Strategic geometric graphs through mean field games - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2024

Strategic geometric graphs through mean field games

Résumé

We exploit the structure of geometric graphs on Riemannian manifolds to analyze strategic dynamic graphs at the limit, when the number of nodes tends to infinity. This framework allows to preserve intrinsic geometrical information about the limiting graph structure, such as the Ollivier curvature. After introducing the setting, we derive a mean field game system, which models a strategic equilibrium between the nodes. It has the usual structure with the distinction of being set on a manifold. Finally, we establish existence and uniqueness of solutions to the system when the Hamiltonian is quadratic for a class of non-necessarily compact Riemannian manifolds, referred to as manifolds of bounded geometry.
Fichier principal
Vignette du fichier
Strategic_dynamic_graph_through_mean_field_games_.pdf (430.98 Ko) Télécharger le fichier
Strategic geometric graphs through mean field games.zip (61.54 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04548364 , version 1 (19-04-2024)

Identifiants

  • HAL Id : hal-04548364 , version 1

Citer

Matthias Rakotomalala, Charles Bertucci. Strategic geometric graphs through mean field games. 2024. ⟨hal-04548364⟩
102 Consultations
63 Téléchargements

Partager

More