about the
generated image? In the medical case, one could reveal tumors, for example, or not. The
problem is to avoid these hallucination phenomena.

S. Mallat then shows us (Fig. 18) an example of component separation in audio that
he presented during the 2019 course, dating back to 2018 55. This is the "Cocktail Party
challenge" where one tries to separate speeches spoken simultaneously by two speakers
with the same voice timbre. The contribution of neural networks in this field has brought
about a real revolution, as he tells us, because roughly for 30 years, people had been

55. NDJE. Refer to the 2019 Course Sec. 2.2.2, and for the audio, I invite you to watch the video of
the 2024 course around 1:29:40.

46

Figure 16 – Illustration of denoising. We observe x which is a superposition of y and
noise, and we want to extract y, or rather a sample of p(y|x).

Figure 17 – Illustration of generation by a diffusion model resembling denoising but
not quite. Once trained by core matching, the model generates an image from noise. It
somehow projects a completely noisy image as if it were decomposable into a "noise-free"
image x belonging to a typical set (S) and noise. However, what can be said about the x
chosen by the model?

47

Figure 18 – A result from 2018 (See 2019 Course) showing how one can solve the
separation of speeches from two speakers with the same voice type.

trying to solve the problem in signal processing from spectrograms and it did not yield
promising results.

To conclude and introduce Michele Sebag’s seminar, S. Mallat indicates that current
neural network models do not implement directional graphs that would support causal
modeling. In practice, we currently do not know how to learn such structures. Therefore,
in the context of the course, we will use non-causal models.

4. Lecture of January 31st

During this session, we will address the modeling and approximation 56 through the
fundamental notion of Markov Random Fields. This is the tool that allows us to un-
derstand, with relatively low-dimensional models, the interactions between variables. In
this context, approximation and optimization are two facets of learning. Recall that we
must choose a parameterized model that potentially approximates the true probability
distribution, and we must be able to determine the best set of parameters.

We find the connection with Statistical Physics seen in the 2023 course. The principle

56. NDJE. Ultimately, S. Mallat did not have time to address this topic, which will be the subject of
the next session.

48

is to model the interactions between variables while explaining the notion of conditional
independence.

4.1 Causal and Non-causal Schemes

Let’s take a simple example of the voting behavior of four people (A, B, C, D) who
will interact and therefore mutually influence each other. To model the influence between
2 people (X, Y) at the time of voting, we can say that if the votes of X and Y are identical
then Φ(X, Y), which represents the interaction between X and Y, is large, and conversely
if the votes are different then Φ(X, Y) is small. In the end, what we are looking for is the
joint probability p(A,B,C,D), modeled for example as:

p(A,B,C,D) = 1
Z

Φ(A,B)Φ(B,C)Φ(C,D)

with Z as a normalization constant. Before the vote, influences will play their roles, and
we can say that there is a form of equilibrium that will occur (assuming it happens before
the vote). The most probable vote reflects the interactions between the different members.
However, to be able to calculate p(A,B,C,D), we must be able to determine the constant
Z. Moreover, if we want to understand the vote of A, we need to understand the exchange
of information between the different members (phenomenon of propagation). This is more
complicated than a directional model.

A directional model (Fig. 19) is at work, for example, if we know that A influences
B and C, which in turn influences D. In this case, we have (chain rule):

p(A,B,C,D) = p(A|B,C,D)p(B,C|D)p(D)

Then, sampling a configuration (A,B,C,D) is done by finding a configuration of D alone,
then a configuration of the pair (B,C) given that of D, and finally a configuration of A
given that of (B,C,D). In a way, by reversing the flow of influences, we can sample the
joint probability.

The first model is typically a non-directional Markov Field, which is more com-
plicated to sample than the second, representing a directional Markov Field. However,
establishing directional relationships is much more complicated: it is easier to know if

49

A

B C

D

Figure 19 – Directional Model.

two variables are correlated than to know the causal pattern between them (see Michèle
Sebag’s conference). All current Machine Learning is based on the non-directional fra-
mework, including neural networks and even very large language systems.

4.2 Markov Field

4.2.1 Definition and Properties

The definition of a Markov Field (Markov Random Field) is as follows:

Definition 1 (Markov Field/MRF)
A Markov Field is a joint probability distribution defined on a non-directional graph
G, whose nodes (xk)k≤d (random variables) follow a probability density that can be
written as:

p(x1, x2, . . . , xd) = Z−1 ∏
c∈C

Φc(xc) (54)

where xc = (xi1 , . . . , xik
) and (i1, . . . , ik) ∈ c, and "c" is called a "clique". The

constant Z ensures normalization:

∫
p(x1, x2, . . . , xd)

d∏
i=1

dxi = 1 (55)

50

Figure 20 – Example of an undirected graph comprising 7 "1-vertex" cliques (vertices),
10 "2-vertex" cliques (edges), 5 "3-vertex" cliques, and 1 "4-vertex" clique. The three sur-
rounded cliques form the set C.

The probability density p is a Gibbs distribution.

The term clique in graph theory refers to a fully connected subgraph (Fig. 20). The
definition of C allows for factorization. This factorization is important because even if
two distant variables in the graph are dependent (i.e., there is a path connecting them),
we model the interactions within the cliques of C, which are themselves local. Thus, we
seek a low-dimensional representation centered on the local nature of interactions (as
done in multi-scale modeling).

Within the framework of Markov fields, we have a fundamental property. Before
stating it, let’s have a brief reminder 57:
• Let x1 and x2 be two random variables, they are probability independent iff

p(x1, x2) = p(x1)p(x2)

• Let x1 and x2 be two random variables, and y be a third random variable that can
influence the first two, the conditional independence of variables x1 and x2 then
can be expressed as

p(x1, x2|y) = p(x1|y)p(x2|y)

For example, in this context, we deduce:

p(x1|x2, y) = p(x1, x2, y)
p(x2, y) = p(x1, x2|y)p(y)

p(x2|y)p(y)
cond. indep.========= p(x1|y)

57. NDJE. See course 2022/2023

51

meaning that x2 does not provide any information about x1 if we already know y.
This conditional independence is denoted by x⊥x2|y.

The Markov property then gives us:

Property 1 (Markov)
For a Markov field, if there is no clique that includes two variables (xi, xj) (i.e., there
is no edge directly connecting the two variables), then variable xi has a conditional
independence with respect to xj such that

xi ⊥ xj|{xk}k ̸=i,j

meaning
p(xi, xj|{xk}k ̸=i,j) = p(xi|{xk}k ̸=i,j)× p(xj|{xk}k ̸=i,j) (56)

For example, in Figure 20, variables x1 and x6 are in the situation described by the
property, and therefore if we know all the other variables (conditioning), (x1, x6) are
independent. In other words, x1 and x6 do not directly influence each other, and the
influence is through the other variables of the graph.

Proof 1. We are dealing with a graph supporting a Markov field. The set C can be
expressed as a disjoint union of subsets of cliques as follows:

C = Ci,j ∪ Ci, ̸j ∪ C ̸i,j ∪ C ̸i, ̸j (57)

where the subsets are indexed based on whether xi and/or xj belong to the set or not.
The assumption then states that Ci,j is the empty set. Thus, we can write

p(xi, xj|{xk}k ̸=i,j) = p({xk}k≤d)
p({xk}k ̸=i,j)

=
∏

c∈Ci, ̸j Φc(xc)
∏

c∈C ̸i,j
Φc(xc)

∏
c∈C ̸i, ̸j Φc(xc)

p({xk}k ̸=i,j)
∫ ∏

c∈Ci, ̸j Φc(xc)
∏

c∈C ̸i,j
Φc(xc)

∏
c∈C ̸i, ̸j Φc(xc)× dxidxj

∏
k ̸=i,j dxk

(58)

52

We can distribute the different elements of the integral, which factorize, thus revealing:

p({xk}k ̸=i,j)
∫ ∏

c∈C ̸i, ̸j

Φc(xc)
∏

k ̸=i,j

dxk =
∏

c∈C ̸i, ̸j

Φc(xc) (59)

which simplifies with the corresponding term in the numerator. Moreover, the integrals
depending on xi for one and on xj for the other also factorize. Therefore,

p(xi, xj|{xk}k ̸=i,j) =
∏

c∈Ci, ̸j Φc(xc)∫ ∏
c∈Ci, ̸j Φc(xc)dxi

×
∏

c∈C ̸i,j
Φc(xc)∫ ∏

c∈C̸i,j
Φc(xc)dxj

= p(xi|{xk}k ̸=i,j)× p(xj|{xk}k ̸=i,j) (60)

The last equality is obtained by reinjecting into each term of the first line, in the nu-
merator, the right member of Equation 59, and in the denominator, the left member of
the same equation. Therefore, we have obtained the equation indicating the conditional
independence of (xi, xj) given the values of {xk}k ̸=i,j. ■

4.2.2 Two Generic Examples

4.2.2.1 Gaussian Process

Let’s see some examples of applications, starting with the Gaussian process. Note
by the way that for a Markovian field we can write

log p(x) = − logZ + log
∏
c∈C

Φc(xc) (61)

Now for a Gibbs distribution traditionally we have

log p(x) = − logZ − U(x) (62)

We thus identify the term of the cliques as the energy term −U(x). In the Gaussian
case U(x) = 1

2x
TKx. We know that the matrix K is related to the covariance matrix

K−1 = E(xxT). The Markov property tells us that if Ki,j = 0 then xi ⊥ xj|{xk ̸=i,j}. So,
we can directly view K as the interaction matrix.

53

Another example used especially in Physics, concerns the case where K = ∆
(Laplacian). Let’s say x are pixels of an image (underlying grid) then the discrete Lapla-
cian can be represented as

∆ =

0 1 0

1 −4 1

0 1 0

 (63)

which represents the interactions of a pixel with its neighbors. Here only its closest
neighbors count. So, maximizing the probability implies minimizing the energy which
amounts to maximizing the Laplacian interaction favoring regularities, but the values of
x will still fluctuate. Now, we can rewrite the interaction term as 58 (subject to boundary
conditions) as

−1
2x(u)T ∆ux(u) = −1

2

∫
x(u)∇ux(u)du = 1

2

∫
|∂ux(u)|2du = 1

2
∑

i,j∈C
|xi − xj|2 (64)

where index pairs i, j are such that j are taken in cliques corresponding to the closest
neighbors of i (we can note this property as (i, j)). The probability becomes

p(x) = Z−1 exp

−1
2
∑
(i,j)
|xi − xj|2

 (65)

which has the expression of a Brownian motion 59.

4.2.2.2 ϕ4 Theory

As a second example, S. Mallat shows us a modeling of what is called the ϕ4 theory
in field theory which is derived from the Ising model 60. The ϕ4 theory stems from the

58. NDJE. In Statistical Physics (field theory), in fact, we do the opposite because the term
∂µϕ(x)∂µϕ(x) = |∂µϕ(x)|2 is nothing but the kinetic energy term.

59. NDJE. In its simple form, a Brownian motion can be simulated by a process such as Xt = Xt−1 +Zt

where Zt is a v.a following a normal distribution, so p(Xt, Xt−1) ∝ exp
{ 1

2 (Xt −Xt−1)2)
}

.
60. NDJE. The problem that Lars Onsager (1903-76) solved exactly in 1944 is the since famous 2D

Ising model: this interacting spin model was introduced by Wilhelm Lenz (1888-1957) in 1920 and his
student Ernest Ising (1900-98) had solved it only in 1D and had not been able to find a phase transition.
Onsager’s exact solution allowed to understand its meaning and the study of critical exponents and the
development in Statistical Mechanics of the Renormalization Group Equation Theory which will lead to
many results as in the Standard Model Theory of Elementary Particles (Brout-Englert-Higgs phenomenon

54

works of Vitaly Lazarevich Ginzburg (1916-2009) and Lev Davidovich Landau (1908-68).
S. Mallat discusses a model slightly different from the one classically studied. On a L×L
grid, the energy is given by

U(x) = β

2
∑
(i,j)

(x(i)− x(j))2 +
∑

i

(x(i)2 − 1)2, p(x) ∝ e−U(x) (66)

In this framework, the potential is fixed, but what varies is the weighting factor β of the
Brownian term compared to the potential term. Depending on the value of this parameter
(the inverse of some sort of temperature), and in the limit as L→∞, there is a competition
between the two terms. A phase transition occurs when β = βc ≈ 0.68. Indeed,

• When β ≪ βc, the kinetic term (Laplacian) becomes negligible (it disappears from
the modeling when β = 0) and only the potential terms matter, which are separable.
Then there is independence between the different variables xi:

p(x) ∝
∏

i

exp{−V (x(i))} (67)

the system is disordered.

• When β = βc, the Brownian term tends to favor smooth configurations while the
potential term tends to make the xi take their values in {−1,+1}. It is a system
where order propagates on scales much larger than the local scale (this is also reflec-
ted in the form of the power spectrum for β = βc). This is a competition between
order/disorder that gives rise to a phase transition phenomenon.

• Finally, for β ≫ βc, the configurations are only guided by short-range interactions.
If the initial configuration has more than 1, this value tends to spread to all xi (and
symmetrically if initially there are more −1). There are small local fluctuations
around these two values.

Simulations of the different situations depending on the value of β with respect to βc

are shown in Figure 21. While the model is purely local, correlations beyond nearest
neighbors are observed in the simulations where β ≥ βc. We then witness the extension
of areas where the values of xi take the values ±1.

Nobelized in 2013). The ϕ4 theory is a generalization for spins with continuous values.

55

Figure 21 – Simulations of configurations of the model Eq. 66.

Figure 22 – Multi-scale architecture of a U-Net.

56

The important point is that to understand the emergence of structures which are
the manifestation of interactions between fields at long range, it is necessary to sepa-
rate the different scales, as there seems to be a hierarchical organization of interactions,
a concept that emerged in Physics with the notion of Renormalization Group 61. What
is remarkable is that these ideas developed in Physics are found in neural networks. For
example, a U-Net takes an image, decomposes it into different scales, and its architec-
ture allows for modeling multi-scale interactions (Fig. 22). Ultimately, if large generative
models that manipulate high-dimensional probability distributions are learnable, it is be-
cause there are underlying factorizations at work. S. Mallat gives us an example with
face generation, where one can impose local interactions between pixels due to multi-scale
phenomena similar to those in Physics.

4.3 Independence Properties

We will study the notion of independence by taking groups of variables as illustrated
in Fig. 23. Typically, when modeling an image, instead of considering interactions between
pixels, we are interested in interactions between blocks consisting of structures. Note in
the example that not all variables xi in block X are directly connected (in interaction)
with variables xj in block Z.

Property 2
In a Markov field, if there is no edge between X and Z, meaning Y is a boundary
between X and Z, then

X ⊥ Z|Y (68)

61. NDJE. see footnote This theory was initiated in Particle Physics Field Theory in 1954 by Murray
Gell-Mann (1929-2019) and Francis E. Low (1921-2007) in the context of QED (Quantum Electrodyna-
mics), and then generalized by Curtis Callan and Kurt Symanzik (1923-83) by establishing what are called
the Callan–Symanzik equations. Developments in Statistical Mechanics date back to Kenneth G. Wilson’s
Ph.D. obtained under Gell-Mann’s direction in 1961. Wilson made the connection with developments in
Field Theory and developed the theory of critical exponents in connection with phase transitions, which
became a prominent theme in the field in the 1970s, such as the famous "Les Houches Session XXVIII
(1975): Methods in Field Theory" with remarkable contributions.

57

Figure 23 – Example of 3 variables (X, Y, Z) composed of variables (xi)i from a graph
G (undirected).

X Y Z

Figure 24 – Decomposition of a graph into 3 blocks (X, Y, Z) with undirected connec-
tions.

such that

p(X,Z|Y)) = p(X, Y, Z)
p(Y) = f1(X, Y)√

p(Y)
f2(Y, Z)√
p(Y)

= p(X|Y) p(Z|Y) (69)

The proof follows the same approach as that adopted for the Markov property
(Prop. 1) by considering the decomposition into cliques with xi ∈ X and xj ∈ Z and the
xk ∈ Y .

The converse is as follows:

58

Property 3
If in a graph G, there exist blocks of variables X, Y, Z such that

X ⊥ Z|Y (70)

then we can write the probability distribution in the form of a graph whose morpho-
logy is that of Fig. 24. That is, there is no edge directly connecting variables from
X to variables from Z.

When writing the joint probability, it decomposes easily using the conditional orthogona-
lity property:

p(X, Y, Z) = p(X,Z|Y)p(Y) = p(X|Y)p(Z|Y)p(Y)

= p(X|Y)
√
p(Y)× p(Z|Y)

√
p(Y) = f1(X, Y)× f2(Z, Y) (71)

which indicates that the desired factorization is achieved. Thus, there is an equivalence
between conditional independence and a factorization of the probability distribution into
factors that do not directly relate variables. Note that blocksX and Z are not independent,
i.e., p(X,Z) ̸= p(X)p(Z), and Y plays the role of a hidden variable. Be aware that with
such types of graphs, we cannot account for the situation of the graph in Fig. 25 where
X and Z are independent but induce Y (there is causality). Thus, Markov graphs do not
exhaust all possibilities of independence.

X

Y

Z

Figure 25 – Decomposition of a graph into 3 blocks (X, Y, Z) but with directional
connections.

The generalization of the equivalence we just saw on 3 groups (X, Y, Z) is the result

59

of the Hammersley-Clifford theorem. First, let’s state a definition.

Definition 2 We say that a graph G is an I-map (Information map) if all conditional
independence properties are in the topology of G a.

a. NDJE. see footnote 61 i.e., conditional independences between blocks are reflected in the
connections between nodes.

Theorem 3 (Hammersley-Clifford)
Let a positive probability p(x1, . . . , xd) > 0 where the xi are random variables taking
values in χ, and let G be a non-directional graph, then G is an I-map on p iff p is
a Gibbs distribution on the graph.

For the proof, it is first necessary to show that we can write p(x1, . . . , xd) in the form of
a product of factors over cliques (cf. Markov field), and give it in the form of conditional
independences between blocks of variables. It has been demonstrated that if p(x) can
be expressed as a product of factors, then there are conditional independences between
certain blocks.

The converse requires proving that if we have a set of conditions of the form "X ⊥
Z|Y ", then we can construct cliques on G such that the probability distribution factorizes
into products according to the definition of a Markov field (Def. 1). This was demonstrated
in the case of 3 groups (Prop. 3). Here is the principle of generalization. For each node in
the graph (xi fixed), we consider the set of its neighbors (i.e., the nodes connected to it)

Yi = {xj ∈ G|xj is connected to xi}

By construction, Yi is the boundary between xi and all other nodes xk ̸∈ Yi. Therefore,
we can write that

p(x1, . . . , xd) ∝ Φ+
i (xi, Yi)Φ−i (G\{xi})

where G\{xi} is the set of nodes in G different from xi. This type of decomposition can
be done for any xi. Then, all these factorizations must be combined to obtain a minimal
factorization. This process corresponds to taking intersections between constraints.

Let’s see an example to relate this to the concepts of multi-scales: the 1D Brownian

60

motion (random walk 62). Let x0 ∼ N (0, σ2) for example, and the process that moves xn

to xn+1 (n ∈ N) is
xn+1 = xn + zn+1, zn

i.i.d∼ N (0, σ2) (72)

We have xn = x0 + z1 + · · ·+ zn, thus

E(xn) = 0 E(zizj) = E(zi)E(zj) = 0
E(x2

n) = (n+ 1)σ2 E(xnxn+k) = (n+ 1)σ2 (73)

So, there is correlation at large distances.

Now, if we consider the sequence (x0, x1, x2, x3, . . .), we want to construct a 2-to-2
dependency tree. For this, let’s take (x0, x1) and build 2 new variables:

x+
0 = x0 + x1√

2
x−0 = x0 − x1√

2
(74)

and do the same for (x2, x3), (x4, x5), etc. All pairs (x2k, x2k+1) (k = 0, 1, . . . , n/2) are thus
transformed into pairs (+,−). All variables of type "−" are independent of each other,
but they are connected to variables of type "+". These variables of type "+" can again be
grouped 2-to-2: e.g., (x+

2k, x
+
2k+2) and proceed as before by performing their sum and their

difference for example:

x+±
0 = x+

0 ± x+
2√

2
x+±

4 = x+
4 ± x+

6√
2

(75)

Now, x+−
0 = f(z0, z1, z2) and x+−

4 = f(z4, z5, z6) thus they are independent. And this
holds for all x+−

2p . Notice that x+−
0 depends on x−0 and x−2 , similarly x+−

4 depends on x−4
and x−6 . And so on, at each iteration, the variables of type x++···+

i are orthogonalized, with
the differences being independent of each other but dependent on two differences from the
previous step. Thus, we have a cascade of orthogonal transformations with dependencies
as illustrated in Fig. 26.

Thus, we have represented the long-range interdependencies among the variables
xi through local but hierarchical dependencies. Regarding the 1D random walk, we can
simplify as we will see in the upcoming lecture. In the case of an image, this hierarchization

62. NDJE. See Course 2023 Sec. 6.4.2.2

61

Figure 26 – Schematic representation of a cascade of orthogonal transformations applied
to the initial variables xi (from the random walk) and then to the variables of type x++···+.
The variables x++···− are independent of each other at a given step, but depend on those
from the previous step pairwise.

works very well, explains S. Mallat. Similarly, he outlines cases where connections can be
made between variables obtained at the same level of the cascade. Thus, we can use graphs
that ultimately reflect complex situations that actually don’t have so many connections.
The relationships between people in a company can be modeled in this type of graph.

In the case of the 1D random walk above, the cascade of transformations Eq. 74
corresponds to the Haar transform 63. For example, if we consider the variable x++−

0 , we
can view it from two perspectives which are applications of the Haar wavelet at two scales
(Fig. 27)

x++−
0 = x++

0 − x++
4√

2
= (x0 + x1 + x2 + x3)− (x4 + x5 + x6 + x7)

23/2 (76)

We finally obtain an orthogonal representation of the original series of xi, and while
all the variables xi interact, considering the variables at different scales, the interdepen-
dencies are only local. The Markov field is no longer on a single "purely temporal" axis as

63. NDJE. See Course 2018 Sec. 6.3 and Course 2021 Sec. 7.3.1

62

Figure 27 – Haar wavelet at different scales Ψ(x/2n). It is implicitly used in the construc-
tion of variables x++···− as in Equation 76 by reading the values given by the ’red crosses’
at a given scale affected by the coefficient 1/22/n.

in the 1D random walk (or in the case of the ϕ4 theory field), but there is a new axis that
appears, which is the one of scales that allows transforming the dependencies by pre-
serving only short-range interactions. Such schemes can be applied in many applications
of neural networks.

It is clear, says S. Mallat, that if large generative models are learnable, there must
fundamentally be a simplification at play. Otherwise, if there is no source of simplification,
a neural network cannot work, because of the curse of dimensionality that would require
an exponential number of data points. So, the real challenge is to find these sources of
simplification. That is, to find representations of the data that will simplify the pattern
of interdependence, reducing it to interactions of limited extent. The example of the
random walk is actually very generic because it brings out the notion of scale which is
ubiquitous in the world around us.

Finally, all the optimization part with maximum likelihood is postponed to the next
session, and we will enter the sampling problem. Indeed, while it is natural to conceive of
Markov field graphs, sampling probabilities is more complex, as we need to estimate the
normalization constant which is an integral in very high dimension. We will then see how
Markov chains 64 help us.

64. NDJE. See Course 2023 Sec. 6.4.

63

5. Lecture of Feb. 7th

5.1 Introduction

S. Mallat invites us to watch recorded seminars from February 1-2, 2024, which he
gave at ICTP in Trieste in front of a group of doctoral students and senior theoretical
physicists. The recordings are available on his website 65. This serves as a complement to
the courses, providing insight into current research trends.

The link between Physics and Statistical Learning is emphasized in terms of the
emergence of structures, which inform us about the interactions between the "atoms"
of both domains. Physics has a model based on a much longer history. In the 1970s,
whether in Statistical Physics or Particle Physics, the Renormalization Group Theory (see
footnote 61) helps understand the evolution of structures across scales. In fact, this idea
of hierarchical structures is found in many problems. S. Mallat recalls economist Herbert
Simon’s article 66, which proposes a thesis that if organizations persist, it is because there
is a hierarchical structure that ensures stability. However, while reading such an article is
intellectually enriching, there is no underlying mathematical framework 67.

In the previous session, we saw that in interaction trees, we can model not only hori-
zontal, local interactions (hence the use of Markov fields) but also hierarchical interactions
(scale axis) that can account for long-range interaction phenomena. The Renormalization
Group works very well in Physics, but in Statistical Learning, we are faced with more
complex problems, and in this context, we see that neural networks work very well. The
question is Why? This is why it is interesting to bridge what we can do in Physics on pro-
blems that are not so simple, and what we can do with neural networks on much more
complicated problems like those we discussed at the beginning of this year’s course.
Understanding these connections is a challenge in current research.

In a framework of images or time series where one can invoke translation invariance
(e.g., recognizing a glass in a photo that can be taken from any viewpoint), we can outline

65. NDJE. The videos are also available here www.ictp.it/home/salam-distinguished-lectures-series
66. NDJE. See Course 2020 Sec. 3.2
67. NDJE. Between the lines, S. Mallat refers to the articles of Fisher and Shannon, whose ideas persist

to this day. They were the subject of the 2022 course.

www.ictp.it/home/salam-distinguished-lectures-series

64

the following scheme: translation invariance implies an underlying group, which implies a
Fourier transform, and then all of Harmonic Analysis. That is, in this simple framework,
there is a whole branch of mathematics on which we can rely to define the notion of scale.

When we tackle generation problems, we are dealing with problems of a different
complexity. Techniques using Score Diffusion are currently performing well, and there is
a need to bridge the gap between these techniques and those that we can analyze within
a solid mathematical framework. Note that the notion of diffusion is related to that of
denoising, which has been a studied problem since at least the 1940s with Norbert Wie-
ner’s (1894-1964) filter. Many techniques have been developed in the "classical" denoising
framework since that time, but almost overnight, neural networks have significantly im-
proved efficiency. Strangely, we have a plethora of techniques that we control perfectly on
one hand, and on the other hand, a nonlinear system that works much better, but "the
why" remains a subject. Without a doubt, as S. Mallat suggests, understanding the link
between the two types of techniques is necessary. Regarding the structure of the networks
at work, we find a multi-scale structure to some extent.

5.2 Parameter Learning

5.2.1 Fisher and Shannon Frameworks

We consider the framework where we have chosen a family of probability densities
{pθ}θ. Here, we adopt a Gibbs modeling such that

pθ(x) = Z−1
θ e−Uθ(x) (77)

where Uθ(x) defines a sort of parameterized energy. In the case of a neural network, θ
represents the set of weights of the network. Therefore, what matters to us now is finding
the "best" θ, denoted θ∗, to best approximate the true 68 distribution p(x). The only a
priori knowledge we have is that of a collection of data {xi}i≤n that we assume to be
drawn iid from p. The structure of Uθ(x) is also part of our a priori on the problem.

We need to define what is meant by "pθ∗ best approximates p", i.e., the metric that
will serve us for optimization. This problem was posed by Ronald A. Fisher (1890–1962)

68. NDJE. Recall that here we make an assumption that p(x) exists.

65

in 1922, which was the subject of the 2022 lecture 69. Fisher provides a solution in the form
of maximum likelihood. The idea is to choose θ∗ such that the probability of pθ∗(xi), on
samples xi, is as large as possible. Thus, we want to maximize the average pθ(x) (x ∼ p)
or log pθ(x) (maximum likelihood principle, also denoted MLE), i.e.:

θ∗ = argmax
θ

Ex∼p(log pθ(x)) (78)

Another way to do this is to reinterpret this scheme: it is a view from Claude Shannon’s
(1916-2001) Information Theory in 1948 70, through the notion of Entropy and that of
the Kullback-Leibler divergence defined as 71

DKL(p||q) =
∫
p(x) log p(x)

q(x)dx (79)

We can immediately see the connection with the MLE 72

DKL(p||pθ) = Ep(log p)︸ ︷︷ ︸
−H(p)

−Ep(log pθ(x)) (80)

where we introduce H(p), the entropy of p, which is independent of θ by definition. So,
maximizing likelihood is equivalent to minimizing the Kullback-Leibler divergence,

θ∗ = argmin
θ

DKL(p||pθ) (81)

One might wonder why DKL(p||pθ) is a "natural" quantity to consider for our pro-
blem (we have seen why Fisher introduces MLE)? Ultimately, DKL supports a notion
of similarity between the two probability distributions. Recall two fundamental proper-
ties 73:

69. NDJE. See Lecture 2022 Sec. 5, and Fisher’s article https://doi.org/10.1098/rsta.1922.0009 avai-
lable on the course website https://www.di.ens.fr/~mallat/CoursCollege.html.

70. C. E. Shannon, The Bell System Technical Journal, Vol. 27, pp. 379–423, 623–656, July, October.
Also available on the course website.

71. NDJE. We keep the notation from previous years.
72. NDJE. For the notations, note that Ep(f(x)) implicitly implies x ∼ p.
73. NDJE. Also see Lecture 2019 Sec. 7.2.3 for example.

https://doi.org/10.1098/rsta.1922.0009
https://www.di.ens.fr/~mallat/CoursCollege.html

66

Property 4 (Kullback-Leibler)

• DKL(p||q) ≥ 0, and = 0 iff p = q;

• if p(x) = ∏d
i=1 pi(xi) manifesting the independence of the random variables xi

(x = (x1, . . . , xd)), similarly for q(x), then

DKL(p||q) =
d∑

i=1
DKL(pi||qi) (82)

Note in passing an interpretation in terms of coding. If we want to encode the distribution
p with the distribution q, the code is not optimal, and the number of bits lost is given by
the Kullback-Leibler divergence.

The proof 74 of the first property uses Jensen’s inequality. The proof of the second
property is straightforward by taking two variables (x1, x2) through direct calculation
using the property of log to transform a product into a sum, and then generalizing to any
number of variables.

This viewpoint of using DKL is that of neural networks simply because we are trying
to model a probability: e.g., in supervised learning, classification 75 can be interpreted as
maximizing the conditional probability of the class given the sample xi, and in unsuper-
vised learning, we encounter the same type of problem.

So, we are still in Fisher’s scheme, what has changed concerns the expression of
pθ. It has transitioned from a simple Gaussian, in the original article, whose covariance
depends on θ, to more complex forms in neural networks.

5.2.2 Optimization to find θ∗

We need to maximize the likelihood log pθ or minimize its opposite − log pθ. Thus,
we consider the cost function (loss) ℓ(θ)

ℓ(θ) = −Ex∼p(log pθ(x)) = logZ(θ) +
∫
p(x)U(x; θ) dx (83)

74. NDJE. This can be found, for example, in the 2022 lecture Th. 13.
75. NDJE. See, for example, Lecture 2019 Secs. 7.2.3 and 7.3.2.

67

if we denote U(x; θ) as the argument of the exponent in Eq. 77. The tool to minimize ℓ(θ)
is the gradient descent 76. Under this term, there are many algorithms and implementa-
tions 77. As preliminary, we have this result:

Lemma 1

∇θℓ(θ) = Ex∼p(∇θU(x; θ))− Ex∼p
θ
(∇θU(x; θ)) (84)

The proof is simple, just remember that

Z(θ) =
∫

e−U(x;θ) dx (85)

which gives, when differentiating the first term of the definition in Eq. 83

∇θZ(θ)
Z(θ)

= −
∫
∇θU(x; θ) pθ(x) dx = −Ex∼p

θ
(∇θU(x; θ)) (86)

The immediate consequence of this lemma is that

∇θℓ(θ∗) = 0⇔ Ex∼p(∇θU(x; θ∗)) = Ex∼pθ∗ (∇θU(x; θ∗)) (87)

In general, a moment is called a quantity

Definition 3 (moment)

Ex∼p(f(x)) =
∫
f(x)p(x) dx (88)

In expression 87, f(x) = ∇θU(x; θ∗) is a vector. So, we have equality between two (fami-
lies) of moment vectors. The moments Ex∼p(∇θU(x; θ∗)) are constraints 78 that must be

76. NDJE. See Lecture 2018 Sec. 10, Lecture 2019 Sec.4.2.2, Lecture 2022 Sec. 3.6.2
77. NDJE. See, for example, S. Ruder’s article, "An overview of gradient descent optimization algo-

rithms", https://arxiv.org/abs/1609.04747.
78. NDJE. In the 2023 Lecture concerning Gibbs’ Theorem (Th. 17 Sec. 7.6), these are the expectations

of functions ϕk(x) (Ex∼p(ϕk(x))) that are the constraints to define pθ. In this case, it is shown that pθ

takes the form of a Gibbs distribution.

https://arxiv.org/abs/1609.04747

68

satisfied for the distribution pθ. This is called a moment projection.

Now, the gradient descent as such is a way to gradually modify the value of θ to
obtain θ∗. At step t+ 1, knowing the values at iteration t, we have

θt+1 − θt = −ε∇θℓ(θt) = ε
(
Ex∼pθt

(∇θU(x; θt))− Ex∼p(∇θU(x; θt))
)

(89)

We modify the value of θ in the direction of the error of the moments. The main problem
of the method lies in the computation of these moments.

Regarding the expectation with the distribution p, we use the initial data (xi)i which
are assumed to be iid samples from p:

Ex∼p(∇θU(x; θt)) =
∫
∇θU(x; θt) p(x)dx ≈ 1

n

n∑
i=1
∇θU(xi; θt) (90)

However, concerning the expectation with the distribution pθt , we need to construct iid
samples. MCMC methods will provide us with the means, but the implementation is
not straightforward a priori. Note, however, that on the one hand, we must proceed to
construct a chain long enough for the average to converge reasonably to the expectation,
and on the other hand, this generation step must be repeated for each iteration of the
gradient descent. In other words, even if the method seems clear to implement, it can
be very slow. Historically, since roughly the works of Fisher and those of Shannon, the
paradigm had not changed until 2005 when the idea of score matching emerged (Aapo
Hyvärinen 79). We will see why this technique accelerates the process, but there is no
miracle, there will be a price to pay.

Now, the general paradigm of choosing an expression for pθ, using a function to
minimize to find the best θ by gradient descent is undoubtedly what we want to do, says
S. Mallat. We may want to replace the Kullback-Leibler divergence with another function
to minimize to speed up the process, but before that, we need to better understand the
properties of this "metric".

79. NDJE. S. Mallat refers to the article Hyvarinen, A., (2005), "Estimation of non-normalized sta-
tistical models by score matching", Journal of Machine Learning Research, Vol 6(Apr), pp. 695–709.
https://jmlr.org/papers/volume6/hyvarinen05a/hyvarinen05a.pdf.

https://jmlr.org/papers/volume6/hyvarinen05a/hyvarinen05a.pdf

69

5.3 The linear case

This is a very important particular case of the energy form such that 80

U(x; θ) =
K∑

k=1
θkϕk(x) = θT Φ(x) (91)

where θ = {θk}k≤K and the functions Φ = {ϕk}k≤K are known in advance. It is a linear
decomposition on a linear space

U(x; θ) ∈ V = Vect{ϕk}k≤K (92)

This type of parameterization is typical of situations encountered in Physics, for example.
Note that in Machine Learning, Φ is a feature vector. The θk can be seen as coupling
coefficients.

In this linear framework, the gradient is easy to compute since:

∇θU(x, θ) = Φ(x) (93)

and it is independent of θ. The constraints given by the equality between moments (Eq. 87)
translate as

∀θ, Ex∼pθ
(Φ(x)) = Ex∼p(Φ(x)) (94)

Then we have the following property

Theorem 4 (Maximum Entropy)
Stating that D(p||pθ∗) is minimum, i.e., θ∗ is optimal (MLE), is equivalent to stating
that pθ∗ is the distribution that maximizes the entropy

H(q) = −Eq(log q) = −
∫
p(x) log p(x) dx (95)

and such that
Ex∼q(Φ(x)) = Ex∼p(Φ(x)) (96)

80. NDJE. See for example Course 2022 Sec 4.2, Course 2023 Sec. 7.6.

70

This theorem tells us that we can thus forget somewhat the parametric problem, by
substituting it with the search for a distribution constrained by moments and satisfying
the Maximum Entropy Principle 81. It is a reinterpretation in terms of Information Theory
of the parametric problem.
Proof 4. We have an optimization problem of a concave function (H(q)) where the
unknown is q(x) satisfying the collection of equalities (K constraints)

∀k, Eq(ϕk(x)) =
∫
q(x)ϕk(x) dx = Ep(ϕk(x)) = µk (97)

Moreover, since q is a probability,
∫
q(x)dx = 1. Now, this type of problem is solved by

the Lagrange multipliers 82. As H(q) is strictly concave, the solution to the problem is
unique.

So, consider the Lagrangian

L(q, θ) = H(q) +
K∑

i=1
θkck(q) + θ0

(∫
q(x)dx− 1

)
(98)

with ck(q) = µk −
∫
q(x)ϕk(x) dx. NDJE. The proof is identical to that of Course 2023

Th. 17 (Gibbs), by requiring that the derivative of L(q, θ) with respect to the distribution
q is zero, we then find that the optimal distribution is written as

p∗(x, θ) = Z(θ)−1 exp
{
−

K∑
k=1

θkϕk(x)
}

Z(θ) = eθ0−1 =
∫

exp
{
−

K∑
k=1

θkϕk(x)
}
dx

(99)
and the Lagrange multipliers θk are such that∫

p∗(x, θ)ϕk(x)dx = µk (100)

we denote θ∗ their values. Furthermore, we show

DKL(p||pθ∗) = H(pθ∗)−H(p) (101)

81. NDJE. Regarding the Maximum Entropy Principle, see also Course 2022 Sec. 7.5
82. NDJE. See Course 2018 Sec. 8.3 Kuhn & Tucker

71

Indeed,

DKL(p||pθ∗) =
∫
p(x) log p(x)

pθ∗(x)dx

= −H(p)−
∫
p(x)

(
− logZ(θ∗)−

∑
k

ϕk(x)θ∗k
)
dx

= −H(p) + logZ(θ∗) +
∑

k

Ep(ϕk(x)) θ∗k (102)

Now, for the optimal distribution obtained above, Ep(ϕk(x)) = Ep∗
θ
(ϕk(x)), thus

DKL(p||pθ∗) = −H(p)−
∫
pθ∗(x) (− logZ(θ∗)−

∑
k

θ∗kϕk(x))︸ ︷︷ ︸
log pθ∗

śdx

= H(pθ∗)−H(p) (103)

■

So, from the constraints µk estimated from ϕk(xi) where xi are the initial samples, we
impose the criterion of maximum entropy to find the distribution pθ∗ . Maximum entropy
ensures the uniformization of the distribution over typical sets 83. In a way, we do not
favor particular samples/particular configurations in these sets. In Statistical Physics,
one would invoke a Boltzmann microcanonical ensemble. In this context, the Kullback-
Leibler divergence is a measure of the excess entropy of the distribution pθ∗ because
DKL(p||q) ≥ 0. If there is too much entropy (i.e., DKL(p||q) > 0), the question that arises
is: what is the right representation of Φ? The best model is the one with the smallest
entropy, while still satisfying all the constraints and the Maximum Entropy Principle.

5.4 Score Matching

During gradient descent (Eq 89), we saw that at each step t we need to compute the
expectation Ex∼pθt

(∇θU(x; θt)), which is very costly because it requires sampling from the
distribution pθt . But if we go back to the expression of the loss (Eq. 83) that we rewrite

83. NDJE. Course 2022 Sec. 7.5

72

here for convenience:

ℓ(θ) = −Ex∼p(log pθ(x)) = logZ(θ) +
∫
p(x)U(x; θ) dx

we know that during gradient calculation, the second term is not a problem because
it involves Ex∼p(∇θU(x; θt)), which can be approximated with the average over samples
(xi)i. So the problem actually lies in calculating the gradient of the 1st term, which
gives us an expectation with the probability pθt and is difficult to sample. Therefore,
everything would be simpler if we didn’t have to deal with a normalization constant.
Because it involves a high-dimensional integral and we need to invoke MCMC again. How
to overcome this?

We can notice that

DKL(p||pθ) =
∫
p(x) (log p(x)− log pθ(x)) dx (104)

which shows the difference of log. To avoid Z(θ) in the second term, it "suffices" to consider
the gradient with respect to x, and ensure we have a positive quantity to minimize. Thus,
we look at the following quantity

I(p, pθ) = 1
2

∫
p(x)∥∇x log p(x)−∇x log pθ(x)∥2 dx (105)

which uses
∇x log pθ(x) = ∇x(− logZ(θ)− U(x; θ)) = −∇xU(x; θ) (106)

and makes Z(θ) disappear. The quantity I(p, pθ) was introduced by R. Fisher (already in
1923), it is the Fisher divergence. NDJE. Note: the score involved in the Fisher Informa-
tion invokes ∇θ log pθ(x) (Course 2022 Sec. 5.3). But here note ∇x of log of probabilities.
There is a historical reason 84 for which both formulations are called scores, but one must

84. NDJE. dee footnote The Fisher Information is defined (1D) as

I(θ) = Epθ

[(
∂ log pθ(x)

∂θ

)2
]

=
∫
R

pθ(x)
(

∂ log pθ(x)
∂θ

)2
dx

with pθ(x) a pdf parameterized by θ. From any pdf p(x), we can define a parametric form p(x − θ).

73

be careful.

So, Score Matching consists of minimizing I(p, pθ) instead of DKL(p||pθ). The big
advantage is that this is much easier to compute. However, DKL(p||pθ) is the "natural
metric", which made it the a priori choice. In fact, the idea of using the Fisher diver-
gence came to the forefront because the community was faced with practical computation
problems in high dimensions. This metric is used in large generative models.

We need to study the link between DKL(p||pθ) and I(p, pθ), which is not a priori the
optimal choice of metric. The questions that arise are: do we obtain the same distribution
pθ∗? and will it converge with a reasonable number of samples? It is this second question
that is the most critical, in fact. In this context, the constants of log-Sobolev will appear,
which establish a connection with a chapter in Analysis that studies equivalences between
metrics on functions.

5.5 Study of an example: ϕ4 potential

We revisit the example taken from Physics seen in section 4.2.2.2. For memory, the
energy term takes the form of the following Eq. 66:

U(x) = β

2
∑
(i,j)

(x(i)− x(j))2 +
N∑

i=1
V (x(i)), p(x) ∝ e−U(x) (107)

which contains a kinetic energy term (note: discretization of the Laplacian after integration
by parts and (i, j) denotes pairs of nearest neighbor spins on anN×N grid) and a potential
term which for the ϕ4 theory is shaped like 2 attractive wells x = ±1 (V (t) = (t2 − 1)2).

Deriving with respect to θ or with respect to x is equivalent. Then

I(θ) =
∫
R

p(x− θ)
(

∂ log pθ(x− θ)
∂θ

)2
dx

and, by change of variable, this quantity is independent of θ and can be written as

I[p] =
∫
R

p(x)
(

∂ log p(x)
∂x

)2
dx

which can be interpreted as the Fisher Information of the probability distribution p. The notion of
divergence follows.

74

We want to find the underlying distribution while only having examples {xi}i≤n

(note: here, the index i denotes the sample xi, and xi(k) denotes the pixel/spin k of the
sample). We do not know a priori the form of 107 for the energy. This situation is typical
of problems in Statistical Learning. It differs from Physics, where the problem has been
studied for a long time to have an idea of U(x). So, what to do? Based on what we have
seen in the previous sections, we define a model, i.e., here a family of energies Uθ(x). Let’s
say we have a priori information that there are two terms:

Uθ(x) = 1
2x

TKx+
∑

i

Vγ(x(i)) (108)

the first is the form of a Gaussian model, and the second is a form of a parameterized
scalar potential (γ). If we impose stationarity, thus invariance by translation, then K is a
convolution operator 85 with finite support:

xTKx =
∑

i

x(i)(K ∗ x)(i) =
∑
i,j

x(i)K(i− j)x(j)

=
∑
i,τ

x(i)K(τ)x(i− τ) =
∑

τ

K(τ)
∑

i

x(i)x(i− τ)

=
∑

τ

K(τ)(x ∗ x̃)(τ) = KT (x ∗ x̃) (109)

where x̃(i) = x(−i). We do not really know the support, so we need to determine K(τ) for
|τ | < C with C unknown. Regarding the potential term whose form is unknown, we can
only invoke a parameterization in a basis of functions (e.g., piecewise linear functions):

Vγ(t) =
K∑

k=1
γkρk(t) = γTρ(t) (110)

with vectors γ = (γk)k and ρ = (ρk)k. We can for example take ρk(t) as a linear rectifier
(ReLU) translated by a factor depending on k. Indeed, with 2 ReLUs we can construct a
triangle function (Fig. 28) at the basis of the decomposition into piecewise linear functions
as a consequence of the sampling theorem 86. However, we can also take linear combina-
tions of polynomials, etc. We can write the term of energy corresponding to the scalar

85. NDJE. See Course 2023 Sec. 9.3
86. NDJE. Course 2018 Sec. 5.2.4

75

Figure 28 – With a linear combination of ReLUs, we can obtain a "triangle" function
(in green) (NB: excerpt from Course 2019 Sec. 5.3.2).

potential as: ∑
i

Vγ(x(i)) = γT
∑

i

ρ(x(i)) = γT Γ(x) (111)

where Γk(x) = ∑
i ρk(x(i)). Thus, the energy can be written according to the following

expression:
Uθ(x) = 1

2K
T (x ∗ x̃) + γT Γ(x) = ΘT Φ(x) (112)

where we identify the parameters θ = (K, γ) and the feature vector Φ(x) = {1/2(x ∗
x̃),Γ(x)}. If we think of x as an image, the first term is the convolution of the image with
itself, while the second term can be the average of ReLUs over the entire image.

Now that we have identified the parametric expression of the energy Uθ(x), we can
unfold the formalism described in the previous sections. That is, find θ such that Epθ

(Φ(x))
equals the measures Ep(Φ(x)) estimated with the data (xi)i. We use gradient descent
with a metric (Kullback-Leibler or Fisher divergence). In the end, we have a probability
distribution model describing the data. What we want to do next is to generate new
samples x iid according to pθ∗ . For this, we need to do sampling.

Before that, we need to understand the difference between the metrics.

6. Lecture of February 14th

We will study in more detail the differences between the Kullback-Leibler diver-
gence, which is the natural "metric" for estimating the best approximation of the data

76

distribution (p(x)), and, for technical reasons, especially in large generative models, we
have come to use Fisher divergence (notion of Score matching). For example, we need
to understand when minimizing the score gives us a good approximation of p(x)?

6.1 Total variation distance

As we have seen in Section 5.2.1, determining the optimal parameter set θ∗ is done
by minimizing the divergence DKL(p||pθ) which describes the similarity between the data
distribution p(x), and an element pθ(x) of a parameterized family. Thus,

θ∗ = argmin
θ

DKL(p||pθ) (113)

We had seen two properties of this divergence (Prop. 4). We will give another one related
to the total variation distance 87

Definition 4 (Total variation distance)
Let p, q be two probability densities on E a measurable set (let’s say Rd), we define

the total variation distance as follows

dT V (p, q) = 2sup
A⊂E
|p(A)− q(A)| =

∫
E
|p(x)− q(x)|dx = ∥p− q∥L1 ≤ 2 (114)

with dT V (p, q) = 2 if the supports of p and q are disjoint.

The total variation distance is defined in a broader framework of probability
measure theory, henceforth we will denote it by ∥p− q∥T V .

To prove the equality between the two definitions, we can proceed as follows. Let the set

A+ = {x / p(x) > q(x)} (115)

and its complement in E
Ac

+ = {x / p(x) ≤ q(x)} (116)

87. NDJE. I have specialized it for pdf s but it is defined for measures more broadly.

77

For A+ ⊂ E arbitrary 88, we have the following double inequality

m = p(Ac
+)− q(Ac

+) ≤ p(A)− q(A) ≤ p(A+)− q(A+) = M (117)

We can prove, for example, the second inequality as follows:

p(A)− q(A) = p(A ∩A+)− q(A ∩A+)︸ ︷︷ ︸
>0

+ p(A ∩Ac
+)− q(A ∩A+)︸ ︷︷ ︸

≤0

≤ p(A ∩A+)− q(A ∩A+)

≤ p(A+)− q(A+) (118)

The proof of the first inequality proceeds in a similar manner. Now, we can notice that A+ ⊂ E , so the
supremum is achieved for A = A+, thus

∥p− q∥T V = 2|p(A+)− q(A+)| = 2M (119)

Now p(E) = q(E) = 1, so m + M = p(E)− q(E) = 0 hence m = −M . Thus

∥p− q∥T V = 2M = M −m =
∫

A+

|p(x)− q(x)|dx +
∫

Ac
+

|p(x)− q(x)|dx =
∫

E
|p(x)− q(x)|dx (120)

The divergence DKL(p||q) controls the value of this distance according to the follo-
wing inequality established by Mark Semenovich Pinsker (1925-2003):

Theorem 5 (Pinsker’s inequality)

∥p− q∥2
T V ≤ 2DKL(p||q) (121)

Proof 5.
The proof follows a typical pattern in this field. Let’s consider the case of probability
densities, and forget in the notations about the set E on which the integrals are performed.
We also place ourselves under the same conditions of validity of DKL(p||q). Thus,

∥p− q∥T V =
∫
|p(x)− q(x)| dx =

∫
q(x)

∣∣∣∣∣p(x)
q(x) − 1

∣∣∣∣∣ dx = Eq[|f(x)|] (122)

88. NDJE: I simplify the notations, one should consider Borel sets of E , and we use the Lebesgue
measure.

78

if f(x) = p(x)
q(x) − 1 ≥ −1. Note in passing that Eq(f(x)) = 0. On the other hand, we can

write

DKL(p||q) =
∫
p(x) log p(x)

q(x)dx = Eq[(1 + f(x)) log(1 + f(x))]

= Eq[(1 + f(x)) log(1 + f(x))− f(x)] (123)

We can show 89 furthermore that ∀y > −1,

(1 + y) log(1 + y)− y ≥ 1
2

y2

1 + y/3 (124)

Thus
DKL(p||q) ≥ 1

2Eq

[
f(x)2

1 + f(x)/3

]
(125)

To conclude, we use the following lemma 90 on the rvs X and Y , assuming that Y ≥ 0

E(|X|2/Y) ≥ E(|X|)2

E(Y) (126)

Finally, we arrive at the relation

DKL(p||q) ≥ 1
2

Eq[|f(x)|]2
Eq[1 + f(x)/3] = 1

2Eq[|f(x)|]2 = 1
2∥p− q∥

2
T V (127)

which is what we wanted to prove. ■

This theorem tells us that the Kullback-Leibler divergence is indeed asymmetric and
not a distance, yet it nevertheless controls a total variation distance that is quite strong.
In particular, minimizing DKL(p||q) effectively ensures that two probability distributions
will converge to each other.

89. NDJE. Hint: initially, we can expand both functions in a series around y = 0 to understand the
choice of function on the right-hand side of the inequality. Then by defining a function f as the difference
between the function on the left-hand side and the one on the right-hand side, by taking the second
derivative of f , we find that f ′′ is strictly positive on (−1,∞). The function f ′ is strictly increasing from
−∞ to ∞ and its only zero is at y = 0. The function f is therefore strictly decreasing on (−1, 0] and
strictly increasing on [0,∞) with its minimum at y = 0 where it is equal to 0.

90. NDJE. Use Cauchy-Schwartz with the two rvs |X|/
√

Y and
√

Y .

79

6.2 The Hessian of DKL in the Linear Case

Again, our objective is to find the best distribution pθ(x) approximating the data dis-
tribution (denoted p(x)), and we have identified in Section 5.2.1 that the natural "metric"
is DKL(p||pθ). Furthermore, according to equations 80 and 83, we have

DKL(p||pθ) = H[p] + ℓ(θ) (128)

highlighting the log-likelihood 91

ℓ(θ) = −Ep(log pθ(x)) (129)

Minimization by gradient descent has allowed us to establish Lemma 1, such that the
condition ∇θℓ(θ) = 0 gives

Ex∼p(∇θU(x; θ∗)) = Ex∼pθ∗ (∇θU(x; θ∗)) (130)

This means that the best distribution pθ is the one that accounts for the moments here
defined as the gradient of the energy with respect to θ. The computational problem lies
in the right term, as we highlighted at the end of Section 5.2.2. And in Section 5.4, we
identified the real challenge, namely the computation of the normalization constant Z(θ).
This is what motivates the use of score matching.

But before we see that, does gradient descent converge? We saw, in the exponential
case where the energy has a linear expression (Sec. 5.3) of the form

U(x; θ) = θT Φ(x) (131)

where Φ(x) is a features vector, that

∇θDKL(p||pθ) = Ep(Φ(x))− Epθ
(Φ(x)) (132)

However, if we want an easily solvable problem with gradient descent, it is desirable
to be in a convex case, i.e., we need to study the Hessian. So let’s state the following
theorem:

91. NDJE. Note the sign difference compared to the definition of the loss I took.

80

Theorem 6
The Hessian with respect to θ of DKL(p||pθ) in a case where the energy has a linear
form U(x; θ) = θT Φ(x) (Φ = {ϕk}k≤K) is such that

Hθ[DKL(p||pθ)] = Covpθ
(Φ(x)) = Epθ

(Φ(x)Φ(x)T)− Epθ
(Φ(x))Epθ

(Φ(x)T) ≥ 0
(133)

The demonstration is straightforward by considering the expression of the Hessian Hθ =
∇θ∇T

θ and using the expression Eq. 86. Therefore, since the Hessian is always positive,
we know that the problem is simpler, and gradient descent converges to the solution.
However, two points emerge:

— as already mentioned, there is a problem with computing Z(θ), which requires a
large number of samples;

— the Hessian can be poorly conditioned, meaning that the extreme eigenvalues can
be very different 92, which affects the convergence speed.

Despite these two challenges, this approach has been used and was only recently repla-
ced by score matching. The method worked well because it dealt with relatively low-
dimensional problems. The problem becomes more acute as the dimensionality increases.

6.3 Fisher Divergence (Score Matching)

The solution found in 2005 by Aapo Johannes Hyvärinen (1970-) (see footnote 79)
is to use a new metric (Sec. 5.4). We will replace

DKL(p||pθ) = Ep[log p(x)− log q(x)] (134)

with the following quantity called Fisher divergence in the literature, related to the Fisher
Information (see footnote 84)

I(p, pθ) = 1
2Ep[∥∇x log p(x)−∇x log pθ(x)∥2] (135)

92. NDJE. See Course 2019 Sec. 8.2.2

81

which, as we have seen, allows us to get rid of the constant Z(θ) because we take the
gradient with respect to x, and the norm ensures positivity. So, the idea is to minimize
I(p, pθ) by gradient descent:

θSM = argmin
θ

I(p, pθ) (136)

(θSM is then the θ of the score matching). The first remark is that the calculation of the
gradient descent is easier, but the second remark concerns why is this method as precise
as the one obtained with DKL(p||pθ)? This latter point is more delicate. Because, one can
find oneself in a situation where the method using Fisher divergence is much slower, and
thus we are faced with the problem of controlling one metric by another. This branch of
Analysis (e.g., the log-Sobolev constants) has been particularly developed in the last 30
years, S. Mallat tells us.

6.4 Rewriting of I(p, pθ)

Let us first study the easy part of the convergence by this theorem:

Theorem 7 (Hyvärinen-2005)
Under the regularity assumption sup

x
∥∇xUθ(x)∥ < ∞, we can rewrite I(p, pθ) as

follows:

I(p, pθ) = Ep

[
∆xUθ(x) + 1

2∥∇xUθ(x)∥2
]

+ C(p) = J(θ) + C(p) (137)

where C(p) is a constant depending on the distribution p.

We see the potential gain in the fact that I(p, pθ) involves an expectation according
to the distribution p which will be easily accessible via the data {xi}i≤n representing iid
samples from the distribution p:

I(p, pθ) ≈
1
n

n∑
i=1

(
∆xUθ(xi) + 1

2∥∇xUθ(xi)∥2
)

(138)

and we know the analytical formulas of Uθ(x) so we can calculate the gradient and the

82

Laplacian without worry 93. There is no longer a need for MCMC methods. In the case of
a linear form of energy parametrization, we can obtain an analytical formula for I(p, pθ).
This method, which seems miraculous, often works, S. Mallat tells us, and let’s recall that
all synthesis/generation algorithms are based on this formulation.

Proof 7. The proof follows a classical process. If we write p(x) = Z−1e−U(x), replacing
log p gives us −U(x) (the same for pθ), thus

I(p, pθ) = 1
2Ep[∥∇xU(x)−∇xUθ(x)∥2]

= 1
2Ep[∥∇xU(x)∥2]︸ ︷︷ ︸

C(p)

+1
2Ep[∥∇xUθ(x)∥2]− Ep[(∇xU(x))T∇xUθ(x)] (139)

Now,

−Ep[(∇xU(x))T∇xUθ(x)] = −
∫
p(x)(∇xUθ(x))T∇xU(x)) dx

= −
∫
∇xUθ(x))T Z−1∇xU(x)e−U(x)︸ ︷︷ ︸ dx

=
∫

(∇xUθ(x))T∇xp(x) dx
IP P=

∫
p(x)∆xUθ(x) dx (140)

Therefore,
I(p, pθ) = C(p) + 1

2Ep[∥∇xUθ(x)∥2] + Ep[∆xUθ(x)] (141)

which is the expected result, if p(x)∇xUθ(x) converges to 0 as ∥x∥ → ∞, which is indeed
verified thanks to the chosen regularity condition. ■

6.5 Example: Linear Energy Case

This result from Th. 7 is remarkable, let’s recall it, as it eliminates all normalization
constants. Let’s see what this gives in the case of a linear expression of the energy in
terms of the parameters. We know that minimizing the Kullback-Leibler divergence will

93. NDJE. Moreover, with automatic differentiation software.

83

work perfectly. In this case, Uθ(x) = θT Φ(x), so omitting the term C(p), we can focus on
the term dependent on θ:

J(θ) = θTEp[∆xΦ(x)] + 1
2Ep[∥θT∇xΦ(x)∥2] (142)

which is a convex quadratic expression in θ, so there is no difficulty in minimizing
it. The gradient of J is:

∇θJ(θ) = Ep[∆xΦ(x)] + Ep[∇xΦ(x)(∇xΦ(x))T] θ (143)

which gives the solution for ∇θJ(θ) = 0:

θSM = −Ep[∇xΦ(x)(∇xΦ(x))T]−1 Ep[∆xΦ(x)] (144)

Thus, we have moved from a problem that could be long to compute at each step
of the gradient descent to an analytical problem. However, if the feature vector Φ is of
high dimension, it is better to use gradient descent, using at step t the above expression
of ∇θJ(θ) for θ = θt.

6.6 Convergence of Score Matching

First of all, we can ask the question: do we converge to a θ identical to the one we
would obtain by minimizing the Kullback-Leibler divergence? The brief answer to this
question is "yes, if the model is correct...".

Theorem 8 (Consistency of Score Matching)
Imagine that p(x) is written as an element of the family {pθ}θ of the model in

which we operate the search program for the best approximation. So let θ∗ be such
that p = pθ∗ with pθ∗ > 0 (e.g., exponential family), and let’s assume that θ∗ is
unique. Under these conditions, θSM = θ∗ is reached when I(p, pθ) = 0.

Proof 8. We know that by gradient descent, we reach the minimum of J(θ), which is

84

achieved when I(pθ, pθ∗) = 0. So for all x:

∇x log pθ(x) = ∇x log pθ∗(x) (145)

which by integration gives:

log pθ(x) = log pθ∗(x) + const⇒ pθ(x) = const× pθ∗(x) (146)

Now, as both are pdfs, the constant is equal to 1. Thus, if the probability p(x) belongs to
the family, we find the θ corresponding to it by minimizing the Fisher divergence. ■

The problem at hand is not so much whether this method is more prone to the fact
that p may not be an element of the probability family, but do we indeed have a faster
convergence rate, for example, than by minimizing the Kullback-Leibler divergence?

S. Mallat draws a parallel with the seemingly miraculous theorem of universal func-
tion approximation by neural networks with 1-hidden layer 94. Indeed, this theorem is
ultimately completely ineffective because it is constrained by the curse of dimensionality:
indeed, we can approximate any function, but the price to pay is that we need a num-
ber of parameters growing exponentially with the dimensionality of the problem. This is
completely off-topic for d = 106 in the case of image generation, for example.

So, the question of convergence speed is not trivial, and in the case of score mat-
ching, we will see that this speed is governed by the number n of samples and therefore
the precision we want to have for the calculation of the expectation. That is, we make
use of convergence ((xi)i iid samples from p(x)):

1
n

n∑
i=1

F (xi) −−−→
n→∞

Ep[F (x)] (147)

for which we know that the fluctuations as a function of n are essentially Gaussian thanks
to the central limit theorem.

If we return to the expression of θSM in the linear case (Eq. 144), we can deduce,

94. NDJE. See Course 2019 Sec. 5.3

85

for example, that:
√
n(θ − θSM) −−−→

n→∞
N (0, CSM) (148)

with CSM a covariance that depends on the chosen metric, i.e., the Fisher divergence.
Similarly, in the case of maximum likelihood estimation (MLE) using the minimization
of the Kullback-Leibler divergence, thanks to the Cramér-Rao bound 95 of an unbiased
estimator, we also have that:

√
n(θ − θKL) −−−→

n→∞
N (0, CKL) (149)

with CKL = 1/I1(θ) the inverse of the Fisher information obtained with 1 sample.

The question that arises is what is the relationship between CSM and CKL? Let’s
first see an example before addressing the analysis of the problem itself.

6.7 An Illustrative Example of the Score Matching Problem

In fact, we try to control a log-probability by its gradient: indeed, to determine pθ

or − log pθ = Zθ + Uθ, using the score matching method via I(p, pθ), we eliminate the
normalization constant and control the gradient ∇xUθ.

Let’s imagine a function U(x) with local minima as shown in Figure 29, it’s a non-
convex problem. The question is whether we can perform a transformation of U without
too much disturbing its gradient, while completely changing the minimum?

What we can do is to perform the transformation that gives the dashed red graph,
which makes a cut of the potential barrier (hatched area) and a descent (by a constant)
of the second minimum. There are areas where the gradients are little or not changed,
and there is the cutting area that disturbs the gradients. But this last one is not the place
of typical events which are rather concentrated in the minima. So, the evaluations of the
expectations are not disturbed by the modified profile of U(x). Or in other words, to
appreciate the differences between the profile of the initial U(x) or its modified form,
a large number of samples is needed to explore the tails of distributions and explore
the places where the gradients have been significantly modified.

95. NDJE. See Course 2022 Sec. 5.3

86

Figure 29 – Transformation of U(x) by a cut (hatching) and a translation of the secon-
dary peak.

87

Thus, for non-convex problems, which is generally the case, there is a loss of
knowledge of the exact profile of U(x) due to the non-use of the normalization constant.
There is a risk of not converging to the correct value of θ.

Another way to put it: the variance CSM is likely to be very large. The question
that arises then is: can we avoid this kind of situation?

6.8 Conditions for Using Score Matching

For the method to work, we need to control the Kullback-Leibler divergence by
the Fisher divergence. It is in this framework that the notion of log-Sobolev constant 96

appears:

Definition 5 (log-Sobolev)
Let p and q be two strictly positive probability densities, the log-Sobolev constant c(p)
is the smallest constant such that:

∀q, DKL(q||p) ≤ c(p) I(p, q) (150)

Note that we would rather have the idea of constraining DKL(p||q) (recall: DKL is not
symmetric) which serves us when q = pθ. But we will see how this constant c(p) can be
useful to us. Also note that the Fisher divergence is symmetric.

To see why we have this type of inequality, we will rewrite it like this (using the
symmetry of I(p, q)):

DKL(q||p) =
∫
q(x) log q(x)

p(x) dx ≤ c(p)1
2

∫ ∥∥∥∥∥∇x log q(x)
p(x)

∥∥∥∥∥
2

q(x)dx (151)

Let the function

f(x) =

√√√√q(x)
p(x) (152)

96. NDJE. The log-Sobolev inequalities were discovered in 1967 by the American mathematician Leo-
nard Gross (1931-) during his research into the construction of solid foundations for Quantum Field
Theory, in particular the mutual interaction of bosonic fields involved in Quantum Chromosynamics, and
more generally in the non-Abelian gauge theories of Yang-Mills. Publications appeared in 1975

88

we immediately have that
∫
f 2(x)p(x)dx = 1, and therefore f is an element of the set

of square integrable functions, normalized with respect to the measure p(x)dx (denoted
L2(p(x)dx)). Thus, we can rewrite the inequality as follows:

∫
f 2(x) log f 2(x) p(x)dx ≤ c(p)

2

∫
∥∇x log f 2(x)∥2q(x)dx = 2c(p)

∫ ∥∇xf(x)∥2

∥f(x)∥2 q(x)dx

(153)

Since q(x)/∥f(x)∥2 = p(x), the initial inequality then transforms into the following in-
equality 97:

∫
f 2(x) log f 2(x) p(x)dx ≤ 2cLS(p)

∫
∥∇xf(x)∥2 p(x)dx (154)

We are then immersed in another world of mathematics, that of functions whose square
gradient is integrable according to the measure p(x)dx. The integral on the right-hand
side is a Sobolev norm that ensures a form of regularity, while the left-hand side is an
entropic measure. The challenge is then to control the constant.

Note that for practical applications of Machine Learning, these inequalities are
quite critical, in the sense that if we find ourselves in a situation that contradicts these
inequalities, then score matching will not work at all! So it is really important to un-
derstand the nature of these constants and to be aware of why we have come to use
score matching/Fisher divergence instead of MLE/Kullback-Leibler divergence. In Score
Diffusion generation applications, we use not an exponential model with linear energy in
θ, but a neural network whose output is sθ(x). It is trained to compute ∇x log p(x), but
the question is how many samples do we need? The answer to this question is largely
influenced by these log-Sobolev constants.

To give an idea of these constants c(p), let’s link it with another classic inequality,
namely the Poincaré inequality 98, which relates the Sobolev norm to the variance.

97. NDJE. I denote the constant cLS because later we will see another constant
98. Henri Poincaré (1854-1912)

89

Theorem 9 (Poincaré inequality)
Let g be a function, whose variance is considered under the measure p(x)dx and
whose average is denoted by ḡ:

Varp(g) =
∫

(g(x)− ḡ)2 p(x)dx ḡ =
∫
g(x) p(x)dx (155)

The Poincaré inequality states that the Sobolev constant (denoted here cP (p)) satis-
fies:

Varp(g) ≤ cP (p)
∫
∥∇xg(x)∥2 p(s)dx (156)

Typically, one thinks that the variance of g around its mean is related to the average of
its variations, whose squared norm of the gradient is a proxy.

To link this inequality 154 with the one above, let’s set f(x) = 1+g(x).ε with ḡ = 0.
Note that

f(x)2 log
(
f 2(x)

)
≈ 2(g(x).ε) + 3(g(x).ε)2 + . . .

thus, ∫
f 2(x) log f 2(x) p(x)dx ≈ 3ε2Varp(g) (157)

Similarly, ∥∇xf(x)∥2 = ε2∥∇xg(x)∥2, so if we denote cP (p) as the Poincaré constant and
cLS(p) as the log-Sobolev constant of expression 154, then we have a relation of the type 99

cP (p) = 2/3 cLS(p) (158)

The Poincaré inequality is very important in variational calculus 100.

Let’s consider applications. Take the Gaussian case, where g(x) is linear. Let e be
a unit norm vector:

g(x) = ⟨e, x⟩ =
d∑

i=1
e(i)x(i) (159)

99. NDJE. It is found in the literature that cLS(p) incorporates the factor 1/2 in the inequality Eq. 154,
so the relation in this case would be cP (p) = 1/3 cLS(p). In a more general case, keeping this definition,
we find an inequality of the type cP (p) ≤ 1/2 cLS(p). See for example https://djalil.chafai.net/blog/
2023/01/12/log-sobolev-and-bakry-emery/.
100. NDJE. For readers interested in the mathematical relations between the log-Sobolev inequalities
also known as Gross and Poincaré inequalities, see https://hal.science/hal-00012428v1

https://djalil.chafai.net/blog/2023/01/12/log-sobolev-and-bakry-emery/
https://djalil.chafai.net/blog/2023/01/12/log-sobolev-and-bakry-emery/
https://hal.science/hal-00012428v1

90

the gradient of g, ∥∇xg∥2 = ∥e∥2 = 1. Now, let’s look at the Poincaré inequality, which
tells us

∀e s.t. ∥e∥ = 1, Varp(g) = Varp(⟨e, x⟩) ≤ cP (p) (160)

We can choose the worst-case scenario where the unit vector e achieves maximum variance.
What is the connection with the covariance matrix Cov(p) of p(x)? In fact 101,

Varp(⟨e, x⟩) = eT Cov(p)e (161)

Therefore, the eigenvector of Cov(p) with the largest eigenvalue (denoted λmax) achieves
the worst-case scenario. Hence,

cP (p) ≥ λmax (162)

Returning to the problem of the ϕ4 potential (Sec. 5.5) that is non-convex, at the
moment of transition, long-range correlations appear. Since we are dealing with a statio-
nary process, the matrix is diagonalizable in a Fourier basis. The eigenvalues constitute
the spectral power 102, which has a typical behavior of 1/|ω|η (Fig. 30) with η ≈ 2 due
to discontinuities 103 at small scales. So, at low frequencies, the covariance matrix is ill-
conditioned. This reflects that in regions of constant gray levels (color), the pixels are
highly correlated, so there are long-range correlations (large scale <-> small value of ω),
and a lot of power. Thus, the constant c(p) is inherently large and therefore we will not
effectively constrain the Kullback-Leibler divergence: "things go wrong!"

However, how is it that neural networks manage to cope with this? Or how to
circumvent this problem of poorly conditioned covariance matrix? In a way, the high
frequencies (small scales) are masked by the low frequencies (large scales). NDJE. In
Course 2023 Sec. 9.3 we saw that one way is to consider windows in ω on which the
ratio of min/max eigenvalues is much more favorable (in fact, we then focused on finding
a consistent estimator of second-order moments). We can then perform BatchNorm 104

operations at all stages of the network, which will (re)condition the problem to some
extent to bring out the high frequencies.

101. NDJE. It’s a result that can be derived from Sec. 9.3 of Course 2023.
102. NDJE. Course 2023 Sec. 9.3
103. NDJE. There is a typo in the caption of figure 10. There is a behavior of 1/k at small k i.e., at
large spatial scales, and 1/k2 at large k i.e., small scales.
104. NDJE. Cours 2019 Sec. 8.2.3

91

Figure 30 – Typical evolution of the spectral power, for example in images. (NDJE. ex
Course 2022 Figs. 10 and 11)

There are two reverse inequalities to upper bound the Sobolev constants c(p). The
challenge is to be able to say in which cases these constants are not too large. There are 2
cases in which we can make these calculations. The first concerns the convex case of U(x)
and we want to control the Hessian with respect to x. Let us then consider the theorem
of Dominique Bakry and Michel Émery:

Theorem 10 (Bakry-Emery,1985) Let Hx[U(x)] be the Hessian of U . If λmin > 0
the smallest eigenvalue of this Hessian is such that

∀x, Hx[U(x)] ≥ λmin Id (163)

then
cLS(p) ≤ 2/λmin (164)

This first result shows that in the Gaussian case (g linear), the log-Sobolev constant
(Eq. 162) of Poincaré’s theorem satisfies the equality

cP (p) = λmax (Gaussian case) (165)

92

(recall. where λmax is the largest eigenvalue of the covariance) and the same is true 105

for cLS(p) in the expression 154. In the non-Gaussian case, U(x) is not convex and the
previous theorem does not apply.

The second case where we have a result is the case of independence of components
(x(i))i≤d of x. Then we know that we can factorize p(x) according to

p(x) =
d∏

i=1
pi(x(i)) (166)

In this case, the Sobolev constant satisfies the following inequality:

cLS(p) ≤ max
i≤d

cLS(pi) (independent variables case) (167)

How does this help to solve most of the problems? We have seen that problems arise
when the dimension d increases. In fact, this translates into an increase in these log-
Sobolev constants with d. It’s the curse of dimensionality. But, in the case of independent
variables, they do not interact, and therefore to escape local minima in d dimensions, it
suffices to escape in only 1 dimension. So, the phenomena of non-convexity that lead to
more unstable constants become somewhat more manageable in 1D.

But once again, in most high-dimensional problems, as d increases in a certain way,
the minima become deeper and deeper, severely degrading the constants as stated for
example by C. Domingo-Enrich and A. Pooladiani 106: "[...], for multimodal distributions
such as Gaussian mixtures, cLS grows exponentially with the height of the potential barrier
between the modes...".

We will come back to these considerations because these log-Sobolev constants de-
fine the asymptotic speed of the Langevin sampling algorithm. This algorithm performs
gradient descent (along x, cf. score matching) while adding noise. So, when it is in a
local minimum, it can "jump" the potential barrier by a fluctuation of the noise. But of
course, the higher the barrier, the lower the transition probability. Then come the cLS(p)

105. NDJE. see Eq.1.4 https://perso.math.univ-toulouse.fr/cattiaux/files/2013/11/CFG-21-06-22.pdf
with the change in definition of cLS(p).
106. NDJE. the excerpt is taken from the article by Carles Domingo-Enrich and Aram-Alexandre Poo-
ladiani published in Transactions on Machine Learning Research (06/2023) "An Explicit Expansion of the
Kullback-Leibler Divergence along its Fisher-Rao Gradient Flow", https://arxiv.org/abs/2302.12229.

https://perso.math.univ-toulouse.fr/cattiaux/files/2013/11/CFG-21-06-22.pdf
https://arxiv.org/abs/2302.12229

93

to quantify these phenomena and control the convergence speed of the algorithm.

7. Session of Feb. 28th

7.1 Introduction

In this session and the following ones, we will address the issues of sampling and
generation. The mathematical tools are of very different nature from those seen so far.

We assume that the determination of the underlying probability p(x) for the samples
given initially is already acquired. To be concrete, we assume that p is a Gibbs distribution,
namely

p(x) = Z−1e−U(x) (168)

The problem now is to generate realizations of this distribution. Let these new 107 samples
be {xi}i≤n. If we compute averages from these samples, we should retrieve the values of
the expectations obtained with p(x). Let pn(x) be the empirical distribution forged from
these samples:

pn(x) = 1
n

n∑
i=1

δxi
(169)

then we expect that for any integrable function

∫
f(x) pn(x)dx = 1

n

n∑
i=1

f(xi) −−−→
n→∞

∫
f(x) p(x)dx = Ex∼p[f(x)] (170)

The interest in generating samples is to approximate integrals in high dimensions with
empirical means. So, the problem is to generate {xi}i≤n such that they span the entire
configuration space χ while focusing on the space where the probability is large 108. The
central idea to achieve the generation program is to create dynamic systems where the
iterates x(t) are the {xi}i≤n, in a sense where the index i is a "time". The underlying
mathematics involve the notion of ergodicity 109.

107. NDJE. Note: for convenience, we use the same notation as that of the initial samples, which may
have led to the determination of the expression of p(x).
108. NDJE. In the case of the existence of multiple modes, the geometry of this space is more complex.
109. NDJE. see Course 2023 Sec. 6.2

94

One-dimensional case is somewhat simpler, as we can define transformations from
a uniform measure on [0, 1] to obtain the target probability density. However, it is ne-
cessary to define the ability to sample a uniform measure on [0, 1], which leads us to
consider the design of a dynamic system that generates randomness from determinism,
and satisfies the ergodicity property. Alongside the "dynamic system" approach, we will
explore the rejection algorithm (or "rejection sampling", or "hit & miss", etc.). In fact,
there are cases where the "dynamic system" approach yields a distribution q(x) different
from the desired one; in such cases, the rejection algorithm allows the transformation
from q(x) to p(x). This is a simple yet fundamental idea that applies in both low and
high dimensions. Finally, we will address importance sampling 110 which is one of the
basic sampling algorithms, allowing, from a distribution q(x), to recover the sought-after
distribution p(x).

Now, transitioning to high dimensions makes us fear facing the curse: bluntly ap-
plying the above techniques does not work. We need to find a way to ensure that q(x)
is very well adapted. The appropriate dynamic system is that of Markov chains, and
the Metropolis-Hastings algorithm is a rejection algorithm applied to them. These two
ingredients form the basis of Monte Carlo Markov Chain (MCMC) algorithms.

To conclude, we will address Score Diffusion/Denoising algorithms to see how they
fit into the previous framework. The idea is to once again define Markov chains. Howe-
ver, we are more interested in −∇xU(x) = ∇x log p(x), which is nothing but the score
(Sec. 5.4). We will then see the connection with denoising. Neural networks come into
play to approximate ∇x log p(x) via a function sθ(x). If everything is under control, then
we are able to generate samples from a Markov chain according to the correct probability
p(x) starting from white noise.

7.2 The One-Dimensional Case

Let’s assume we have a random variable U with a uniform density on [0, 1] (denoted
U(0, 1)). We want to be able to sample p(x) with x ∈ R. Let the partition function F (x)
be defined such that

F (x) =
∫ x

−∞
p(u)du (171)

110. NDJE. see the footnote 21.

95

From there, we use the following method:

Lemma 2 (Inverse Transformation Method)
Let F be defined R←→ [0, 1], strictly monotonic, and let U ∼ U(0, 1), then

X = F−1(U) (172)

is a random variable whose cumulative distribution function is F (x) and thus density
p(x) = F ′(x).

Proof 2. Consider the cumulative distribution function of X:

P(X = F−1(U) ≤ x) = P(U ≤ F (x)) = F (x) (173)

indeed F (x) ∈ [0, 1] and for all a ∈ [0, 1], U being uniformly distributed P(U ≤ a) =∫ a
0 1 dx = a. Therefore, we have the lemma’s result. The "strict" side of monotonicity can

be relaxed, in which case F−1(x) must be defined such that

F−1(x) = inf{x such that F (x) ≤ u} (174)

■

Note that p(x) can be complex but obtaining approximations (e.g., splines) for F (x) can

make the inversion of F (x) easy. The real difficulty lies in sampling U(0, 1). The central
theorem is that of Birkhoff 111 and the notion of ergodicity.

7.3 Ergodicity of a Deterministic Transformation

Definition 6 (Ergodic Transformation)
Consider a probabilistic ensemble (χ,B, µ) consisting of a set of states χ, a measure
µ, and a set of measurable sets relative to µ (denoted B) which is a σ-algebra a. We
assume that µ is a probability measure on χ, specifically µ(χ) = 1. A transformation

111. NDJE. See Theorem 11 in Course 2023 Sec. 6.2

96

T is ergodic if:

• ∀A ∈ B, µ(T−1(A)) = µ(A) (invariant measure) (175)

• A ∈ B, such that T−1(A) = A⇒

either µ(A) = 0
or µ(A) = 1

(176)

a. NDJE. e.g., the open sets of Rd

NDJE. To understand the first property, let’s consider for example A ∈ B, its measure
with respect to µ can be written as

µ(A) =
∫

χ
1A(x) dµ(x)

Let T (x) be the transformation of x by the application T , we may wonder what is repre-
sented by: ∫

χ
1A(T (x)) dµ(x)

This is the measure of the set B containing all the transformed elements of χ that end up
in A (Fig. 31), so B = T−1(A) and the integral above can be written as∫

χ
1A(T (x)) dµ(x) =

∫
χ

1B(x) dµ(x) = µ(B) = µ(T−1(A))

The notion of measure invariance by µ is then identified as the stated property, namely
µ(A) = µ(T−1(A)) for all A. In measure theory, we define the notion of the pullback of
the measure by T , denoted T∗µ, and we then write∫

χ
1A(T (x)) dµ(x) =

∫
χ

1A dT∗µ

The invariance is then written as T∗µ = µ.

The second property indicates that there is no set A other than the entire set χ or
reduced to isolated points, such that taking an element x and proceeding with the iterates
xn = T n(x), we would remain trapped in this set.

The central theorem is that of Birkhoff’s ergodicity, which is stated as follows:

97

Figure 31 – Diagram showing why T−1(A) appears in the definition of the invariant
measure.

Theorem 11 (Birkhoff)
If T is ergodic then for any measurable function f ∈ L1(χ, µ),

∫
χ |f(x)|dµ(x) <∞,

considering almost every x0 ∈ χ

1
n

n∑
k=1

f(T k(x0)) n→∞−−−→
∫

χ
f(x) dµ(x) = Eµ[f(X)] (177)

The ergodicity assumption tells us that the empirical average calculated on the transfor-
med points (xk = T k(x0))k≤n converges to the expectation relative to the measure µ of
the random variable X generated by the (xk)k. In other words, the (xk)k will traverse the
entire space and the concentration of these points in χ reflects the probability density
dµ(x).

An important special case is when f = 1A, the theorem indicates (recall µ(χ) = 1):

1
n

n∑
k=1

1A(T k(x0)) −−→
n→

Eµ[1A] = µ(A) (178)

which means that the counting of returns in the set A starting from x0 gives the measure
of A.

The program is as follows: given a measure (e.g., the probability density p(x)),
find a transformation T that leaves this measure invariant, and such that the iterates
traverse the entire space, meaning that its only invariant sets are either the set χ or

98

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x

T
(x
)

Figure 32 – Successive iterates by transformation T of a point x on the circle. On the
right, the dyadic transformation Eq. 179.

isolated points. As mentioned in the introduction, if it is not possible to obtain p as the
invariant measure of a transformation, one must find an invariant measure q close to p,
which will be transformed by rejection-type algorithms.

7.4 Uniform Measure on [0, 1]

To start, we need to obtain samples from a uniform distribution on [0, 1], denoted
U(0, 1). For this, we can try to find a transformation T that maps a point from the unit
circle to another point on this circle. We would like the density of points to be uniform
on the circle.

Consider the following expression (Fig. 32):

T (x) = 2x mod 1 (179)

which is a binary shift (bit shift map, or Bernoulli or dyadic map). If we start with an
irrational x, in binary notation, the list of its bits is not periodic, so the shift produces
a different number at each iteration, and therefore there is no periodicity. However, it
is necessary to demonstrate that the invariant measure is the uniform measure 112. Note
that for two close irrational numbers, the iterates after a certain rank will diverge. This

112. NDJE. hints: If (b0, b1, b2, . . .) is an infinite sequence of bits (0, 1), then the transformation T yields

99

0 5 10 15 20 25 30

-0.5

0.0

0.5

1.0

k

T
k
(x
0
)-
T
k
(x
0
+
ϵ)

Figure 33 – Successive iterates by dyadic transformation T of x0 = 1/
√

2 and x1 =
x0 + 10−6.

is because in the decomposition of the two numbers, the first N bits are identical (see
footnote 112), but then they differ. However, at the N -th iteration, only these differing
bits matter, which leads to divergence. See an example in Figure 33. This is a form of
chaos that arises after a certain number of iterations of the dyadic transformation.

Note that we can design an ergodic transformation with the uniform distribution as
invariant by using the following expression for T :

T (x) = x− τ mod 1 τ ̸∈ Q (180)

the sequence (b1, b2, . . .), and any real number on [0, 1] can be written as

x =
∞∑

k=0

bk

2k+1

An irrational number is characterized by a non-periodic sequence of bits. This demonstrates that T
traverses the entire circle starting from an irrational number. Now, if we take a starting point density
ρ(x), one iteration transforms this density. To find the expression of the new density, we look for the
points y = T −1(x) (argument already discussed above). To obtain the density, we then use the derivative
formula, taking into account the 2 intervals [0, 1/2] and [1/2, 1] involved by the modulo. We then find
that the transformation of the density is written as

ρ(x) T−→ 1
2ρ (x/2) + 1

2ρ ((x− 1)/2)

Then note that ρ(x) = 1 (uniform distribution) is invariant under this transformation. Now, if we only
have a finite representation of irrational numbers, eventually the series of iterates will fall from a certain
rank on the fixed point of the transformation, namely x = 0.

100

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 34 – Scatter plot of (Xn, Xn+k) for k = 1 (left) and k = 10 (right) and X0 = 1/
√

2
and n ≤ 1000. It can be observed that when k becomes sufficiently large, we approach a
case where (Xn, Xn+k) are independent.

It satisfies all ergodicity criteria, and the uniform measure is invariant. However, this
transformation is not chaotic, which will have a drawback as we will see later.

In fact, in most cases, we want to generate samples (xi)i according to p that are
independent. Note that for the Birkhoff theorem, this is not necessary. If we define the
random variable denoted Xn from Xn+1 according to

Xn+1 = T (Xn) (181)

it is clear that Xn+1 depends on Xn (note that T is deterministic). But after k iterations

Xn+k = T k(Xn) (182)

can there be a mechanism leading to the quasi-independence of Xn+k with respect to
Xn? This is where chaos allows for this "de-correlation." An illustration of this quasi-
decorrelation phenomenon is shown in Figure 34 for the dyadic transformation. To verify
the independence of Xn and Xn+k, statistical tests can be performed, such as dividing the
interval [0, 1] into sub-intervals of equal length and counting the number of xn in each sub-
interval. In principle, if everything is correct, a flat histogram should be obtained (within
statistical fluctuations of Poisson). However, there are more sophisticated tests 113.

113. NDJE. Some algorithms and tests are discussed here https://www.omscs-notes.com/simulation/
generating-uniform-random-numbers/. An in-depth analysis of technological aspects is provided here
https://theses.hal.science/tel-00759976v1/file/These_MathildeSoucarros.pdf.

https://www.omscs-notes.com/simulation/generating-uniform-random-numbers/
https://www.omscs-notes.com/simulation/generating-uniform-random-numbers/
https://theses.hal.science/tel-00759976v1/file/These_MathildeSoucarros.pdf

101

The two transformations mentioned are not very good in practice 114, here is a better
one 115 that does not rely on bit manipulation:

T (x) = 4x(x− 1) mod 1 (183)

This is called the logistic map. The iterations of this transformation lead to chaos by
frequency doubling, with the invariant measure being q(x) = 1

π
√

x(x−1)
. Although this is

not the uniform distribution, we can use its cumulative distribution function F (x) for
this purpose (reversing Lemma 2). We then obtain F (x) = 2 arcsin(

√
x)/π. Thus, we

can define the sequence Xn+1 = T (Xn) and then Yn+1 = F (Xn) to obtain a sequence of
numbers uniformly distributed in [0, 1], as shown in Figure 35.

Now, the problem that will concern us is the transition to high dimensions. But even
for d = 2, we encounter a basic problem because the cumulative distribution function F

is defined R2 → R and thus cannot be inverted. Therefore, we need to consider other
techniques.

114. NDJE. In the 1990s, large experiments at CERN’s LEP needed to significantly increase the number
of simulations of their detectors (DELPHI, ALPEH, OPAL, L3). Moreover, to take advantage of multiple
computing centers outside of CERN (e.g., the CCIN2P3 in France), it was necessary to find random
number generators (PRNGs) that were resistant enough to statistical tests to make these simulations
independent. It is in this context that Martin Luescher proposed RANLUX in 1993 (see https://arxiv.
org/pdf/hep-lat/9309020.pdf), with a period of the order of 10171, allowing for the distribution of seeds
to different centers and enabling the desired independent generations. Without this, neither the LEP
nor later the LHC experiments could have considered studying rare events requiring the most accurate
simulations possible. Furthermore, RANLUX is theoretically robust. Now, C++ or Python/Numpy use
MT19937, a PRNG of the Mersenne Twister type developed by Makoto Matsumoto in 1997, which also has
advantages, with a colossal period of 219937−1 ≈ 4×106001, but it has drawbacks, particularly concerning
seed distribution for independent Monte Carlo draws. However, cryptography has provided new algorithms
that are at the core of libraries for generating random numbers, such as JAX. See, for example: John
K. Salmon, Mark A. Moraes, Ron O. Dror, and David E. Shaw. (2011). Parallel random numbers: as
easy as 1, 2, 3. In Proceedings of 2011 International Conference for High Performance Computing,
Networking, Storage and Analysis (SC ’11). Association for Computing Machinery, New York, NY, USA,
Article 16, 1–12. https://doi.org/10.1145/2063384.2063405, accessible here http://www.thesalmons.org/
john/random123/papers/random123sc11.pdf. Therefore, the message is: before embarking on programs
that require a large number of random draws, it is better to check which basic PRNG is used.
115. NDJE. I correct the typos made in the table.

https://arxiv.org/pdf/hep-lat/9309020.pdf
https://arxiv.org/pdf/hep-lat/9309020.pdf
http://www.thesalmons.org/john/random123/papers/random123sc11.pdf
http://www.thesalmons.org/john/random123/papers/random123sc11.pdf

102

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

x

p
(x
)

Figure 35 – Left: Histogram of Yn generated by the logistic map sequence transformation
(Eq. 183) using the cumulative distribution function of its invariant measure. We used
X0 = 0.1 and generated 106 samples of Yn. Right: The biplot (Yn, Yn+10) for 105 samples.
The distribution is quasi-uniform, and we can observe the effect of the fixed points x = 0
and x = 1 of T (x).

7.5 Rejection Techniques

7.5.1 Simple Version

These are generic methods where the central idea is to enclose p(x) within a box.
That is, for the variable x ∈ support(p(x)) ⊂ Rd, we add a variable u ∈ [0,maxx p(x)] ⊂
R+. The bounds on x and u form the dimensions of the box D. Let A be defined as
follows:

A = {(x, u) / 0 ≤ u ≤ p(x)} ⊂ D (184)

Consider the pair of random variables Z = (X,U) iid according to the uniform measure
on the box D. If pZ denotes the probability density of Z, then the marginal distribution
according to X is given by:

pX(x) =
∫
A
pZ(x, u)du =

∫ p(x)

0
1 du = p(x) (185)

Thus, x follows the distribution p(x). Therefore, the algorithm is as follows: The samples
(x, u) are rejected if they are not in A, i.e., if they belong to A∁. They are accepted
otherwise. See an illustration for d = 1 in Figure 36.

This type of algorithm is extendable to cases where the "box" D is replaced by a set

103

Algorithm 1 Rejection sampling (1)
1: Shoot uniformly (x, u) ∈ D
2: if u > p(x) then reject
3: else accept

Figure 36 – Illustration of the rejection sampling method with p(x) in 1D.

that best fits the shape of the distribution p(x).

7.5.2 Version based on q(x)

Let q(x) be a probability distribution from which we can sample, and let’s find M

such that:
p(x) ≤M q(x) (186)

The rejection algorithm is then as follows (see Fig. 37 for a 1D version): The general

Algorithm 2 Rejection sampling (2)
1: for i : 1, . . . , n do
2: ok = False
3: while not ok do
4: Sample xi ∼ q(x) and u ∼ U(0, 1)
5: if u ≤ p(xi)/(Mq(xi)) then ok = True
6: Keep xi

7: Return (xi)i≤n

104

Figure 37 – Illustration of the rejection sampling method from a distribution q(x) for
obtaining samples with p(x).

principle is therefore the introduction of an auxiliary variable u independent of the draws
xi, which reduces the probability by the desired ratio to obtain a sample from p(x) 116.

Now, the problem with this algorithm is that M should not be too large 117. This
is evident in the efficiency η of this algorithm defined using the ratio of the number of
accepted samples xi to the total number of attempts (n):

η = 1− #reject
#total = #accept

#total (187)

7.5.3 Acceptance Probability

We need to compute 118

Ex∼q

[
P
(
u ≤ p(x)

Mq(x) |x
)]

= Ex∼q

[
p(x)
Mq(x)

]
=
∫ p(x)
Mq(x)q(x) dx = 1

M
(188)

116. NDJE. The marginal is written in this case as

fX(x) =
∫ 1

0
Θ
(

p(x)
Mq(x) − u

)
Mq(x) du = p(x)

with Θ(x) the Heaviside function.
117. NDJE. See the case study discussed in the notebook https://github.com/jecampagne/cours_
mallat_cdf/blob/main/cours2023/Monte_Carlo_Sampling.ipynb of a distribution p(x) with 2 modes,
one of which is highly concentrated.
118. NDJE. For α ∈ [0, 1], P(u ≤ α) = α for a uniform distribution on [0, 1].

https://github.com/jecampagne/cours_mallat_cdf/blob/main/cours2023/Monte_Carlo_Sampling.ipynb
https://github.com/jecampagne/cours_mallat_cdf/blob/main/cours2023/Monte_Carlo_Sampling.ipynb
https://github.com/jecampagne/cours_mallat_cdf/blob/main/cours2023/Monte_Carlo_Sampling.ipynb

105

So, if M has to be large to accommodate the value of maxx p(x), then the algorithm loses
efficiency. However, in high dimensions, we have phenomena of probability concentration
(Sec. 3.2.4) which mechanically leads to large values of p(x) and hence M . Typically, we
expect 119 that M ∝ ed. For example, by this argument, we can practically see that we
cannot generate "faces" from a Gaussian distribution. In fact, we need to obtain a q(x)
that is as close as possible to p(x). Before seeing how to proceed, let’s look at another
type of sampling.

7.6 Importance Sampling

The idea is to adapt q(x) to compute an integral using Monte Carlo methods. Sup-
pose we not only know how to compute p(x) and q(x), but we also know how to sample
from q(x) (note: we assume q(x) does not vanish on the support of p(x)). Consider the
following integral

I(f) =
∫
f(x) p(x) dx =

∫
f(x) p(x)

q(x)︸ ︷︷ ︸
w(x)≥0

q(x) dx = Eq[f(x)w(x)] (189)

Let (xi)i≤n be independent samples drawn from q(x), then

In(f) = 1
n

n∑
i=1

f(xi)w(xi) −−−→
n→∞

I(f) (190)

In(f) is an unbiased estimator due to the independence of the samples (xi)i, indeed we
easily have

Eq[In(f)] = 1
n
× n× Eq[f(x)w(x)] = I(f) (191)

The question then arises as to what is the convergence rate? We know that due to the
independence of the random variables f(xi)w(xi) we have

V ar(In(f)) = 1
n
V ar(f(x)w(x)) (192)

119. NDJE. An example is provided in the notebook mentioned in the footnote 37 in the case of evalua-
ting the variance of the uniform measure on the unit ball in dimension d. We revisit Figure 9.

106

We would like the term V ar(f(x)w(x)) not to be too large. Let’s try to bound it:

V ar(f(x)w(x)) = Eq[|f(x)w(x)−I(f)|2] = Eq[|f(x)w(x)|2]−I(f)2 ≤ Eq[|f(x)w(x)|]2−I(f)2

(193)
equality being achieved if and only if |f(x)|w(x) = c. We would like q(x) to satisfy

|f(x)|p(x)
q(x) = c⇒ q(x)c = |f(x)|p(x)⇒ c =

∫
|f(x)|p(x) dx (194)

thus the "best" q(x) is given by

q(x) = |f(x)|p(x)∫
|f(x)|p(x) dx (195)

This tells us that to compute I(f), we can do better than sampling according to
p(x). However, note that the initial calculation involves the integral of f(x)p(x), and the
normalization constant of q(x) is very close to it. So, while we have the expression for the
best q(x), in practice, we have a problem. We will then proceed with using a non-optimal
q(x).

Note that in this type of method, we do not reject samples drawn from q(x), but
we directly calculate the empirical average in Eq. 190. In fact, we calculate an average
with a weighted empirical measure:

p̃n = 1
n

n∑
i=1

δxi
w(xi) (196)

This method can be considered in the case where p(x) = Z−1
p p̃(x) and q(x) =

Z−1
q q̃(x), and where Zp and Zq are the normalization constants that are very difficult to

estimate (e.g., Gibbs energy). Because then we just need to consider w(x) = p̃(x)/q̃(x)
and

In(f) =
∑

i

f(xi)w(xi)∑
i w(xi)

(197)

(note: the same method can be applied if, of course, we know how to compute q(x)
directly).

The limitation of this kind of method is similar to that encountered for the rejection

107

method, namely, to have an algorithm of good efficiency, we need to start from a quasi-
optimal q(x). And this becomes more and more critical in high dimensions due to the
concentration of p(x) on its typical sets. It is necessary to ensure that q(x) ∝ |f(x)|p(x)
with a proportionality constant that does not explode.

To do this, we need to be able to adapt q(x) and we cannot do so by picking from
functions of known typology a priori, which roughly amounts to taking a multivariate
Gaussian.

7.7 Beyond "Rejection": Progression of Ideas

If we inspect the rejection method (Algorithm 2), at each iteration to obtain a new
sample xi, we do not make use of the knowledge gained from previous draws. In particular,
for k < i, we have obtained samples representative of p(x). Thus, over time, we should
be able to take into account the learning of the target distribution.

Note that due to the concentration of p(x) (Fig. 12), most x have almost zero proba-
bility. But let’s say we have obtained an xi with a notably non-zero p(xi), we potentially
have a good candidate, and we would then like to see what samples around this one yield.
It is clear that the rejection algorithm loses this memory. Conversely, from xi we will
attempt a small step xi → xi + δ. The problem that immediately arises is that in the
case where p(x) has multiple modes, we may end up only exploring the mode in which
xi lies, if δ is too small compared to the separation between modes. Therefore, we need
to have a non-zero probability of taking a large step (Fig. 38).

So, we need to establish a deterministic map T (x) that allows us to account for how
to "move", and whose invariant measure is p(x), knowing that we can start from a priori
information, namely a rough estimate of p(x). This is the idea of Markov chains: moving
locally or with a large jump is formalized by the transition probability from xn to xn+1,
i.e., we model the conditional probabilities p(xn+1|xn). The model initially is probably
"bad", so we need to evolve these conditional probabilities. How? through the rejection
algorithm. This is the idea behind the Metropolis-Hastings algorithm 120 which uses the
120. Nicholas Metropolis (1915-99), Wilfred Keith Hastings (1930-2016), and there are other authors
associated with this algorithm such as Arianna W. Rosenbluth (1927-2020), Marshall Rosenbluth (1927-
2003), Augusta H. Teller (1909-2000), and Edward Teller (1908-2003), all associated with the Manhattan
Project (Sec. 3.2).

108

Figure 38 – Illustration of the method for exploring around a sample xi with high
probability. However, it is important to be able to take a large step to explore the other
(or others) mode(s) of p(x).

rejection algorithm on transition probabilities.

Now, if p(x) is a Gibbs probability, where p(x) is maximum U(x) is minimum and
vice versa. So, having a sample xn, it is clear that moving towards the minimum of U is
guided by a gradient descent! Therefore, the transition probability would be wise to take
into account −∇xU(x). But as in ML, we know that adding noise helps. However, here
it is not so much about overcoming saddle points that motivates us, but rather the need
to explore all possible modes of p(x) in order to be able to subsequently produce new
samples 121. This is the idea of the Langevin algorithm. However, if the amplitude of the
noise is too large, we know that we cannot converge to the minima, and if it is too small,
we are confined, so adjustments need to be made.

However, making adjustments to these limits, could we then replace the multi-
modal U(x) with a mono-modal U(x) which therefore no longer has any issues with
gradient descent. It sounds miraculous. And yet, that’s the idea behind Score Denoising
121. NDJE.: There are different issues with gradient descent depending on its use. For a long time,
understanding the results of neural networks has been a problem: when trying to imagine performing
gradient descent in a high-dimensional universe, one might think that there are many local minima of
the cost function to be minimized. Somehow, there is no guarantee that an SGD/Adam-type algorithm
finds the global minimum. However, it is clear that differently trained networks, especially regarding
the initialization seeds of the weights, have the same properties regarding the statistics performed on
test/validation samples. There is a sort of universality of minima accessible by these algorithms that
operate a regularization of the loss. So, exploring the entire space doesn’t matter. The issue is completely
different concerning obtaining samples from p(x) where all minima of U(x) need to be explored.

109

algorithms. We will gradually smooth U(x) to make it a convex function that can be
easily sampled. So, we have a series of (Ui)i≤n with U1 = U multi-modal and Un mono-
modal which are close to each other between two steps (underlying homotopy parameter).
Then, conversely, we sample according to pn = Z−1

n e−Un and use the rejection algorithm
to obtain samples from pn−1 and so on. The process of creating Ui is done by convolving
with Gaussians. Now, making Un as a quadratic form like xTKx means having a Gaussian
distribution for pn, that is, noise! The samples from pn are therefore noise. And so the
process is first to gradually add noise, for example in a database of images, and then to
proceed from a realization of pure noise to denoising to obtain a new image. All this is
done through a stochastic differential equation that we know how to invert.

7.8 Markov Chain

Definition 7 (Markov Chain)
A process (X1, . . . , Xn) is a Markov chain if ∀(xi)i≤n+1 ∈ χn+1

P(Xn+1 = xn+1|Xn = xn, . . . , X1 = x1) = P(Xn+1 = xn+1|Xn = xn) (198)

So, to produce Xn+1 (future), we only need knowledge of Xn (present), or in more radical
terms "the past doesn’t matter". So, let’s consider the following property/definition:

Definition 8 (Stationary/Homogeneous)
A Markov chain is stationary (or homogeneous) if ∀(x, y) ∈ χ2

∀n, P(Xn+1 = y|Xn = x) = P(Xn = y|Xn−1 = x) = Px,y (199)

so the transition probabilities do not depend on n, which can be denoted as Px,y

(careful with the order, think "going from x to y")

How will this serve us? In particular, we hope to transition from a distribution p0(x) to the
target distribution p(x) we are looking for, which we will denote as π(x) afterwards, using
the transition matrix to transform one or more samples from p0(x) (x0), progressively

110

Figure 39 – Evolution of the initial distribution p0(x) towards the target distribution
π(x) by applying the transition matrix Px,y of the Markov chain.

into x1, x2, . . ., that is, samples from the distributions p1(x), p2(x), . . . of random variables
X1, X2, . . . (Fig. 39). The whole problem is to determine the appropriate matrix Px,y to
achieve this goal.

We have the following properties of the matrix Px,y:

Property 5
In the case of an alphabet (i.e., χ is discrete), then (Px,y)(x,y)∈χ2 is a stochastic

transition matrix with the following properties:

— Firstly

∀x ∈ χ,
∑
y∈χ

Px,y = 1 (stochastic matrix) (200)

which comes from the fact that p(y|x) = p(x, y)/p(x) and ∑y p(x, y) = p(x).

111

— Secondly, noting that a

∀y ∈ χ, P(Xn+1 = y) =
∑
x∈χ

P(Xn = x)Px,y (201)

we can use a matrix form by grouping the probabilities at step n into a column
vector µn, thus

µn := (P(Xn = x))x∈χ =⇒ µn+1 = P T µn (202)

a. This is easily seen by expressing P(Xn+1 = y) as a marginal of the joint probability of
(Xn+1, Xn).

So, when we iterate, we have then, noting P = Px,y,

µn+k = (P T)k µn (203)

and to determine if there is convergence, we are naturally invited to study the eigenvalues
of this matrix P , which will inform us about the possible existence of an invariant measure
that we hope to be π(x).

8. Session of March 6

Regarding the Markov chains addressed in the previous section, we assume that the
step of data modeling has been completed, for example, according to a Gibbs distribution,
which we denote in this Markovian framework as π(x). The problem focuses on generating
(sampling) new samples. Therefore, we only have initial information from π(x), which is
generally a high-dimensional distribution. We start with a distribution q(x), easy to
sample from, and we construct a transformation that transports samples from q to
samples from π.

If we make a brief aside on Score Diffusion algorithms, the problem is different
because we start a step earlier. Given data {xi}i≤n, we want to both estimate the distri-
bution π(x) and perform sampling. Nevertheless, Markov chains are underlying. We so-
mewhat reverse the path, starting from π(x) and progressively adding noise to the samples

112

{xi}i (Ornstein-Uhlenbeck stochastic equation) to obtain samples from q(x) consisting of
Gaussian white noise (i.e., samples from q = N (0,Σ)). The set of samples obtained at
intermediate stages forms Markov chains. Then, we reverse the process by denoising new
realizations of pure noise from q(x), and at the end of the process, we retrieve samples
from π(x). Estimation via the score is done using a deep neural network during the final
step of the stochastic process inversion.

So, common to both approaches, we have probability distribution transport, transition
probability calculation, and the notion of time inversion, i.e., reversibility. One difference
between the two methods concerns the invariance of the transition probability in the first
method and its evolution on the contrary in the Score diffusion method.

8.1 Markov Chains: Example

We continue Section 7.8 where we left off. A reminder: P T
x,y is the transport matrix

of the vector µn of the set of probabilities (P(Xn = x))x∈χ (see Fig. 39). The examples
of Markov chains that will interest us are those obtained by adding independent random
variables: these are generalized random walks where the notion of "hidden" variables
comes into play.

Theorem 12 (Random Walks)
Let {Zi}i≥1 be iid and independent rvs from (Xj)j≥1, where the state at step n

depends on a recurrent function such that

Xn+1 = f(Xn, Zn+1) (204)

This is typical of stochastic differential equations where Zn is a kind of noise indu-
cing random transitions. Then, (X1, . . . , Xn) is a stationary Markov chain.

Note. The proof was given in the 2023 Course Sec. 6.4.2.2 Th. 13. For examples al-
ready studied in 2023, the notebook https://github.com/ jecampagne/cours_mallat_cdf/
blob/main/cours2023/randomwalk.ipynb describes the process Xn+1 = ρXn + Zn+1 in
1D where Zn+1 is a Rademacher rv. The case ρ = 1 yields the Brownian random walk. The
notebook https://github.com/ jecampagne/cours_mallat_cdf/ blob/main/cours2023/urne_

https://github.com/jecampagne/cours_mallat_cdf/blob/main/cours2023/randomwalk.ipynb
https://github.com/jecampagne/cours_mallat_cdf/blob/main/cours2023/randomwalk.ipynb
https://github.com/jecampagne/cours_mallat_cdf/blob/main/cours2023/randomwalk.ipynb
https://github.com/jecampagne/cours_mallat_cdf/blob/main/cours2023/urne_Ehrenfest.ipynb
https://github.com/jecampagne/cours_mallat_cdf/blob/main/cours2023/urne_Ehrenfest.ipynb

113

Ehrenfest.ipynb simulates a gas of N particles in a box with Zn+1 a rv taking values in
{−1,+1} as in Rademacher, but this time P(Zn+1 = −1|Xn = x) = x/N . We discover
the notion of irreversibility.

An example related to the Score Diffusion method is the Ornstein-Uhlenbeck pro-
cess (around 1930), which simulates a particle subject to friction. The variable Xn is
typically the velocity at a discretized time n, and we have 122

Xn+1 −Xn︸ ︷︷ ︸
acceleration

= −αXn︸ ︷︷ ︸
friction

+ Zn+1︸ ︷︷ ︸
Brownian noise

α ∈ [0, 1) (205)

The solution can be written as

Xn+1 = (1− α)n+1X0 +
n∑

i=1
(1− α)iZn+1−i (206)

As n tends to infinity, the term depending on the initial conditions X0 tends to 0, and if
Zn+1 ∼ N (0, σ2) then

Xn ∼ N (0, σ2
n) σ2

n = σ2

α
(1− (1− α)n) −−−→

n→∞

σ2

α
(207)

From this small example, we illustrate two fundamental points:

— If we are in good configurations, we can forget the initial conditions (X0) for suffi-
ciently large n.

— And most importantly, we converge to a fixed measure (here the normal distribution
defined by the parameters σ and α).

Therefore, in general, from the potentially complex distribution π(x) (multi-modal), we
converge to a multivariate normal distribution, for example (Fig 40). What are the condi-
tions for the Markov chain to converge?

122. Notebook https://github.com/jecampagne/cours_mallat_cdf/blob/main/2024/Ornstein_
Uhlenbeck.ipynb provides a 1D example with an additional mean term affecting the evolution
of Xn.

https://github.com/jecampagne/cours_mallat_cdf/blob/main/cours2023/urne_Ehrenfest.ipynb
https://github.com/jecampagne/cours_mallat_cdf/blob/main/cours2023/urne_Ehrenfest.ipynb
https://github.com/jecampagne/cours_mallat_cdf/blob/main/cours2023/urne_Ehrenfest.ipynb
https://github.com/jecampagne/cours_mallat_cdf/blob/main/cours2023/urne_Ehrenfest.ipynb
https://github.com/jecampagne/cours_mallat_cdf/blob/main/2024/Ornstein_Uhlenbeck.ipynb
https://github.com/jecampagne/cours_mallat_cdf/blob/main/2024/Ornstein_Uhlenbeck.ipynb
https://github.com/jecampagne/cours_mallat_cdf/blob/main/2024/Ornstein_Uhlenbeck.ipynb

114

Figure 40 – Evolution from the initial distribution π(x) to a distribution q(x) (normal
distribution) via the Ornstein-Uhlenbeck process.

8.2 Invariant Law

The convergence in law of the Markov chain relies on the existence conditions of a
stationary invariant law.

Definition 9 (Stationary Invariant Law)
A law π is stationary invariant if it satisfies the following conditions, derived from

the properties 5:

π = P Tπ (208)

This means that π is an eigenvector of P T associated with the eigenvalue 1, and for
each y, we have:

π(y) =
∑
x∈χ

π(x)Px,y (209)

We thus seek to define Px,y (and its transpose) so that π(x), the given law, is indeed an
eigenvector associated with the eigenvalue 1. Incidentally, we demonstrate the following

115

lemma:

Lemma 3
If π(x) is invariant, and µ0 = π, then ∀n, µn = π.

What we are particularly interested in is the concept of time reversal, which is the
generation step in the Score Diffusion algorithm.

8.3 Reversibility Conditions

Recall that in the process of constructing the Markov chain, not only do the samples
evolve over time (n), but also their probability densities. Therefore, we transition from
(X0, µ0) to (X1, µ1), etc., which potentially converge to a random variable associated with
the invariant measure µ∞ = π. Regarding the measures, the transport from µ0 to π is
deterministic (process related to P T), while concerning the Xi, it is a stochastic transport
of random variables. Can we reverse these transformations?

We know that by definition of the matrix Px,y:

Px,y = P(Xn+1 = y|Xn = x) (210)

We are interested in P(Xn = y|Xn+1 = x). Using Bayes’ theorem, we have:

P(Xn = y|Xn+1 = x) = P (A|B) = P (B|A)P (A)
P (B)

= P(Xn+1 = x|Xn = y)P(Xn = y)
P(Xn+1 = x)

= Py,x ×
P(Xn = y)
P(Xn+1 = x) = Qx,y (211)

If we have the good fortune to start the process with the invariant measure π, according
to Lemma ??, then

Qx,y = P(Xn = y|Xn+1 = x) = Py,x ×
π(y)
π(x) (212)

116

Definition 10 Inverse Matrix
For a stationary process (Definition 5) with a transition matrix Px,y = P(Xn+1 =
y|Xn = x) (∀(x, y) ∈ χ2). If there exists a stationary distribution π(x) ̸= 0, meaning
all x are accessible, then we define the following matrix Qx,y

Qx,y = Py,x ×
π(y)
π(x) (213)

The matrix Q is stochastic, ∑y Qx,y = 1.

(The property arises from π = P Tπ and thus π(x) = ∑
y π(y)Py,x).

A particular but very practical case is that of reversible Markov chains:

Definition 11 Reversible Markov Chain
We say that a stationary Markov chain with transition matrix P is reversible relative
to an invariant distribution π, if under the conditions of Definition 10 then Q = P ,
which translates to

π(x)Px,y = π(y)Py,x (detailed balance) (214)

(where the global balance is given by the equation of the invariant measure π = P Tπ).
We then have the following diagram:

X1 = x ∼ π
Px,y−←−−−−−−−−−−−−−−−−−−−−→−
Py,x

X2 = y ∼ π

Random walks as well as the Ehrenfest urn are examples of reversible processes. This
notion of equality of flows from x → y and from y → x concerns the case of equilibrium
physics (statistics) 123. It leads to a property of the existence of an invariant measure:

123. NDJE. note that the march towards equilibrium is irreversible in high dimensions, see Course 2023.

117

Property 6 (Existence of an invariant measure) If P is reversible (detailed balance)
with respect to the measure π, then π is invariant.

The proof is immediate: we know that ∀x, y, π(x)Px,y = π(y)Py,x, summing over y
on both sides yields

∑
y

π(y)Py,x =
∑

y

π(x)Px,y = π(x)
∑

y

Px,y︸ ︷︷ ︸
=1 (stochastic matrix)

= π(x) (215)

which is nothing but π = P Tπ, thus π is indeed the invariant distribution.

So, concerning the objective of creating a Markov chain with the invariant measure
being the distribution of interest, it will be to construct transition matrices Px,y that
satisfy the detailed balance condition. This is the objective of the Metropolis-Hastings
algorithm.

Now, convergence properties are related to the notion of ergodicity (Definition ??)
and to the Birkhoff’s theorem (Theorem 11). Indeed, with the matrix P , we propagate a
seed X0, and the question is whether we explore the entire space to explore the places
where the probability π(x) is high. In this case, X0 is not important. In short, we should
not get "stuck" in regions of the X space (e.g., local energy minima in the case of Gibbs
probabilities). We can translate the properties of stationarity and ergodicity of π: for any
measurable space A (relative to χ endowed with the measure π)

• π(T−1A) = π(A) (the measure is stationary/invariant)

• T−1A = A, then either π(A) = 0 (A is reduced to singular points) or π(A) = 1 (A
is the entire set).

8.4 Convergence towards the invariant distribution

We will revisit Birkoff’s theorem (Theorem 11) in the case of Markov chains. Firstly,
it is necessary to ensure that we explore the entire set χ:

118

Definition 12 (Irreducible chain)
A Markov chain is irreducible if one can transition from any state x to any other
state y (and vice versa), i.e.,

∀(x, y) ∈ χ2, Px,y > 0 (216)

The second property concerns the first return time:

Definition 13 (First return time)
For a state X0 = x, we define the "time" Tx

Tx = inf{n;Xn = x} (217)

(Tx = +∞ if x cannot be reached)

As Xn is a random variable, the same applies to Tx, so we have the following definition:

Definition 14 (Positive recurrence)
A state x is said to be positively recurrent if the expectation of its return time is
finite.

Ex[Tx] <∞ (218)

By extension, if all states are recurrent, then the chain is recurrent.

If this is the case, let’s imagine that we are in an infinite set. The chain starting from
X0 = x will always return to this point in a finite time. Moreover, regarding the invariant
measure π, we have for every x ∈ χ:

π(x) = 1
Ex[Tx] (219)

The last notion we need concerns the aperiodicity of the Markov chain. Consider the
scheme in Figure 41: if we start from state "1" at n = 0, we return to it at n = 3, 6, . . . ,
and P n

1,1 = 1 for n = 0 mod 3.

119

1

23

Figure 41 – Markov process with transition matrices having positive transitions between
states.

Let’s then define the period of a state:

Definition 15 (period of a state, of a chain)
Let τx be the set of return times to a state x

τx =
{
n ≥ 1 | P n

x,x > 0
}

(220)

The period of a state x is the greatest common divisor of τ(x). If the period is equal
to 1, then it is said to be aperiodic.

By extension, a Markov chain is said to be aperiodic if all states x ∈ χ are
aperiodic.

This notion is important because it ensures that we can forget the initial conditions (i.e.,
the first state X0 of the chain). A sufficient condition is that

∀x, Px,x > 0 (221)

because then in 1 step we can return to the initial state. In the scheme in Figure 41, we
would need to add arrows that loop from a state to itself (e.g., with a weight of 1/2).

So, to summarize, the considerations lead us to irreducible, recurrent, and ape-
riodic chains. We can then state without proof the fundamental theorem of Markov

120

chains 124:

Theorem 13 (Ergodicity)
Let (Xn)n be a Markov chain, irreducible and positive recurrent, then

1. the measure defined by
π(x) = 1

Ex[Tx] (222)

is the unique invariant measure of the chain.

2. for any function f , such that ∑x |f(x)|π(x) < ∞, then the Birkhoff theorem
tells us that

1
n

n∑
k=1

f(Xk) p.s−−−→
n→∞

∑
x

f(x)Π(x) = Eπ[f(x)] (223)

3. If furthermore the chain is aperiodic then

Xn
law−−−→

n→∞
π (224)

that is
P(Xn = x) −−−→

n→∞
π(x) (225)

The property 2 is practically useful for computing Monte Carlo integrals using the iterated
samples of the Markov chain, while property 3 allows us to forget the initial condition of
the chain 125.

Therefore, the problem is as follows: if we are given π(x) (estimated in a modeling
phase), we need to find Px,y such that π is the invariant measure (detailed balance) and
which will generate a Markov chain that must be irreducible, recurrent, and positive to
be able to use the properties of the ergodicity theorem.

8.5 Spectral analysis viewpoint of the invariant measure

We have seen that the invariant measure is the eigenvector of P T with an eigenvalue
equal to 1 (see Def. 9). However, the drawback of Theorem 13 is that it does not provide
124. Note some minor differences compared to the 2023 version. Also, there is a typo in the 2023 version
point 3) which I correct here, and the notes are updated on my GitHub page.
125. Note that in Course 2022 Sec. 5.5, there is a discussion about the terminology of convergences.

121

information about the convergence rate.

Consider then the classical analysis theorem

Theorem 14 (Perron-Frobenius)
Let Px,y be a stochastic matrix (Eq. 200) with all entries strictly positive (irreducible
chain Def. 12) having an invariant measure, then every eigenvalue λ of Px,y satisfies
|λ| ≤ 1, and the eigenvalue 1 is simple.

Consequently, there exists a basis of eigenvectors (πk)k whose eigenvalues denoted (λk)k

(P Tπk = λkπk) are such that |λk| ≤ 1. Thus, the initial measure µ0 (followed by the
random variable X0) can be decomposed onto this basis as follows

µ0 =
∑

k

αk πk (226)

Through successive transport, we have

µn = (P T)nµ0 =
∑

k

(αkλ
n
k) πk (227)

As n tends to infinity, all components such that λk < 1 disappear, and only the com-
ponent associated with the invariant measure remains, let’s say π0. How fast does the
sum converge? It is dominated by the eigenvalue whose modulus is the largest less than
1. The spectral gap is defined as the difference 1−maxk ̸=0 |λk|, it governs the exponential
decay of components different from the invariant measure.

The problem arises when dealing with high dimensions, controlling the spectral gap
becomes difficult, and we very often encounter a situation where eigenvalues accumulate
towards 1 (in modulus) and exponential convergence becomes compromised.

8.6 Metropolis-Hastings Algorithm

The method 126 first developed in 1949 by Nicholas C. Metropolis (1915-99) and Sta-
nisław Ulam (1909-84) was further detailed in 1953 by Metropolis and collaborators, then

126. To introduce elements for using a notebook, I introduced this algorithm in 2023.

122

extended in 1970 by Wilfred Hastings (1930-2016). It is called the Metropolis-Hastings
(MH) algorithm even though several authors contributed to it. It is an application of all
the notions described in the previous sections.

We want the invariant probability density to be π(x) (this is the given problem).
Recall: we can compute π(x), and we will see that we can do without knowing how to
compute the normalization constant, which is very appreciable in practice. If we manage
to design a reversible matrix Px,y (Def. 11), satisfying the equation of detailed balance,
then π is the invariant measure, and with a bit of cleverness, we can meet the conditions
of the ergodicity theorem (Th. 13).

To determine Px,y, we make a proposal denoted Qx,y which will be the transition
matrix 127 from x to y; we will choose it to be irreducible (recall: from any x, we can reach
any y) and strictly positive: for example,

Q(x, y) = (2πσ2)−d/2e−
1
2

∥x−y∥2

σ2 (228)

Now, how to construct Px,y? The idea is to write

Px,y = ρ(x, y)×Q(x, y) (229)

where ρ(x, y) is a function that we will adapt. It is a rejection procedure (Sec. 7.5) on
the proposed transition probability. In this case, ρ(x, y) ∈ [0, 1].

The objective of detailed balance is literally translated as

ρ(x, y)Q(x, y)π(x) = ρ(y, x)Q(y, x)π(y) (230)

So, the following definition of ρ(x, y) is given

ρ(x, y) = min
(

1, Q(y, x)π(y)
Q(x, y)π(x)

)
(Metropolis-Hastings) (231)

127. Sometimes denoted Q(y|x), and there are other notations. Pay attention to the order, check how
Px,y is decomposed according to the product of the simple distribution Q and the acceptance/rejection
function.

123

Detailed balance is respected, and π is indeed the invariant measure.

Indeed, suppose that Q(y, x)π(y) > Q(x, y)π(x), then ρ(x, y) = 1, and

ρ(y, x) = Q(x, y)π(x)
Q(y, x)π(y)

thus
Px,y = Q(x, y) Py,x = Q(y, x)× Q(x, y)π(x)

Q(y, x)π(y) = Q(x, y)π(x)
π(y) = Px,yπ(x)

π(y)

which clearly demonstrates that detailed balance is satisfied, and thus π is the invariant measure of the

Markov chain associated with the transition matrix Px,y. The symmetric case of the assumption is treated

in the same way.

Note as announced that the calculation of ρ(x, y) is a ratio of probabilities where
normalization constants are absent. This is very important in practice because, as we
have seen, estimating the normalizations of Gibbs distributions involves integrals in high
dimensions.

The algorithm unfolds as follows:

Algorithm 3 Metropolis-Hastings
Require: Q(x, y) a distribution easy to sample to obtain x

1: Shoot x0 ∼ µ0 (e.g., Q(x, 0))
2: for i : 1, . . . , n do
3: Shoot xprop ∼ Q(., xi−1) and u ∼ U(0, 1)
4: Compute r = ρ(xi−1, xprop) = min

(
1, Q(xprop,xi−1)π(xprop)

Q(xi−1,xprop)π(xi−1)

)
5: if r = 1 OR u ≤ r then xi = xprop

6: else xi = xi−1

7: Keep xi

8: return (xi)i≤n

This algorithm defines the following transition matrix Px,y:

Px,y = ρ(x, y)Q(x, y) + α(x)1(y = x) α(x) = 1−
∑
z∈χ

ρ(x, z)Q(x, z) (232)

(it is easy to verify that ∑y Px,y = 1).

124

Now, the practical question is: does the algorithm converge? We know that the
invariant measure is correct by construction because detailed balance is ensured, as we
have demonstrated above. So, the question is whether the assumptions of the ergodicity
theorem are satisfied?

We limit ourselves to states x ∈ χ where π(x) > 0 (those with zero probability are
not to be considered). Now, Q(x, y) > 0 (by choice), so ρ(x, y) > 0, hence Px,y > 0 for any
pair of states, making the chain irreducible. Regarding aperiodicity, for Px,x = 0 to hold,
α(x) would need to be 0, implying that ∑z ρ(x, z)Q(x, z) = 1, i.e., ρ(x, z) = 1 (always
accepting), which would make Q the desired probability distribution. Thus, Px,x > 0,
which is a sufficient condition for the aperiodicity of the chain (note that Px,x > 0 is the
algorithmic consequence that during the process, there are cases where the proposal is
rejected, and thus xi+1 = xi). Since π(x) > 0, we deduce that Eπ[Tx] < ∞, so the chain
is positively recurrent. Thus, the conditions of the ergodicity theorem are met, and we
indeed have convergence to the desired distribution.

What about the convergence speed 128? Asking this question is not trivial, as it is
where much of the practice is based on experimentation 129. The crucial point is that
convergence can be very slow. Especially due to the weakness of the spectral gap in high
dimensions, which can completely hinder convergence in a finite time. In fact, it is essential
to judiciously choose Q(x, y).

The first thing we can immediately see that will help us understand the problem
is the particular case where Q(x, y) is symmetric (original Metropolis algorithm). In this
case, we have

ρ(x, y) = min
(

1, π(y)
π(x)

)
(Metropolis) (233)

Now, as already mentioned, in the absence of a priori information about π(x), one ge-
nerally chooses q(x) = Q(., y) as a multivariate Gaussian with mean y, so the roles of x
128. For those who want to delve deeper, see for example the article by Guanyang Wang from 2021
"Exact Convergence Rate Analysis of the Independent Metropolis-Hastings Algorithms" https://arxiv.
org/pdf/2008.02455v6.pdf.
129. In particular, throughout practice, concepts such as burning emerged to consider only samples
from a certain rank onwards, and thinning algorithms operated after this burning phase. The simplest
thinning algorithm considers retaining every k-th iteration and discarding the rest. The goal is to reduce
the positive correlation between the remaining states, thereby reducing the asymptotic variance of the
estimators. However, this practice can be very delicate.

https://arxiv.org/pdf/2008.02455v6.pdf
https://arxiv.org/pdf/2008.02455v6.pdf

125

Figure 42 – Evolution of a chain produced by the Metropolis algorithm with samples
only exploring one mode of the distribution π(x).

and y are interchangeable. But, if π(x) has two modes (Fig. 42) 130. The chain production
begins, and suppose the sigma of the Gaussian is small, if we end up accumulating samples
with a high probability due to the presence of one mode, then the ratio π(y)/π(x) will be
close to 1, and we will always accept samples that only sample this mode. In other words,
we have almost no chance of visiting the second mode.

To remedy this, one way or another, we need to ensure that the support of π(x) is
sampled: for example, we can use a distribution for µ0 with a larger width than Q(x, y)
and evolve multiple chains (k ≤ K) in parallel from initial seeds x(k)

0 ∼ µ0(x). This is the
approach taken to produce Figure 43.

However, the main problem arises when in high dimensions the support of π is
concentrated in a small fraction of the space, and many chains may spend time in areas
where r ≤ 1, mechanically lowering the acceptance rate of the algorithm (i.e., its ef-
ficiency). In fact, exploring an area is conditioned by the width of the proposal dis-
tribution, and adjusting it is the whole difficulty of the problem. Unless we turn to
algorithms that guide the search. For example, by using methods called HMC for Hybrid
Monte Carlo (sometimes called Hamiltonian Monte Carlo) 131.

130. Image taken from the notebook https://github.com/jecampagne/cours_mallat_cdf/blob/main/
2023/Monte_Carlo_Sampling.ipynb.
131. See a simple implementation in the notebook https://github.com/jecampagne/cours_mallat_cdf/

https://github.com/jecampagne/cours_mallat_cdf/blob/main/2023/Monte_Carlo_Sampling.ipynb
https://github.com/jecampagne/cours_mallat_cdf/blob/main/2023/Monte_Carlo_Sampling.ipynb
https://github.com/jecampagne/cours_mallat_cdf/blob/main/2023/Monte_Carlo_Sampling.ipynb
https://github.com/jecampagne/cours_mallat_cdf/blob/main/2003/Monte_Carlo_Sampling.ipynb
https://github.com/jecampagne/cours_mallat_cdf/blob/main/2003/Monte_Carlo_Sampling.ipynb

126

Figure 43 – For the same type of problem as in Figure 42, we used a sufficiently wide
distribution to obtain the first sample and evolved 100 chains in parallel (we used 100, 000
samples per chain after removing the first 25, 000). Both modes of π(x) are well explored.
Left: evolution of the first 4 chains. Middle: superimposed histograms of the 100 chains.
Right: histograms of all accumulated samples compared to the distribution π(x).

So, the moral, if you will, is that one should look at these convergence theorems
with some skepticism. Transitioning to high dimensions poses a problem. There is a very
elegant way, which we will see in the next session, to approach the problem differently
with Score-Driven algorithms. The major difference is that we will use the data to modify
the proposal distribution in a certain way to ensure faster convergence, even in high
dimensions.

9. Session of March 13

During this final session, we will address sampling using the Score Diffusion method,
which is the basis for algorithms implemented, for example, in language models such as
GPT and Gemini (Sec. 2.1). Recall that the challenge is to sample from a Gibbs-type
distribution in high dimensions:

p(x) = Z−1e−U(x) x ∈ Rd (234)

blob/main/2003/Monte_Carlo_Sampling.ipynb, and the notebook https://github.com/jecampagne/
cours_mallat_cdf/blob/main/2003/Monte_Carlo_Sampling_2.ipynb demonstrates its usage with a
library. Also, see the article by Matthew D. Hoffman and Andrew Gelman (2014) for a variant called
No-U-Turn https://jmlr.org/papers/volume15/hoffman14a/hoffman14a.pdf.

https://github.com/jecampagne/cours_mallat_cdf/blob/main/2003/Monte_Carlo_Sampling.ipynb
https://github.com/jecampagne/cours_mallat_cdf/blob/main/2003/Monte_Carlo_Sampling.ipynb
https://github.com/jecampagne/cours_mallat_cdf/blob/main/2003/Monte_Carlo_Sampling.ipynb
https://github.com/jecampagne/cours_mallat_cdf/blob/main/2003/Monte_Carlo_Sampling.ipynb
https://github.com/jecampagne/cours_mallat_cdf/blob/main/2003/Monte_Carlo_Sampling.ipynb
https://github.com/jecampagne/cours_mallat_cdf/blob/main/2003/Monte_Carlo_Sampling.ipynb
https://github.com/jecampagne/cours_mallat_cdf/blob/main/2003/Monte_Carlo_Sampling.ipynb
https://github.com/jecampagne/cours_mallat_cdf/blob/main/2003/Monte_Carlo_Sampling.ipynb
https://github.com/jecampagne/cours_mallat_cdf/blob/main/2003/Monte_Carlo_Sampling.ipynb
https://github.com/jecampagne/cours_mallat_cdf/blob/main/2003/Monte_Carlo_Sampling.ipynb
https://github.com/jecampagne/cours_mallat_cdf/blob/main/2003/Monte_Carlo_Sampling.ipynb
https://github.com/jecampagne/cours_mallat_cdf/blob/main/2003/Monte_Carlo_Sampling.ipynb
https://github.com/jecampagne/cours_mallat_cdf/blob/main/2003/Monte_Carlo_Sampling.ipynb
https://github.com/jecampagne/cours_mallat_cdf/blob/main/2003/Monte_Carlo_Sampling.ipynb
https://github.com/jecampagne/cours_mallat_cdf/blob/main/2003/Monte_Carlo_Sampling.ipynb
https://github.com/jecampagne/cours_mallat_cdf/blob/main/2003/Monte_Carlo_Sampling.ipynb
https://github.com/jecampagne/cours_mallat_cdf/blob/main/2003/Monte_Carlo_Sampling_2.ipynb
https://github.com/jecampagne/cours_mallat_cdf/blob/main/2003/Monte_Carlo_Sampling_2.ipynb
https://github.com/jecampagne/cours_mallat_cdf/blob/main/2003/Monte_Carlo_Sampling_2.ipynb
https://jmlr.org/papers/volume15/hoffman14a/hoffman14a.pdf

127

During the course, we have seen the expressions of U(x) giving rise to structureless
Gaussian distributions, and then we have seen the case of more complex distributions in
Statistical Physics where we used Markov fields with locally conditional dependencies
(e.g., ϕ4 theory and Ising). All of this is primarily well understood in Physics, and we
also manage it with neural networks. The big surprise is that very large models have
the ability to generate images of faces, environments in the broadest sense, etc. The
challenge is to understand the mathematics behind these generative models. There
are certainly algorithms that we understand quite well, but the question is, as with the
case of Stat. Phys., are we estimating an underlying probability distribution for faces,
environments, etc.? If so, what is the nature of these distributions? Because in high
dimensions, due to the curse of dimensionality, if we can generate faces, it means there
is some form of simplification of correlation structure. Note that we can estimate these
correlations with many examples, but they are few compared to what we would have
expected if there had been an exponential explosion with dimension.

The idea of the Score Diffusion algorithm was seen in Markov chains (Fig. 44): we
start from the distribution p(x) which is potentially very complex, and through transport
(indexed by t ∈ [0, T]) we simplify it to a distribution easy to sample from. In the case
of the Score Diffusion algorithm, the distribution pT (x) is a Gaussian. And the challenge
afterwards is to reverse the transport process so that from a sample of pT (x) we obtain a
new sample of p(x). We will characterize p(x) by pT (x) and all conditional probabilities
involved during the inverse transport.

Therefore, the framework is that of Markov chains (1906), but as it stands, this
framework is too general. In particular, what type of chain should we consider? What
does the "forward" chain refer to in Figure 44? The framework that will guide us is
that of the Renormalization Group (see note 61) from the 1970s in Theoretical Physics
(Statistical and Particle Physics), where the "time" axis t is a scale axis. In generative
AI through Score Diffusion (2020), the "time" axis is that of adding noise.

128

Figure 44 – Evolution of the distribution p(x) during the transformation steps indexed
by t in the direction of adding noise (blue arrows), and if we can reverse the process (red
arrows) then from a sample of pT (x) we obtain a new sample of p(x).

9.1 Ornstein-Uhlenbeck Equation

This concerns the evolution by transport ("forward") of the distribution p(x) (Fig. 44).
Let xt denote the random variable (which follows pt(x)) whose equation is given by

dxt = −xtdt+
√

2 dBt t ∈ [0, T] (235)

where dBt is a Brownian motion. If we discretize it with a time step δ:

xt+δ − xt = −xtδ +
√

2δ z z
iid∼ N (0, Id) (236)

This is a Markov chain 132 that we have already studied (Sec. ??) which can be written as

xt+δ = (1− δ)xt + z̃ z̃
iid∼ N (0, 2δ Id) (237)

and when δ → 0, the solution at time t takes the compact form

xt = e−tx0 + (1− e−2t)1/2z z
iid∼ N (0, Id) (238)

132. NDJE. see notebook https://github.com/jecampagne/cours_mallat_cdf/blob/main/2024/
Ornstein_Uhlenbeck.ipynb

https://github.com/jecampagne/cours_mallat_cdf/blob/main/2024/Ornstein_Uhlenbeck.ipynb
https://github.com/jecampagne/cours_mallat_cdf/blob/main/2024/Ornstein_Uhlenbeck.ipynb
https://github.com/jecampagne/cours_mallat_cdf/blob/main/2024/Ornstein_Uhlenbeck.ipynb

129

Figure 45 – Example of the evolution of an image by the stochastic process of a diffusion
model: on the left progression where noise is injected (forward) and on the right where
denoising is performed.

The proof is immediate. We notice the "forgetting of the initial distribution," and the
convergence occurs exponentially towards Gaussian white noise. The illustration of this
evolution of p(x) is shown in Figure 45 (it’s the same as in section 2.7 reproduced here
for readability).

What is the expression of the distribution of xt? In the "forward" mode, we know
that we converge to Gaussian white noise. Let’s consider the following renormalization of
xt which reveals the variance explosion as a function of time:

x̃t = etxt = x0 + (e2t − 1)1/2︸ ︷︷ ︸
σt

z (239)

We have an equation of the type where the "noisy signal" is the sum of the "original signal"
and the "noise" whose variance grows exponentially. At any "time" t:

pt(x̃t) =
∫
p(x̃t, x0)dx0 =

∫
pt(x̃t|x0)p0(x0)dx0 (240)

where

pt(x̃t|x0) = 1
(2πσ2

t)d/2 e
−∥x̃t − x0∥2

2σ2
t = gσt(x̃t − x0) (241)

130

We notice that we have a convolution:

pt(x̃t) =
∫
p0(x0) gσt(x̃t − x0) dx0 = (p0 ∗ gσt)(x̃t) (242)

Thus, we proceed with a progressive smoothing of the initial distribution p0 with a Gaus-
sian.

Now, we need to reverse the process by calculating the reversed conditional pro-
babilities. In the forward direction, we need p(xt+δ|xt), and in the backward direction, we
need p(xt|xt+δ), knowing that for continuous evolution by differential equation, δ → 0.
While the existence of the inverse chain is not a problem in itself, its calculation is what
catches our attention. We will provide arguments justifying that the variable xT−t follows
the following equation:

dxT−t = (xT−t + 2∇x log pT−t(xT−t))dt+
√

2 dBt t ∈ [0, T] (243)

This is a damped Langevin equation where the score (Sec. 5.4) appears. To understand
this equation structure 133, we will take the denoising perspective, which was not the
viewpoint of those who emerged the solution via stochastic differential equations 134.

9.2 Denoising Problem

The classic problem is that of observing y of a signal x tainted with additive noise
z such that

y = x+ z z
iid∼ N (0, σ2 Id) (244)

The challenge is to best recover x from y. To do this, we have an estimator of x, denoted
x̂(y), which minimizes the mean squared error, i.e., minimizes

Ex,z∥x− x̂(y)∥2 (245)

133. NDJE. for interested people have a look at D. McAllester On the Mathematics of Diffusion Models,
https://arxiv.org/pdf/2301.11108.pdf.
134. Yang Song et al. (2020) "Score-Based Generative Modeling through Stochastic Differential Equa-
tions", https://arxiv.org/pdf/2011.13456.pdf.

https://arxiv.org/pdf/2301.11108.pdf
https://arxiv.org/pdf/2011.13456.pdf

131

where x and z follow their respective laws.

Quick reminder: let x be a random variable, if we seek a constant µ that best
approximates x in mean squared error, the solution is

minEx[∥x− µ∥2]⇔ µ = Ex[x] (246)

In our denoising case, we have an additional information, namely the knowledge of
y (the observation) so:

x̂(y) = Ex[x|y] =
∫
x p(x|y) dx (247)

The problem of computing this optimal estimator essentially began in the 1940s with
the work of Wiener 135. The problem in high dimension is the computation of p(x|y), so
we started by simplifying the search, for example, by trying to find a linear estimator in
y, such that x̂(y) = L.y where the operator L is optimized. Other classes of operators
have subsequently been used.

But can we characterize the optimal solution, which is that of equation 247? Here
is a proposition that will link with the previous section:

Theorem 15 (Tweedie, Robbins, Miyasawa-1956-61)
The solution x̂(y) is given by

x̂(y) = y + σ2 ∇y log p(y) (248)

where the score appears.

Proof 15. The distribution p(y) can be written by revisiting the calculation of equation
242

p(y) =
∫
p(x) gσ(y − x) dx (249)

135. Norbert Wiener (1894-1964)

132

Figure 46 – Scheme of a denoiser consisting of a neural network whose parameters θ
need to be determined. As a by-product, the network provides an estimator of the score
via x̂(y)− y (up to the noise variance factor).

So, naturally and thanks to the Gaussian gσ, it follows

∇yp(y) =
∫
p(x)

(
−y − x

σ2

)
gσ(y − x) dx == 1

σ2

∫
(x− y)p(y, x)dx (250)

Thus, by calculating the score, we have

σ2 ∇y log p(y) =
∫

(x− y)p(x|y)p(y)
p(y) dx =

∫
x p(x|y) dx− y = x̂(y)− y (251)

■

With this theorem, we understand why the score of the noisy distribution appears in
the backward process (Eq. 243), which is essentially a form of denoising. But how do we
estimate the score, especially since we are in high dimension? The big surprise is that we
can achieve it with a neural network.

9.3 Denoising Network

The challenge is to estimate the term ∇x log pT−t(xT−t) (the score) in equation 243.
The idea is to use a denoising network. Indeed, if we are able to obtain the optimal
estimator x̂(y), i.e., the one that minimizes the quadratic risk and thus gives access to x,
then we also estimate the score (Eq. 248).

So, the idea is to build a denoiser in the form of a neural network (Fig. 46). In
a classical manner, starting from y the noisy observation, passing through the denoiser
dependent on the parameters θ, we obtain x̂θ(y). To determine the optimal value of θ,

133

we naturally use the quadratic risk that we minimize with samples {xi, yi}i≤n where
yi = xi + zi (zi independent Gaussian white noise with variance σ2):

θ∗ = argmin
θ

1
n

∑
i≤n

∥x̂θ(yi)− xi∥2 (252)

Thus, an estimator of the score is obtained by

Ŝ(y) = 1
σ2 (x̂θ∗(y)− y) ≈ ∇y log p(y) (253)

The question that arises in the case of estimating∇x log pT−t(xT−t) (for all t ∈ [0, T])
is: what are the training samples? In fact, we will use the forward phase to train a
"universal" denoiser, meaning that it can denoise without knowing the value of σt a priori.
It is observed that this type of network performs better than if it were trained to denoise
only for a single noise level. Can this phenomenon be explained?

Imagine that the signal x "lives" on a potentially very irregular manifold (in high
dimension), then the probability density p0(x) is a measure concentrated on this manifold.
We have seen 136 that pt(xt) is a form of smoothing of p0(x) by a Gaussian gσt (Eq. 240).
In the backward mode, initially at t = T , the value of σT is large, which gives pT (xT)
an extremely regular shape. As σt decreases, we begin to see the details of p0. Therefore,
gradually, if we initialize a Markov chain with pT (xT) very smooth, the evolution of pt(xt)
will drive the chain towards regions of high probability. This is illustrated 137 by a simple
example in Figure 47. It is a homotopic deformation of the distribution pT (xT) from a
white noise towards the potentially very complex distribution p0(x0).

9.4 Transition from Memorization to Generalization

S. Mallat succinctly describes the typical architecture of convolutional networks used
in this denoising framework, known as U-Nets 138 (Fig. 22). The first part of the network

136. Notebook reference is missing here, but it applies to xt as well.
137. Notebook reference is missing here, but it’s extracted from notebook https://github.com/
jecampagne/cours_mallat_cdf/blob/main/2024/ScoreDiffusionGene.ipynb.
138. Olaf Ronneberger, Philipp Fischer, and Thomas Brox (2015) developed such an architecture for a
medical image segmentation problem. See https://arxiv.org/abs/1505.04597.

https://github.com/jecampagne/cours_mallat_cdf/blob/main/2024/ScoreDiffusionGene.ipynb
https://github.com/jecampagne/cours_mallat_cdf/blob/main/2024/ScoreDiffusionGene.ipynb
https://github.com/jecampagne/cours_mallat_cdf/blob/main/2024/ScoreDiffusionGene.ipynb
https://arxiv.org/abs/1505.04597

134

Figure 47 – Evolution of Markov chains in the backward mode starting from a Gaussian
distribution towards a distribution with 2 modes.

performs convolution and downsampling operations while the second part carries out
deconvolution and upsampling operations to restore the original image. He also provides
images generated by generative models that everyone has seen here and there in the
press, such as those of celebrities who "do not exist," as shown in Figure 48. Other types
of images, such as bedrooms, are also well generated after training. Finally, we have images
generated from a natural language query, such as the one in Figure 1 of Section 2.2.

The real question when we see such images produced by these generative models
is: are we sampling a probability density? In other words, has the model learned p(x)
with x being a face image, and what is the nature of this distribution p? The alternative
would probably be that the new images are sophisticated patchworks of images from the
database? Note. S. Mallat gave us some elements of the answer in his first session this
year (Sec. 2.7 Fig. 8), and he reformulates them in this session. The study consists of
training two generative models with two disjoint sets of size N from the same database
of face images. Then, we generate an image with both models from the same initial
white Gaussian noise image. The result is as follows: as the size N of the training sets
increases, we transition from a mode of memorization to a mode of generation. This is
illustrated 139 in Figure 49. We have indeed learned the deterministic inverse transport
which allows us to generate a new independent face image from any new realization of

139. Source: Zahra Kadkhodaie, Florentin Guth, Eero P. Simoncelli, and Stéphane Mallat (2024) Gene-
ralization in diffusion models arises from geometry-adaptive harmonic representations https://arxiv.org/
pdf/2310.02557.pdf.

https://arxiv.org/pdf/2310.02557.pdf
https://arxiv.org/pdf/2310.02557.pdf

135

Figure 48 – Some examples of face images generated by a generative model trained with
a large database using a score diffusion method.

Figure 49 – Two generative models S1 and S2 are trained with two non-overlapping
databases, each of size N . The same noise image is then given to both models to synthesize
a new image (80× 80). We can find the image from the database that best approximates
this synthesized image. As long as N < O(10, 000), S1 and S2 produce different images
that increasingly resemble an image from the database as N decreases. Once N = 100, 000,
the images synthesized by S1 and S2 are (almost) identical, but different from the images
closest to the two databases. We indeed witness a transition towards a model that learns
a probability distribution.

136

Figure 50 – Synthesized images from models S1 and S2 (Fig. 49) trained with N =
100, 000 images, where the same white Gaussian noise image is given at the beginning
of each generation. The vast majority of the synthesized images are identical with minor
instabilities.

white noise, independent of the initial database 140. If we repeat the image synthesis by the
two models trained with 100, 000 images, providing them with the same initial noise image
each time, we obtain the same generated images, except for minor details reflecting the
differences between the two optimized networks (Fig. 50). The same type of experiment
was conducted with other types of images (e.g., bedrooms). The conclusions are the same.

The transition from memorization to generation around N = 100, 000 depends on
the size of the neural network learning the score and the resolution of the images: in the
experiments conducted above, the network was a U-Net with 7× 106 parameters and the
images were of size 80 × 80 pixels. If we have images of size 40 × 40, we need a smaller
network, and generalization is effective when N = O(10, 000). In essence, this is a classic
explanation of interpolation: the more parameters we have, the more training images we
need. What is more surprising is that if we estimate the size of the variety where the
bedrooms are located, we intuit a dimension of the order of log2(105) ≈ 17, which is
relatively modest compared to the number of pixels (802 = 6, 400). So, one might think
that, after all, all bedrooms are almost identical in composition with minor details. This
leads S. Mallat to reflect more generally on the perception we may have of the diversity
of the world: in a way, are we not overestimating the complexity of the world? And if,
after all, the world is simpler than it seems, then this would explain why neural networks
are able to capture the correlations that structure these images.

140. At least to some extent because if we only take one type of Hollywood celebrity face, we will not
generate a face of an Asian, African, etc.

137

9.5 Opening towards some research directions

S. Mallat develops research directions and continues his session by projecting slides
(Note. around 56:15 after the start of the video.). These are themes he will address in
2025.

9.5.1 Return to denoising: wavelet bases

The problem of denoising, as mentioned earlier, dates back to the 1940s. Note. It is
also worth noting that the 2021 course covered the classic viewpoint of sparse represen-
tations which led to data compression, but could just as well have covered the aspect of
denoising. In fact, let’s take an orthonormal basis {ψk}k and decompose the noisy signal
xt = x+ z (z ∼ N (0, σ2

t Id)):
xt =

∑
k

⟨xt, ψk⟩ ψk (254)

How can we remove the noise component? In fact, since the decomposition is linear:

⟨xt, ψk⟩ = ⟨x, ψk⟩+ ⟨z, ψk⟩ (255)

But z being a Gaussian random variable, the same is true for ⟨z, ψk⟩, which will gene-
rate small coefficients (at least if σ2 is not too large compared to the signal). Therefore,
applying a thresholding via a non-linearity (ReLU) (Fig. 51) allows us to keep only the
large coefficients that are expected to be sufficient to reconstruct a good approximation
of the signal:

x̂ =
∑

k

ρT (⟨xt, ψk⟩) ψk with ρT (u) = max(u− T, 0) (256)

Typically, one chooses T ≈ (3÷ 5)σ.

This is an adaptive denoising algorithm developed in the 1980s described in the 2021
course. It is adaptive because it adapts to the signal decomposition; in comparison, Fourier
denoising would impose a cutoff on k < kmax, which in context would be a frequency index.

The challenge is to find the right representation basis to achieve the most par-

138

Figure 51 – Example of thresholding of scalar products to eliminate noise, which ge-
nerates small coefficients compared to the few large coefficients that are sufficient to
reconstruct a good approximation of the signal.

simonious signal decomposition possible. In this context, in the 1990s, multi-resolution
analyses with wavelet bases were developed 141. The interest of wavelets is to obtain par-
simonious representations of the signal whose coefficients are large only at discontinuity
zones. Imagine an image of an object such as a vase on a plain background; the coefficients
are localized at the edges of the vase. The same goes for the contours of a face, the eyes
in a face, etc. This applies to all spatial scales and areas of an image. Therefore, we have
a well-suited representation for shape recognition and identification, even in the presence
of noise. An example of denoising on a 1D signal is shown 142 in Figure 52. Notice that
denoising did not involve averaging over a sliding window or eliminating high-frequency
Fourier components, for example. We retained all the discontinuities of the noise-free
signal. The residual artifacts at the discontinuities resemble a Gibbs phenomenon but are
greatly reduced compared to its Fourier counterpart. The generalization to 2-dimensional
orthonormal wavelet bases is almost immediate, and thresholding of coefficients can also
be performed to achieve equally effective denoising.

141. NDJE. I invite you to refer to the 2021 course, which covers what S. Mallat briefly mentions in
these slides this year
142. NDJE. I used the swt/iswt functions from the pywavelet library, with level=6 for a 2048-sample
signal and "db2 " as the wavelet.

139

Figure 52 – Example of denoising thresholding by simple thresholding at T = 5σ on
wavelet coefficients. Left: the signal without noise (top), the signal with added Gaussian
white noise σ = 3 (middle), the reconstructed signal after thresholding. Right: the detail
coefficients of the three signals at different scales (refining further upwards). The metric
used is r = 10 log10(∥xr∥2/∥x− xr∥2) where xr is the noise-free signal taken as reference.

140

9.5.2 Denoising networks: What do they do?

What is the connection with what neural networks do? It has been seen that per-
forming optimal denoising (Th. 15) is to estimate the score of a distribution:

x̂(xt) = xt + σ2
t ∇xt log p(xt)︸ ︷︷ ︸

ŝ(xt)

(257)

For this purpose, we will use a universally optimized denoising network during the forward
phase (Sec. 9.3) such that:

x̂(xt) = x̂θ∗(xt) (258)

However, if the neural network uses only ReLU and all bias terms have been removed 143

then it is locally homogeneous of degree 1, and according to Euler’s theorem 144, it follows:

x̂θ∗(xt) = ∇x(x̂θ∗(xt)) · xt (259)

where the Jacobian of x̂θ∗ appears. We can diagonalize 145 it in an orthonormal basis
of eigenvectors denoted {ψk}k associated with eigenvalues (λk)k. Projecting xt onto this
basis, we can then write:

x̂(xt) =
∑

k

λk⟨xt, ψk⟩ψk (260)

Notice that if λk ≈ 0, the coefficient ⟨xt, ψk⟩ is canceled. Thresholding of the coefficients
of the decomposition of xt via the eigenvalues is performed. However, unlike the case of
denoising by thresholding wavelet coefficients, here the orthonormal basis is not chosen
a priori, it comes from the diagonalization of the Jacobian, it will therefore change

143. NDJE. "bias-free" network: all additive constants of convolution operations and batch normalization
operations are removed (i.e., batch normalization does not subtract the mean).
144. NDJE. A homogeneous function of degree k from Rd to R is characterized by

f(tx1, tx2, . . . , txd) = tkf(x1, x2, . . . , xd)

and Euler’s theorem states that

kf(x1, x2, . . . , xd) =
f∑

i=1
xi

∂f

∂xi
((x1, x2, . . . , xd)

.
145. NDJE. Using singular value decomposition, SVD.

141

depending on the input signal xt.

One can at this stage pose a number of questions regarding the probability estimation
problem:

• The first is dependence on the data, whether there is invariance or not of the result
with respect to the (training) dataset? According to the numerical experiment on
generating images of faces and bedrooms, it seems that there is a certain indepen-
dence from the training dataset (NDJE. with the caveat that not all types of faces
or all types of existing bedrooms in the world are generated).

• But let’s use a (trivial) argument: one can always generate an image filled with 0
regardless of the data, so the result is by construction independent of the data. Thus,
it is not sufficient to say that the result is independent of the dataset. Therefore, we
must question the precision of the result.

S. Mallat talks about "variance" for the first and "bias" for the second. We can understand
variance as follows: if the result depends on the dataset, changing it modifies the result,
so there is a fluctuation of the result induced by the choice of dataset. Fluctuation implies
variance. As for bias, it concerns the precision with which you will obtain the result 146.

So, the question is whether we have correctly estimated ∇x log p(x) = −U(x)?
In the face/bedroom generation experiment, it seems at first glance that the generated
samples resemble what one would expect. Can we have a mathematical confirmation of
this visual impression? Here, one must be able to find/extract a mathematical question
that captures the essence of the problem one seeks to demonstrate without it being too
simple but still accessible.

9.5.3 Results of numerical experiments

In this case, we will use simpler images like the one in Figure 53 where the back-
ground has α derivatives just like the separating line between two regions. Such images,

146. NDJE. It is important to contextualize the usage of vocabulary. This terminology may be perceived
differently. When making a measurement in Physics, one indicates the statistical error (variance) which
is due to the number of samples collected to perform the measurement, and the systematic error (bias)
related to the way the measurement is carried out, estimating efficiencies, estimating theoretical calcu-
lations of extracted quantities, etc. (there can be identified several types of systematics including those
dependent on statistics such as simulations to estimate a detection efficiency).

142

Figure 53 – Image of type Cα where we have a smooth curve on a smooth background
controlled by α. For example, α = 4.

S. Mallat tells us, were extensively studied in the 2000s because at that time the challenge
was to show that "traditional" wavelet denoising techniques were not optimal due to an
inability to adapt to the geometry of the problem. Let’s simply say that the supports of
the wavelets, although localized, are like blocks whose deformations do not adapt to the
geometry of the transition curve. We would like wavelets whose support can follow the
contours. This led to a plethora of works including the construction of "bandlet" bases 147.
The idea is therefore to understand how to construct optimal estimators of the noisy
signal. Thus, starting from these images x, we apply noise z ∼ N (0, σ2), and we denote
xt = x+ z. It is demonstrated that the optimal estimator x̂ has an error such that

∥x̂− x∥2 ∼ σ2α/(α+1) (261)

when thresholding the coefficients in the bandlet basis. At the time, S. Mallat tells us,
achieving the optimum was difficult, and we didn’t quite get there (there was a log σ
factor). But this provides a well-defined mathematical framework. The question is: what
will the U-Net type neural network do? Is it capable of achieving the optimum?

The results 148 are shown in Figure 54. First (top figure), we can observe the vectors
of the orthogonal basis of the Hessian. They are indexed by their eigenvalues, and what
we observe is that 1) we see kinds of oscillating functions in the two zones of the image
(top/bottom) with zero means on either side of the boundary, 2) we can distinguish a

147. NDJE. See for example Ch. Dossal, E. Le Pennec, and S. Mallat (2011) https://www.di.ens.fr/
~mallat/papiers/2011-SigPro-DLPM.pdf as well as works done with G. Peyré.
148. NDJE. Extracted from Z. Kadkhodaie, F. Guth, E. P. Simoncelli, S. Mallat (2023-24) https://arxiv.
org/abs/2310.02557.

https://www.di.ens.fr/~mallat/papiers/2011-SigPro-DLPM.pdf
https://www.di.ens.fr/~mallat/papiers/2011-SigPro-DLPM.pdf
https://arxiv.org/abs/2310.02557
https://arxiv.org/abs/2310.02557

143

narrow band following the boundary. It is important to note that the oscillating functions
compute variations over regular regions and not variations across the boundary because
that would lead to large coefficients due to the discontinuities contaminating all other
coefficients 149. All this tells us that these eigenvectors indeed form an optimal basis
that we knew mathematically and that the network has learned with image denoising.
Then (bottom figure), we can compare the denoising speed: that is, the evolution of the
function giving the PSNR 150 of the denoised image as a function of the PSNR of the noisy
image. We only control the theoretical slope. We observe that the network behaves in an
equally optimal manner.

Another example is shown in Figure 55: the base image is a disc with variable radius
and position, as well as colors (gray levels) inside and outside the disc. Therefore, we have
a 5-dimensional variety of the tangent space in which the images exist. We can calculate
the 5 eigenvectors (top figure). In the bottom figure, we see that the network also learns 5
eigenvectors that closely resemble those calculated. However, it may add other suboptimal
components, but they still adhere well to the previously discussed characteristics.

Therefore, it seems that for cases where we can calculate the optimal eigenvectors, we
can confirm that the network denoises optimally, thus estimating the score and therefore
the probability optimally. What does it do with face images? An example is provided in
Figure 56. What is particularly remarkable is the adaptation of the orthogonal basis
to the geometry of the image with oscillating shapes in uniform areas that respect the
contours.

9.5.4 Reflections on the generative model by score diffusion

It can be observed that the neural network (e.g., U-Net) used to estimate the score
is capable of estimating the underlying probability of face images, bedrooms, etc. It is
capable of generalization, but as shown in Section 9.4, it requires a lot of examples. For
example, in the numerical experiments shown in the previous sections, it took 100, 000
images to ensure that the model could truly generate new 80 × 80 images. So, there is
a problem, either in cases where larger realizations are needed, or in cases where there
are not many images available, even if they are of small dimensions. In particular, in the
149. NDJE. This is a clarification provided by S. Mallat after his lecture.
150. NDJE. It’s a metric that estimates the similarity between two images, Peak Signal to Noise Ratio.

144

Figure 54 – Top: Image 53 (80×80) and eigenvectors of the largest eigenvalues. Bottom:
Comparison of theoretical curves (dashed lines) and experimental measurements (points)
of the evolution of the PSNR of the denoised image (output) as a function of the PSNR
of the noisy image (input).

145

0 = 1.177 1 = 1.067 2 = 1.004 3 = 0.999 4 = 0.945

5 = 0.674 6 = 0.552 7 = 0.39 8 = 0.304 9 = 0.278

Figure 55 – Top: The 5 eigenvectors of the image space consisting of a disc with variable
radius and position, as well as colors (gray levels) inside and outside the disc. Bottom:
The first 5 eigenvectors of the Hessian obtained during denoising, which are identical to
the expected ones, and then some components found by the network to complete the basis
in the image space it used during training.

146

5 = 1.244 17 = 1.115 29 = 1.046 41 = 1.008 53 = 0.973 65 = 0.93 77 = 0.896

89 = 0.857 101 = 0.822 113 = 0.792 125 = 0.758 137 = 0.718 149 = 0.689 161 = 0.663

173 = 0.637 185 = 0.612 197 = 0.59 209 = 0.569 221 = 0.551 233 = 0.53 245 = 0.51

Figure 56 – Eigenvectors of the Hessian found by the network trained with noisy face
images.

latter case, one will inevitably end up with overfitting, meaning that one is in the realm
of memorization, which is not the intended goal.

Now, even though a large amount of data is needed, their number does not follow
an exponential law with respect to the dimension, the model has somehow absorbed the
structure of the data. What is it? To answer this question, one needs to open the "black
box" (Fig. 22) and understand the architecture that carries meaning. This introspection
is all the more important, S. Mallat tells us, when faced with a problem where data is
limited, we need to build low-dimensional models 151, and for that, one must understand
the architectures.

9.5.5 Case study: turbulence

The problem proposed by S. Mallat is the characterization of turbulence. It is a
subject that A. N. Kolmogorov laid the foundations for in 1941 but which remains open
to this day. In fact, turbulence is the result of the dissipation at small scales of the energy

151. NDJE. See, for example, the reflections in Section 2.1.3 of the 2020 course.

147

Figure 57 – Example of an image of turbulent fluid.

injected at large scales (effects of viscosity at high Reynolds numbers). Therefore, we want
to be able to estimate the probability density in the form of Gibbs energy by considering
the phenomenon as if it were in a stationary equilibrium (which is not strictly accurate).
Nevertheless, the question is: what is the energy of a turbulent fluid in 2D? When we look
at an image of turbulent fluid (Fig. 57), we notice the numerous swirls, filaments, and
eddies, etc.: there is geometry.

Now, by studying this phenomenon, Physics provides a possible reduction of the
number of degrees of freedom: we are dealing with a multi-scale structure similar to
that shown in Figure 4. Therefore, we can reduce from d direct interactions to O(log d)
multi-scale terms. The catch is that the groups at each scale level interact with each other,
making this problem non-trivial.

To solve this type of problem, Physics (1970) developed the following scheme (Fig.
58):

Forward : initially, the image (or field in general) x is progressively averaged and downsampled
to obtain versions xj at different resolution scales j ∈ {0, J}. At the same time, we
can observe the evolution of the probability distribution pj(xj) (for example, by
fitting a linear energy model discussed in Section 6.5).

Reverse : then, we want to generate new images at the original scale. For this purpose, we
notice that at scale J , the size of the image is reduced to (N/2J)2, which can be
just a few pixels. Therefore, it is a priori easy to sample such a distribution in low
dimension. Then, with a cascade in the "forward" step, we can compute the reverse

148

Figure 58 – Evolution scheme across scales: in the "forward" direction where the original
image is progressively averaged and downsampled, and in the "reverse" direction where the
Markov chain is reversed by starting with a sample from the low-dimensional probability
(easy), and using the relationship between probabilities.

cascade. In fact, we have

pj−1(xj−1) = pj(xj) p(xj−1|xj) (262)

Instead of having a Markov chain evolving with the noise level as in the Score
Diffusion method, here the chain evolves according to the scales. This is somewhat
the philosophy behind U-Net.

The point to clarify is how we go from scale j − 1 to scale j? This is where the
wavelet transform will guide us, because to construct an image of resolution j−1 (higher)
from an image of resolution j (lower), we need to add "details" denoted x̄j (Fig. 59). Now,
the decomposition of xj−1 into (xj, x̄j) is orthogonal, so we will assume that

p(xj−1|xj) = p(x̄j|xj) (263)

And just like we saw for Brownian motion (Sec. 4.3, Fig. 26) that we can obtain long-range
dependencies between variables through local but hierarchical dependencies (multi-
scales), the same applies here. Now, to model p(x̄j|xj), we can use a linear Gibbs energy

149

Figure 59 – When an image xj−1 passes through a 2D wavelet transform (forward
mode), we obtain not only the averaged and downsampled image xj but also the "detail"
components denoted x̄j. In the "reverse" mode, where from an image xj we want to
produce an image xj−1 of higher resolution, we need to be able to construct the "detail"
components.

model (Sec. 6.5):
pθj

(x̄j|xj) = Z−1
j eθT

j Φ(x̄j ,xj) (264)

where (θj)j is of low dimension. This modeling is a completely open research challenge,
as stated by S. Mallat.

Once the optimization is done, the path is clear. We start with a sample xJ from pJ ,
then we generate the detail patches x̄J according to p(x̄J |xJ), and we reconstruct xJ−1.
Again, we generate the patches x̄J−1 according to p(x̄J−1|xJ−1), and we can reconstruct
xJ−2, and so on. In this way, we end up with a sample x0 (or x) from the probability

p(x) = pθJ
(xJ)

1∏
j=J

pθj
(x̄j|xj) (265)

With such models, we can proceed 152 to the generation of non-Gaussian fields by
wavelet models like those in Figure 6 (turbulence, cosmic web, etc.).

152. NDJE. see Sihao Cheng, Rudy Morel, Erwan Allys, Brice Ménard, Stéphane Mallat (2023), https:
//arxiv.org/abs/2306.17210,, and Florentin Guth, Etienne Lempereur, Joan Bruna, Stéphane Mallat
(2023) https://arxiv.org/abs/2306.00181, and the referenced works.

https://arxiv.org/abs/2306.17210,
https://arxiv.org/abs/2306.17210,
https://arxiv.org/abs/2306.00181

150

9.6 Conclusion of this year

The challenge is to understand the structure, because we want to know why neural
networks are able to calculate scores and thus generate images of faces, bedrooms, etc.,
and in many other domains. For these problems, we don’t have the slightest basis of a
theoretical model as we can obtain with models in Physics where we have one or even
several centuries of reflections that have provided these bases on which we can rely. But if
the networks are able to capture these structures, as already stated, it may be that there
is hope that this structure is not so complex after all, and there may be some guiding
principles that could put us on the path to attacking the problem mathematically.

In the case of score-based generative diffusion, we try to show that we can indeed
be in a mode of generalization (and not just data memorization). However, the algorithms
rely on a "black box" namely the denoising network (e.g., U-Net). So if we want to go
further in understanding, we need to open the said box.

Probably, one of the guiding principles, S. Mallat tells us, is undoubtedly the notion
of hierarchy. In the case of an image as shown in the previous section, it is about scales.
In the case of an image, it is much simpler, because the topology is well defined, the
notion of dilation/contraction is well defined, which gives access to the notion of scale.
On the other hand, imagine the context of a company where actors interact to carry
out a project, there is no notion of natural scale, but certainly the notion of hierarchy
is present. In this context, the article by H. Simons from the 1960s 153 provides a sort
of explanation for this universality of hierarchical systems: there is a dynamic search for
stability. However, a hierarchical structure is not a simple vertical tree-like structure with
disconnected horizontal levels that would correspond to the stage of wavelet decomposi-
tion, for example. But, to take again the case of a company, we want communication at
each level of the hierarchy. Similarly, in images of faces (turbulence, etc.), we see that
there are long-range interactions at all scales.

These connections pose again open questions in mathematics. And undoubtedly,
paths to understand the principles underlying these "horizontal" hierarchical structures
are necessary. Because hierarchical systems in the form of simple trees have been tested
in a whole range of domains: e.g., in linguistics with Noam Chomsky’s grammars 154 but
153. NDJE. See Course 2020 Sec. 3.2
154. NDJE. See Course 2019 Sec. 2.3.1

151

it is clear that this is not what led to the large language models (see Introduction of this
year); similarly in imaging, multi-resolution analyses (wavelets) allow for processing but
fundamentally this is not what allowed image generators, similarly in audio etc.

In a way, if we draw a parallel, self-similar structures are simple forms of fractals
but there are much more complex objects in the family of fractals, the same goes for
hierarchies: those in simple tree-like structures have allowed us to take a step towards
understanding hierarchical structures, but there is still a long way to go that we will
continue to explore next year.

10. NDJE. Quelques ajouts personnels

In this section, I will add some elements related to the course:
— Concerning a widely used sampling technique called HMC.

— Regarding what is known as Normalizing Flows.

10.1 NDJE. Hybrid/Hamiltonian Monte Carlo

In this section, I will introduce a Monte Carlo method (denoted HMC) that aims
to address the question: can we reduce the time required for a Markov chain to provide a
batch of independent samples from a target distribution π(x)? Throughout this section, I
only touch on some concepts, and I refer, for example, to Michael Betancourt’s article 155

(2018) for more details on this topic.

During this year’s course, we have seen that we aim to sample probabilities such
that π(x) > 0, which can be modeled as Gibbs distributions:

π(x) = Z−1 e−U(x) ⇔ − log(π(x)) = U(x) + Const (266)

We will assume that we can compute the score, ∂U(x)/∂x 156.

155. Michael Betancourt, A Conceptual Introduction to Hamiltonian Monte Carlo, https://arxiv.org/
pdf/1701.02434.pdf
156. Note that automatic differentiation libraries (e.g., TensorFlow, PyTorch, JAX) used for machine
learning allow for efficient and stable codes if the expression for ∇xU(x) is not known analytically.

https://arxiv.org/pdf/1701.02434.pdf
https://arxiv.org/pdf/1701.02434.pdf

152

In the HMC technique, we introduce a conjugate variable to x, conveniently denoted
as p, and we form the function (Hamiltonian):

H(x, p) = U(x) + Ek(p) (267)

where Ek(p) = ∥p∥2
2/2 represents a sort of kinetic energy of the system when U(x) re-

presents its potential energy. But one should not push the analogy further. The dynamic
equations of the system are then identical to those of classical Hamiltonian mechanics:

ẋ = ∂H

∂p
= ∂Ek

∂p
= p ṗ = −∂H

∂x
= −∂U

∂x
(268)

where the notation ȧ denotes a "temporal" derivative of the variable a (ȧ = da/dt), and
when time is discretized, ȧ = a(t+ 1)− a(t).

The HMC algorithm revolves around the following simplified version to discuss its
components. Starting from a state xi of a chain to obtain the state xi+1, we proceed as
follows:

Step 1: Random draw of pi ∼ N (0, 1); then initialize pnew = pi and symmetrically xnew = xi;

Step 2: Iteration of nsteps steps to integrate the equations of motion following the method
called the "leapfrog" algorithm:

pnew = pnew − ε× 1

2
∂U(x)

∂x
|x=xnew

xnew = xnew + ε× pnew

pnew = pnew − ε× 1
2

∂U(x)
∂x
|x=xnew

(269)

Note that −∇xU(x) acts as a "force", so if ε is a sort of infinitesimal time element
dt, then we understand that dp = −dt×∇xU(x) (the 1/2 is there to account for the
fact that we divide the time interval into two equal parts). Similarly, p (if the mass
is unity) is a velocity, so dx = dt × p. Therefore, we understand that we integrate
the equations of motion. We note the update of the gradient along the way, which
will come into play later;

Step 3: Then, we reverse the momentum pnew = −pnew (not necessary in practice, we will
see);

153

Step 4: Finally, we proceed as for the Metropolis algorithm according to the acceptance
probability of the new state (xnew, pnew):

pacc = min
{

1, r = P̃ (xnew, pnew)
P̃ (xi, pi)

}
(270)

with
P̃ (x, y) = exp{−H(x, p)} = exp{−U(x)} exp{−Ek(p)} (271)

This is done by uniformly drawing a number u from the interval [0, 1]. If u < r,
we accept xnew as the value for xi+1, otherwise, we take xi. Notice the decoupling
between the two variables x and p. Also, note that we do not keep pnew afterwards.

The method raises the following question: why use Hamiltonian equations? The arguments
are as follows:

1. The temporal reversibility of Hamiltonian dynamics is important for the reversibility
of the Markov chain (see later);

2. Then, the conservation of the Hamiltonian over time means that in principle r = 1,
and thus favors the acceptance of a new state of the chain. However, in practice, the
conservation of H is not exact, even by the imperfection of the integration algorithm;

3. The proposal of the new state is guided by pnew, which points in the direction of the
highest probability density, which is favorable;

4. Finally, Hamiltonian dynamics preserves volumes in phase space, this is Liouville’s
theorem. This property is crucial for being able to use the Metropolis method (and
not the Hastings version) (step 4) to accept or reject a new state of the chain.

Now, two questions naturally come to mind: why does the algorithm (HMC) converge
to π(x), and why do we have this strange structure of the leapfrog algorithm, especially
the momentum reversal at the end? The first question refers to the notion of detailed
balance, which compares the probabilities of reverse processes A → B and B → A (See
Sec. 11) 157. So, let’s see why we have the following equality which will guarantee that

157. Note that there are versions of HMC that do not satisfy this criterion because it is not necessary
to obtain a stable distribution to which the algorithm converges: see for example https://arxiv.org/pdf/
1409.5191.pdf.

https://arxiv.org/pdf/1409.5191.pdf
https://arxiv.org/pdf/1409.5191.pdf

154

π(x) is the invariant measure of the algorithm:

π(x)pt(x→ y) = π(y)pt(y → x) (272)

Here, pt(x → y) is the transition probability from position x to position y. What is this
transition probability in the case of the HMC method?

Let’s see this: if we start from a state (x0, p0) after T steps (in a time discreti-
zation manner), we arrive at the state (xT , pT). However, the Hamiltonian dynamics is
deterministic, so there exist two functions f1 and f2 such that

xT = f1(x0, p0) pT = f2(x0, p0) (273)

Now, the reversibility of the dynamical equations tells us that if we start from the state
(xT ,−pT), then after T steps we fall back to the initial state (x0, p0). This implies that

x0 = f1(xT ,−pT) p0 = f2(xT ,−pT) (274)

This establishes a bijective correspondence between (x0, p0) and (xT , pT) on one hand, and
(xT ,−pT) on the other hand. Let’s now assume that there is a unique momentum p(x,y)

such that between the positions x and y the following mapping holds: y = f1(x, p(x,y)), and
at the same time denote py = f2(x, p(x,y)). Reversibility then tells us that x = f1(y,−py)
and p(x,y) = f2(y,−py). Thus, there is only one momentum p(y,x) that connects (x, p(x,y))
and (y, p(y,x)), which is p(y,x) = −py. Therefore, pt(x→ y) = Π(p(x,y)) (Π(p) ∝ e−Ec(p)) be-
cause only the momentum information moves the position value, and similarly we identify

155

pt(y → x) = Π(−py) 158. Now, we can prove the relation 272:

π(x)pt(x→ y) = π(x)Π(p(x,y))

= 1
Z
e−U(x)−Ec(p(x,y)) = Z−1e−H(x,p(x,y))

= Z−1e−H(y,py) (H = Cte)
= Z−1e−U(y)−Ec(py)

= π(y)Π(py)
= π(y)Π(−py) (Ec(p) sym. p↔ −p))
= π(y)pt(y → x) (275)

Having this detailed balance property, we know that π(x) is the invariant measure towards
which the algorithm will converge.

Now, regarding the second question, let’s inspect the part of the algorithm corres-
ponding to step 2. It is a discretized form of the equations of motion, reminiscent of the
Euler algorithm, for example. The most intriguing part is step 3. What is its purpose?
Let’s revisit the steps of one iteration in the + direction of the progression from (x0, p0)
to a new state (the intermediate step is denoted with 1/2):

p̂+
1/2 = p+

0 − ε/2 ∇U(x+
0)

x̂+
1 = x+

0 + ε p̂+
1/2

p̂+
1 = p̂+

1/2 − ε/2 ∇U(x+
1) (276)

And finally, with step 3, we transition from (x+
0 , p

+
0) to (x̂+

1 ,−p̂+
1). If we follow the same

procedure but starting from (x−0 , p−0) = (x̂+
1 ,−p̂+

1) in the opposite direction, then for the
first half-step of the momentum we have:

p̂−1/2 = p−0 − ε/2 ∇U(x−0)

= −p̂+
1 − ε/2 ∇U(x̂+

1)
= −

(
p̂+

1/2 − ε/2 ∇U(x+
1)
)
− ε/2 ∇U(x+

1)

= −p̂+
1/2 (277)

158. I agree, there are a lot of p, π, etc.

156

We are indeed going in the opposite direction. Regarding the position:

x̂−1 = x−0 + ε p̂−1/2

= x̂+
1 − ε p̂+

1/2

= x+
0 + ε p̂+

1/2 − ε p̂
+
1/2

= x+
0 (278)

So, we return to the original position. Finally, performing the second half-step of the
momentum, we have:

p̂−1 = p−1/2 − ε/2 ∇U(x−1)

= −p̂+
1/2 − ε/2 ∇U(x+

0)

= −p+
0 + ε/2 ∇U(x+

0)− ε/2 ∇U(x̂+
0)

= −p+
0 (279)

Thus, after the step of reversing the momentum, we also recover the original value p+
0 .

Therefore, the step of reversing the momentum accounts for the reversibility of the laws of
Hamiltonian dynamics, which is the basis for the convergence property of the algorithm.
However, in practice, since the kinetic energy expression is quadratic in p, changing the
sign has no impact on the probability of accepting the new position, so we can practically
remove step 3.

Now, you understand a bit better, I hope, the mechanics of the HMC algorithm.
However, there are two (hyper)-parameters nsteps and ε whose values depend on practical
considerations and experimentally influence the convergence speed of the algorithm. The
notebook https://github.com/jecampagne/cours_mallat_cdf/blob/main/2003/Monte_Carlo_
Sampling.ipynb provides a simple implementation in Python (numpy) of this algorithm.
Intuitively, ε should be small, as it characterizes the discretization step of the Hamilto-
nian equations. However, the number of steps (n_steps) remains an issue: too few steps
result in a random walk evolution (too much stochasticity), too many steps waste re-
sources, and, most importantly, it can cause the chain’s trajectory to loop back on itself,
generating samples close to each other as if the chain were stagnant, or even causing loss
of convergence properties (non-ergodicity). Therefore, determining nsteps is delicate and

https://github.com/jecampagne/cours_mallat_cdf/blob/main/2003/Monte_Carlo_Sampling.ipynb
https://github.com/jecampagne/cours_mallat_cdf/blob/main/2003/Monte_Carlo_Sampling.ipynb
https://github.com/jecampagne/cours_mallat_cdf/blob/main/2003/Monte_Carlo_Sampling.ipynb

157

requires preparatory simulations and a lot of practice. This difficulty made the practice of
the HMC method challenging, until the development of the NUTS algorithm 159 in 2011.

NUTS, short for No-U-Turn Sampler, constructs a procedure that ensures the maxi-
mum distance between the position xi and the potential new position xnew. We realize that
if we start from xi, the Hamiltonian dynamics gives us that the variation of ∥xi − x(t)∥2

satisfies the equation

C(t) = 1
2
d

dt
∥x(t)− xi∥2 = (x(t)− xi) ·

dx(t)
dt

= (x(t)− xi) · p(t) (280)

Thus, we can gradually realize during the leapfrog algorithm’s progression if the right-hand
term becomes negative, as it would indicate a turning point in the trajectory. However,
if we only simulate the part where C(t) > 0, we have an issue with reversibility. To
address this problem, the NUTS algorithm introduces an auxiliary variable and constructs
a binary tree of forward (direction + as used earlier) and backward (−) movements to
provide movement proposals at a depth of 2n. But the complete algorithm is complex,
so I refer you to the authors’ article. For a user, this is where the numpyro library 160

will be useful. Note that numpyro is not the only library on the market for handling
Markov chain generation using the HMC/NUTS method. The use of other libraries is
discussed, for example, in this 2018 post: https://mattpitkin.github.io/samplers-demo/
pages/samplers-samplers-everywhere/.

The notebook https://github.com/jecampagne/cours_mallat_cdf/blob/main/2003/
Monte_Carlo_Sampling_2.ipynb demonstrates uses of NUTS as well as HMC using
numpyro.

10.2 Normalizing Flows

In the course, we have seen the Score Diffusion method, which is based on a stochas-
tic Ornstein-Uhlenbeck differential equation that can be inverted. In its forward mode,

159. Matthew D. Hoffman and Andrew Gelman (2011), The No-U-Turn Sampler: Adaptively Setting
Path Lengths in Hamiltonian Monte Carlo, arXiv:1111.4246, https://arxiv.org/abs/1111.4246
160. Website: http://num.pyro.ai; Du Phan, Neeraj Pradhan, and Martin Jankowiak, Composable Effects
for Flexible and Accelerated Probabilistic Programming in NumPyro https://arxiv.org/pdf/1912.11554.
pdf

https://mattpitkin.github.io/samplers-demo/pages/samplers-samplers-everywhere/
https://mattpitkin.github.io/samplers-demo/pages/samplers-samplers-everywhere/
https://github.com/jecampagne/cours_mallat_cdf/blob/main/2003/Monte_Carlo_Sampling_2.ipynb
https://github.com/jecampagne/cours_mallat_cdf/blob/main/2003/Monte_Carlo_Sampling_2.ipynb
https://github.com/jecampagne/cours_mallat_cdf/blob/main/2003/Monte_Carlo_Sampling_2.ipynb
https://arxiv.org/abs/1111.4246
http://num.pyro.ai
https://arxiv.org/pdf/1912.11554.pdf
https://arxiv.org/pdf/1912.11554.pdf

158

Figure 60 – Top: Scheme illustrating how starting from a simple distribution of Z0 and
performing invertible and differentiable transformations Ti, we end up with a much more
complex distribution of X (e.g., multimodal). Bottom: Scheme highlighting a two-part
architecture.

we transform the random variable X following the distribution p(x), for which we have
samples (xi)i, progressively into a random variable XT following the distribution pT (x)
by adding Gaussian white noise to ensure that pT is pure noise. At the same time, we
learn the score ∇x log pt(x) with noise σt. This score is used during the backward mode
to generate new samples from p(x) based on samples drawn from pT (x), which are easy
to obtain.

That being said, another technique called Normalizing Flows was used in the litera-
ture around 2018. I will not delve into a detailed study here; you can refer, for example,
to the review by Papamakarios et al. (2019-21).

The general principle is relatively simple, as it involves a change of variable such
that if Z has PDF pz(Z):

X = T (Z) with Z ∼ pz(Z) (281)

159

The PDF px(X) of X is then obtained as follows:

Z = T−1(X); px(X) = pz(Z)| det JT (Z)|−1 = pz(T−1(X))| det JT −1(X)| (282)

This is only possible if T is invertible and if T and T−1 are differentiable functions, as we
need to compute the Jacobian J measuring the change in volume. Moreover, this fixes the
dimensionality of Z to that of X. In libraries (and in the literature), the transformation
T is often called a bijector, with its forward and backward modes when applying T or
T−1, respectively.

The interest lies in the fact that we can compose transformations such that:

T = T1 ◦ T2 ◦ · · · ◦ Tn (283)

with all Ti being invertible and differentiable. First, the inverse T−1 is easily computable
as T−1 = T−1

n ◦ T−1
n−1 ◦ · · · ◦ T−1

1 , and second, the determinant of the Jacobian of T is
the product of the determinants of the Jacobians of the n transformations (Z0 = Z and
Zn = X):

Zi = Ti(Zi−1) log | det JT | =
∑

i

log | det JTi
(zi−1)| (284)

This concept resembles the notion of probability transport discussed in the course.
Thus, starting from a simple base distribution pz(z) (e.g., a multivariate Gaussian with d
variables N (0,1d)), we can model complex distributions of X as schematically shown in
Figure 60. Note that computing determinants (Eq. 284) can be costly unless the trans-
formations are special, particularly if their Jacobians are triangular matrices.

Given pz and having a batch of samples (xi)i≤N , assumed to be drawn iid from the
px distribution, only the transformation T (and its components in an iterative scheme)
is unknown. Suppose T belongs to a family of transformations for which we need to
determine the parameters ϕ to fully define it; then we proceed by maximizing the likelihood
that the (xi)i are indeed drawn from the px distribution, i.e., by minimizing the loss:

L(ϕ) = −
N∑

i=1
log px(xi) (285)

160

In fact:

— for training, only T−1 is needed, as we use the second equality of Eq. 282 to compute
px(X) and L(ϕ).

— if we want to generate new samples of X from px, it would be better to have direct
access to the transformation T to use relations 281.

Obviously, we look for families of transformations that (1) allow us to compute the PDF
px and (2) generate new samples as efficiently as possible, particularly without having to
invert the transformation.

The article by Papamakarios et al. provides a series of methods for implementing
these transformations, such as autoregressive models based on Eq. 2:

p(x) = p(x1)p(x2|x1)p(x3|x1, x2) · · · = p(x1)
d∏

j=2
p(xj|x1, . . . , xj−1) (286)

for modeling

p(xi|x1:i−1) = p(xi;hi) hi = Ci[x1:i−1] (287)

with neural networks.

So, the question that comes to mind is: what is the difference with the Score Diffusion
method? The main difference 161 with a classical normalizing flow is that the path between
the data and the Gaussian is fixed; it’s not an arbitrary function that we learn but it’s
given by the Ornstein-Uhlenbeck equation with the score. This allows having an objective
for each time: we learn the path bit by bit, instead of having only a loss on the endpoint as
in the maximum-likelihood training of normalizing flows. And it is clear that while there
have been generative models based on normalizing flows 162, the major generative models
are based on score.

161. Extract from a discussion with F. Guth.
162. See for example Kingma and Dhariwal (2018) https://arxiv.org/pdf/1807.03039.pdf (both from
OpenAI).

https://arxiv.org/pdf/1807.03039.pdf

