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Strategic geometric graphs through mean field games.

Charles Bertucci∗, Matthias Rakotomalala∗

Abstract

We exploit the structure of geometric graphs on Riemannian manifolds to analyze strategic
dynamic graphs at the limit, when the number of nodes tends to infinity. This framework
allows to preserve intrinsic geometrical information about the limiting graph structure, such
as the Ollivier curvature. After introducing the setting, we derive a mean field game system,
which models a strategic equilibrium between the nodes. It has the usual structure with
the distinction of being set on a manifold. Finally, we establish existence and uniqueness
of solutions to the system when the Hamiltonian is quadratic for a class of non-necessarily
compact Riemannian manifolds, referred to as manifolds of bounded geometry.
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1 Introduction

In this paper, we exploit the structure of geometric graphs on Riemannian manifolds to analyze
strategic dynamic graphs at the limit, when the number of nodes tends to infinity. Namely, we
propose a mathematical framework to study mean field games(MFG) in which the interaction of
the agents depends on a network structure, which is itself the result of strategic interactions of the
players, this will lead us to sturdy MFG systems on Riemannian manifolds.

MFG theory, introduced by Lasry and Lions [LL07], has proven to be a fruitful approach for
qualitative modeling of games with a crowd of agents, such as the ones encountered in economics,
finance, traffic flow, or biology [Car20, CCG+11]. We refer to the lectures of Pierre-Louis Lions
at the Collège de France, and to the book [CD+18] for a comprehensive introduction. MFG in
which there exists an additional structure of interaction have recently attracted attention. Caines
and Huang [CH19] combined graphon theory and mean field games to study games with weighted
interaction between players. A graphon is a measurable function W from [0, 1]2 7→ [0, 1], that
represents the dense limit of a graph, where for a pair of nodes labeled by x, y ∈ [0, 1], W (x, y) is
the asymptotic weight of the edge between node x and node y. Graphons are used to weight the
interaction of each agent with the rest of the crowd depending on its label, this is referred to as
graphon mean field games and there is an ongoing literature on this topic [GTC20, LS23, CCGL22,
ACL22, ACDL22]. A different approach was proposed by Lacker and Soret in [LS22], where they
studied the mean-field game limit of a flocking model on transitive graph, in this framework, it
appears that the optimal control depends on the spectrum of the graph. In the previous models,
the additional interaction structure, is exogenous to the game, i.e. it is given at the beginning of
the game and is, for the most part, fixed. This is mainly due to the fact that there is no a priori
canonical way to model the attachment decision of the players at the limit.

In our opinion, it is natural to consider a dynamic structure of interaction that depends on the
interaction of the players themselves. In many applications, the agent controls how it interacts
with the others. For example, the Lightning Network is a decentralized payment protocol, and
each pair of agents can choose to open a payment channel between them [PD16]. Another example
would be problems of mutual holding, where each bank can buy shares of the others; a mean-field
approach to this problem was used by N. Touzi, F. Djete and L. Bassou in [DT21, DGT23, BDT24].
While their study provides valuable insights, we provide here a modeling framework that allows
to deal with other strategic structures of interaction.

The main modeling assumption we make here is that the graph that describes the interactions
is a Riemannian geometric graph and that each node corresponds to a player. A geometric graph
is a weighted graph, where the nodes are identified as a collection of points on a Riemannian
manifold, and the edges and their weights depend uniquely on the distance of the pair of points on
the manifold. We shall see that we can identify, in the limit, a geometric graph with a measure on
a Riemannian manifold. There is a wide literature on geometric graphs, both in a theoretical per-
spective to study their properties [Pen03, VDH16, Bar11, ACL01], and in applications. Krivoukov
et al. [KPK+10] proposed the hyperbolic space as an appropriate base space to embed real-life
networks, they showed that the degree distributions of the nodes and clustering properties present
similarities with network structures that can be observed in practice. These properties motivated
statistical studies, for example, in [GPBAS16], the authors studied the international trade maps
from 1870 to 2013, and highlighted the possible hidden hyperbolic structure. Similarly in [KRN21],
statistical properties of the European banking system point towards a hyperbolic structure.

In our work, the geometry of the manifold that we impose to the structure of interaction is a
modeling hypothesis. The main advantage of this approach is that it is now clear how to interpret
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the strategy of connection in this model. To change its interaction, a player simply changes its
position on the Riemannian manifold and the underlying graph evolves accordingly. Note that the
decision of the players depends on the position of the other players on the underlying manifold, in
a usual MFG manner. Hence, the equations we shall naturally consider are of the following form,


−∂tv −∆gv − σ∆v +H(t, x, y,∇xv, µt) + H̃(t, x, y,∇gv, µt) = 0 on [0, T ]× Rd ×M,

∂tµ− divx(DpH(t, x,∇v, µ)µ)− divg(DpH̃(t, x, y,∇gv, µ)µ)− σ∆µ−∆gµ = 0 on [0, T ]× Rd ×M,

µt=0 ≡ m0, v(T, ·) ≡ G(µT ) on Rd ×M,

where σ > 0, and ∆g, divg, ∇g are respectively the Laplace-Beltrami operator, the divergence
and the gradient operator associated to the Riemannian metric g on the manifold M , they are
the geometrical counterparts of the classical differential operators. This type of system is the
main subject of study in this paper and will be derived in Section 2. It describes the evolution
of a crowd of agents, represented as a density µ, on the state space Rd ×M , where (M, g) is a
Riemannian manifold. The classical state space for mean field games is Rd or the d-dimensional
torus, we thus here extend it with M , which will serve as an interaction space. In this model, the
relative position of the agents on the manifold serves to describe their interactions. The solution
to the Hamilton-Jaccobi-Bellman equation v, is the value function of the optimal control faced by
a typical agent, given that it anticipates the flow (µt)t∈[0,T ]. In [YLLO22], a first-order mean field
games system on compact Riemannian manifolds was numerically studied, here we study a system
of the second order.

An important remark is that the product of Riemannian manifold is a Riemannian manifolds,
and since Rd is a Riemannian manifold, we can study without loss of generality the system,

−∂tv −∆ηv +H(t, x, y,∇ηv, µt) = 0 on [0, T ]× M̃,

∂tµ− divη(DpH(t, x, y,∇ηv, µ)µ)−∆ηµ = 0 on [0, T ]× M̃,

µt=0 ≡ m0, v(T, ·) ≡ G(µT ) on M̃,

where M̃ = Rd ×M equipped with the product metric η. Thus in the following study, we will
study the second system.

Even though this framework is more restrictive and less general than graphon mean field games,
it allows to study dynamic strategic cases. And as we shall see in section 2, it also has the great
benefit of preserving at the limit local geometrical information of the discrete structure such as
the Ollivier curvature. Furthermore, in many model cases, we can expand the equation in a
global coordinate system, for example in the hyperbolic case, that seems to be a base space with
interesting characteristics.

In Section 2, we introduce mean field geometric graphs, that is, limits of dynamic geometric
graphs, derive the forward-backward system, corresponding to a strategic interaction, similarly as
in mean field games. We also recall Ollivier coarse curvature and its convergence in the case of
geometric graphs, and provide some toy models. In the third section, we establish the existence
and uniqueness of second-order mean field games on manifolds of bounded geometry in the case
of a quadratic Hamiltonian. This class of Riemannian manifolds encompasses compact and a wide
range of non-compact manifolds, for example, the hyperbolic space, and the Euclidean R2 classical
case. Overall the strategy of proof is classical and uses a standard fixed point argument. The main
novelties reside in the estimates that depend on the curvature of the manifold, we also provide
proof for a maximum principle on unbounded domain for manifolds of bounded geometry needed
for the analysis.
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2 Mean field geometric graph games

In this section, we begin by recalling the notion of a geometric graph. We then define our no-
tion of mean field geometric graph. Next, we derive the forward-backward system that describes
the strategic evolution of a mean-field geometric graph. Afterward, we recall the notion of Ol-
livier coarse curvature and discuss its potential application in this context. Finally, we explicitly
outline the equations in the model case of hyperbolic geometry, which appears suitable for certain
applications.

2.1 Strategic geometric graphs and their limits

We begin with the usual notion of finite geometric graph.

Definition 2.1 (Geometric Graph). Let (X , d) be a metric space and I = {1, . . . , N} for some
N ∈ N. A finite geometric graph on X is a weighted graph G = (V,E,w), associated to a triplet,

((X , d), {X i ∈ X}i∈I , k : R+ ∪ {+∞} −→ R+ ∪ {+∞}),

where V = {X i}i∈I is a collection of points taking values in X (the base space),and the connecting
rule k determines the edge and their weights through,

E = {(i, j) ∈ I2|k(d(X i, Xj)) < +∞}, and wij = k(d(X i, Xj)) for (i, j) ∈ E.

It is common in the geometric graph literature [Bar11, ACL01] to consider connecting rules kϵ

of the following form,

kε(r) =

{
r if r ≤ ϵ,

+∞ otherwise,
(1)

that is, where each node is connected to its ε-neighbourhood with edge length coinciding with the
base space distance.

Since we are ultimately concerned with the case of large graphs, we are lead to consider mean
field limits of such finite geometric graphs. In the mean field limit, it is natural to assume that
the limit graph is given by the probability measure which is obtained as the limit of the empirical
measures in the finite geometric graphs. Of course, a rescaling of the connecting rule is necessary
to obtain a mean field limit, but we do not enter too much in this question here, as we are more
interested in the limit object and leave the question of the passage to the limit for future research.
More generally, since our main concern lies in the dynamics of such graphs the connecting rule
shall be of few interest for as we are going to assume that is is fixed. We shall come back on this
later on.

Definition 2.2 (Asymptotic Geometric Graphs). Given a certain connecting rule, a limit geo-
metric graph on a base space (X , d) is a probability measure(or a measure) on the base space
µ ∈ P(X ), that is the asymptotic distribution of nodes on the base space.

It could be possible to consider Gromov-Haussdorf topology in this framework to study the
limit of the graph, however, in the next example and the following sub-section, we will consider
examples of scalar quantities depending on the geometry of the graph sequence, that converges at
the limit, both in the sparse (when the rescaling of the connecting rule gives a constant number of
neighboring nodes) and dense regimes (when the number of neighbor grows as the total number
of nodes). We give a first example of dense limit, inspired by the graphon literature.
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2.1.1 Example 1: modeling interactions with geometric graphs

In mean field games models, given a crowd of agent identified as their state variables (Y N,i)Ni=1

in Rd, we are somtimes led to consider aggregated quantities of the form 1
N

∑N
i=1 f(y, Y

i), where
f : Rd × Rd −→ R is some interaction kernel. Now suppose, that we have an additional structure,
in the form of a weighted graph G = (V = {1, . . . , N}, E, w), in a similar manner it is natural to
consider for an agent i = 1, ·, N , the average over the neighbors,

1

#Ni

∑
(i,j)∈E

f(y, Y j)wij,

where #Ni is the cardinal of the neighbors of i. It is classical, in graphon theory to introduce the
weighted average, conserved under graphon convergence at the limit. In the context of geometric
graph, we consider the extended state space Rd × X , and for a crowd ((Y i, X i))Ni=1. Where Y i is
the classical state variable and X i is the position of the node on the manifold. This would yield a
quantity of the form,

1

N

N∑
j=1

f(y, Y j)λN(d(x,Xj)),

for some function λN : R+ −→ R, essentially something like 1/x, or a possibly renormalzed ver-
sion(by 1

N

∑N
j=1 λ(d(x,X

j))). This is the averaged quantity over the neighbors for an agent in the
state (y, x) given the positions of the others. At the limit, if we suppose that we have a convergence
to some probability ν ∈ P(Rd ×X ), depending on the renormalization, this could lead to,∫

Rk×X
f(y, y′)λ

(
d(x, x′)

)
dν(x′, y′),

for non-renormalised dense limit, or∫
Rk

f(y, y′)dνY |X=x(y
′) = Eν [f(x,X)|Y = y],

for a renormalized sparse limit.

2.2 Ollivier coarse curvature of mean field geometric graphs

In Riemannian geometry, curvature is an analytic quantity that characterizes local and global
geometric properties of the manifold. Ollivier gave a synthetic definition of curvature [Oll09], that
generalizes to metric-measured space as follows. We present this notion as we believe it is a natural
object that mean field geometric graphs allow to consider.

Definition 2.3 (Ollivier Coarse Curvature). Let (X , d, µ) be a metric measured space, and assume
that balls in X have finite measure and that suppµ = X . For some ϵ > 0, introduce the rescaled
restriction of the measure to the ϵ-ball around x, mϵ

x = µ|B(x,ϵ)/µ(B(x, ϵ)).
The coarse Ollivier curvature is defined as,

κ(x, y) := 1−
W1(m

ϵ
x,m

ϵ
y)

d(x, y)
,

where W1 is the 1-Wasserstein distance or Monge-Kantorovich L1-cost(see in the appendix).
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One can note that, unlike Ricci curvature, the coarse Ollivier curvature is not defined at a point,
but rather between two points. In [Oll09], Y. Ollivier establishes the coarse curvature counterpart
theorems to the Bonnet-Meyer, Moser and Boltzman entropy theorems of Riemannian geometry,
thus, showing that the coarse definition captures, similarly as in the Riemannian case, a variety of
information about the intrinsic properties of metric-measured spaces.

Remark. If we consider a Riemannian manifold with its natural volume measure, we have for δ

small enough, that, κ(x,Expxδv) =
ϵ2Ricx(v,v)
2(N+2)

+ o(ϵ3 + ϵ2δ), where v ∈ TxM is unit tangent vector,

Ricx(v, v) is the Ricci curvature at x in the direction v, N is the dimension of the manifold and
Expx(δv) is the point at distance δ of x, along the geodesic issuing from v.

We can explicit the Ollivier curvature, in the case of a finite graph (G = (V,E,w), dG, η)
equipped with the weighted shortest path metric, and the uniform volume measure on the nodes
ν ∈ P(V ), η = 1

#V

∑
x∈V δx, the coarse curvature between two connected nodes x and y is given

by,
κG(x, y) = 1−W 1

G(η
ϵ
x, η

ϵ
y)/dG(x, y).

In figure (1), we give three examples of local Ollivier curvature on the horizontal center edge.

Figure 1: Coarse Ollivier curvature of the center horizontal edge of three caricature graphs, with ε = 1.

We emphasize that this is an intrinsic local geometrical quantity, that can be defined on any
graph with no structure restriction. In recent studies, Ollivier curvature has been used statistically
to measure intrinsic properties of real-life networks; for example in [SGT16], the average Ollivier
curvature of the covariance matrix(identified as a function of agency matrix of a graph) of the stocks
of the SnP500 shows to be an economic indicator that is negatively correlated with an hoarding
phenomenon during crisis; as emphasized in the paper the average coarse Ollivier curvature proved
to be as effective as the graph entropy, but not like the former it is a local property of the graph,
and measures locally the robustness of the network. One could find other applications in [TSZ+15]
to discriminate cancerous cells, or in [GA21] to identify clusters.

Now, coming back to geometric graphs, the structure of the base space can be lifted and
allows for the conservation of more goemetrical information than the one-to-one interaction in
graphons theory; M. Arnaudon, X. Li, B. Petko, proved in [ALP23] a convergence result of the
rescaled Ollivier curvature in the case of geometric graphs. This result shows that, in the limit,
the rescaled Ollivier curvature of a random geometric graph, drawn from µ, at an ideal point x,
will converge to the weighted Ricci curvature,

Ricµij = Ricgij − Hess(ln(µ))ij

We could thus incorporate in models the limiting curvature of an ideal node, as evoked previously
this is similar to a sparse graph limit. Since the curvature is a (0, 2)−tensor, we could consider
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the scalar curvature as a reward function instead, that is the contracted version with the covariant
metric, this would give,

Rµ := gijRicµij = Rg −∆gln(µ),

where Rg is the ambient scalar curvature of the base space manifold.

2.3 Dynamic mean-field geometric graphs

In numerous applications, the structure of interaction evolves over time, in the context of
geometric graphs it is rather natural to define a trajectory in the space of graphs since trajectories
of the nodes in the base space induce through the connection rule an evolution. We define stochastic
geometric graphs as follows. Given a filtered probability space, (Ω,Ft,P), and a collection of
stochastic processes {(Xn

t )t∈[0,T ]}n∈I taking values in X , we can construct a stochastic geometric
graph on (X , d), by specifying a connecting rule k, and setting Vt = {Xn

t }n∈I .
In order to define dynamical systems, we need a differential structure on the base space, thus

to pursue the analysis further we restrict the metric structure to Riemannian manifolds. This still
allows for a variety of geometries while enabling the use of (close-to-)classical tools of stochastic
analysis, control theory, and partial differential equations. Even if we consider the base space
geometry as a model specification, it is possible to restrict the study to Euclidean-geometrical
graphs further, that is, to fix Rd as the base space. However, we believe that the prism of differential
geometry brings a well-suited specific treatment to the parametrization of the considered graphs.

In order to study general situations, we want to allow the dynamics of the nodes to have a
stochastic part. This naturally leads to the analysis of stochastic differential equations of Rieman-
nian manifolds, which requires non trivial adaptation of the classical stochastic analysis theory. It
could be possible to only consider the partial differential equation associated with such stochastic
differential equations. However we decided to present shortly the notion of rolling without sleeping
solution introduced by Eels and Elworthy [EE76], since it is of great interest to study mean-field
games on Riemannian manifolds from a probabilistic point of view, or simply to state the control
problem of the players. This section is not required for the rest of the paper. Let (M, g) be a
d-dimensional Riemannian manifold, we want to define a stochastic process on M , associated with
the equivalent of a drifted Brownian motion, that is associated with the second order operator
B ·∇g+∆g, where ∆g and ∇g are respectively the Laplace-Beltrami and gradient operator. Given

f ∈ C2(M), in charts it writes B · ∇f + ∆gf
·
= bi∂if + gij∂ijf − gijΓk

ij∂kf , where b
i and Γk

ij are
respectively the coefficients of the vector field B and the Christoffel symbol, using, as in the rest
of the paper, the Einstein summation convention.

Formally, we want to push a process with white noise on a manifold, and define stochastic
characteristics associated with the previous second-order operator. We need to specify how to
map the noise onto the tangent space, a priori there is no canonical way to define this notion, we
recommend the article of Elworthy [Elw98], which specifically addresses this conceptual difficulty.
For the notion of rolling without sleeping solutions, we need the following results from differential
geometry,

Definition 2.4. Let OM denote the set of all orthonormal basis of the tangent space at each
point of M ,

OM = {(x,E1, · · · , Ed)|x ∈M, (E1, · · · , Ed) is an orthonormal basis of TxM},

and denote by π : OM −→ M , the natural projection. Then, there exists a manifold structure on
OM , that makes (OM,π) a principal bundle over M , called the orthonormal frame bundle. An
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element u ∈ OM , is identifiable as an isometry u : Rd −→ Tπ(u)M , for an element λ ∈ Rd, we will

note uλ =
∑d

i=1Eiλ
i ∈ Tπ(u)M .

Definition 2.5 (Horizontal Lift). A smooth curve (ut) taking values in OM , is said to be horizontal
if for each e ∈ Rd the vector field (ute) is parallel along the M -valued curve (π(ut)). A tangent
vector Y ∈ TuOM is said to be horizontal if it is the tangent vector of a horizontal curve at u.
The space of horizontal vectors at u is denoted by HuOM ; we have the decomposition

TuOM = VuOM ⊕HuOM,

where VuOM is the subspace of vertical vectors, that are tangent to the fibre TuOM . It follows
that the canonical projection π, induces an isomorphism πh : HuOM −→ Tπ(u)M , and for each
B ∈ TxM and a frame u at x, there is a unique horizontal vector Bh, the horizontal lift of B to u,
such that πh(B

h) = B. Thus if B is a vector field on M , then Bh is a vector field on OM .
In coordinates {xi, ζjk}, the lifted vector field writes,

Bh=̇bi(x)
∂

∂xi
− Γk

ij(x)b
i(x)ζjm

∂

∂ζkm
.

Given ((Ω,F ,P),W·) a filtered probability space with the usual hypothesis, equipped with
a d-dimensional Brownian motion. Let {ei} be the coordinate unit vectors of Rd, and B ∈
C([0, T ], Cb(T

1M)) a regular vector field on M . For u ∈ OM , define Bh(t, u) = (B(t, π(u)))h,
and introduce Hi : OM −→ TM defined as H(u) = uei, we can consider processes (U·) taking
values in OM solutions of the differential equation,

dUt =
d∑

i=1

Hi(Ut) ◦ dW i
t +Bh(t, Ut)dt on TUtOM,

where ◦ indicates Stratonovich integral. In [Rak24], the second author gives an existence and
uniqueness result for possibly stochastic drift and a regular diffusion coefficient on Riemanian
manifolds of bounded geometry.

One can note that, since any element of OM can be identified as a point x in M and an
associated orthonormal basis of TxM , equation (2.3) describes a moving frame along a process
Xt = π(Ut) taking values in M , itself solution of :

dXt =
d∑

i=1

(Utei) ◦ dW i
t +B(t,Xt)dt on TXtM. (2)

The fact that the equation on X is not autonomous but involves U , translates the need to keep
track of how the noise should push the process U on the manifold, that is how the noise pushes
the orientation of TUM .

Remark. We need Stratonovich integral to give a chart-independent definition of a solution. Indeed,
without the chain rule given by Stratonovich integral, we would get a second-order term when
changing chart, corresponding to Ito’s corrective term, that wouldn’t correspond to the change of
coordinate of a tensor field, and thus the process wouldn’t be a solution of the same equation by
change of coordinate.
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The Fokker-Planck equation is obtained, similarly as in the Euclidian case, by applying Ito’s
formula to a test function φ ∈ C1,2([0, T ]×M), i.e

E[φ(t,Xt)− φ(s,Xs)] = E
[ ∫ t

s

(∂tφ+B · ∇gφ+
1

2
∆gφ)(v,Xv)dv

]
.

Supposing that the process (X·) has regular a density µ ∈ C1,2([0, T ]×M),∫
M

φ(t)µt −
∫
M

φ(s)µs =

∫ t

s

∫
M

(∂tφ+B · ∇gφ− 1

2
∆gφ)µvdv,

where the integral is with respect to dvolM the manifold volume associated to the metric g.
Integrating by part in t and x, we get,

0 =

∫ t

s

∫
M

(∂tµv + divg(Bµv)−
1

2
∆gµv)φdv.

This naturally gives the Fokker-Planck equation satisfied by the law of the solution of the
stochastic differential equation,

∂tµ+ divg(Bµ)−
1

2
∆gµ = 0. (3)

Hence, if the dynamics of the nodes are given by (2), then the graph evolves according to (3).

2.4 Deriving the mean field game system

We will now derive the associated mean field game system, which models the strategic equilib-
rium in a MFG in which players control their interaction with the graph.

To introduce controlled systems in differential geometry, we need the concept of vector bun-
dles(definition in the appendix). Formally, a vector bundle is a varying family of vector spaces on
M . For example, this concept addresses the fact that in the case of the vector space of infinitesimal
movements at some point, referred to as the tangent space at that point, does not coincide with
the tangent space at another point. A section of the tangent space is a vector field on M . For
instance, on the embedded 2-sphere in R3, a section of the tangent space is a continuously varying
family of vectors over the sphere, where each vector associated to a point of the sphere is in the
tangent plane of the sphere at that point.

Let E be a vector bundle on M , and C(E) the space of global continuous sections of E. A
instantaneous control will take value in C(E), for example :

1. E =M × Rk trivial bundle.

2. E = TM , the tangent bundle, defined as the union of all the tangent spaces at each point
TM := ∪x∈MTxM , allows to control the speed(see Lagrangian mechanics on Manifolds in
[Fat08]).

The set of admissible controls is defined as,

Ut = {α : [t, T ) −→ C(E), α is F−adapted}.

We now can introduce strategic graphs within the framework of mean field games and geomet-
rical graphs. Suppose that some agent faces, over a time horizon [0, T ], a ’mean field geometrical
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graph’ on some manifolds, represented as a probability flow (µt)t∈[0,T ] in C([0, T ],P(M)). The
agent controls the position of a node; and is rewarded for its contribution in the geometrical
structure. Given a running and a terminal cost functionnal L : [0, T ) × P(M) × E −→ R and
G : P(M)×M −→ R, we can represent the optimal control problem encountered by the agent as,{

V (t, x) = inf
ν∈Ut

E
[ ∫ T

t
L(s, µs, Xs, νs)ds+G(XT , µT )|Xt = x],

dXt =
∑d

i=1(Utei) ◦ dW i
t +B(t,Xt, νt)dt on TXtM,

(4)

where B : [0, T ] ×M × C(E) −→ TM is the controlled drift. V is called the value function of the
control problem, assuming it is regular, from a dynamic programming principle and Ito’s formula,
similarly as in the classical case we obtain the following Hamilton-Jacobi-Bellman equation that
be satisfied by V , {

∂tV +∆gV +H(t, x,∇gV, µt) = 0 on [0, T )×M

V (T, ·) ≡ G(µT ),

where H : [0, T ]× TM × P(M) −→ R is the associated Hamitonian defined as,

H(t, x, p,m) = inf
α∈Ex

{B(t, x, α) · p+ F (t, x,m, α)}.

If we suppose further that the Hamiltonian is regular and the value function is smooth, the
optimal closed loop drift is given by −DpH(t,X∗

t ,∇gV (t,X∗
t ), µt), with DpH : [0, T ] × TM ×

P(M) −→ TM , being the derivative with respect to the thrird argument.
In mean field games, the Nash equilibrium, is represented as a probability flow (µt)t, character-

ized as a fixed point as, µt = L(X∗
t ), where (X∗

· ) is the optimal controlled process of problem (4),
with the probability flow (µt)t. This leads to the following partial differential equation system,

−∂tv − 1
2
∆gv +H(t, x,∇gv, µt) = 0, on [0, T )×M

∂tµ− divg(DpH(t, x,∇gv, µ)µ)−∆gµ = 0, on [0, T )×M

µt=0 ≡ m0, v(T, ·) ≡ G(µT ),

(5)

The first equation corresponds to the Hamilton-Jacobi-Bellman equation, associated with the
value function of the game V . The second equation, the Fokker-Planck equation, describes the
evolution of the density of nodes. The boundary conditions correspond to the initial distribution
of players and the terminal cost. Some models lead to separated Hamiltonians, and thus to the
following system,

−∂tv − 1
2
∆gv +H(t, x,∇gv) = F (t, x, µt), on [0, T )×M

∂tµ− divg(DpH(t, x,∇gv)µ)−∆gµ = 0, on [0, T )×M

µt=0 ≡ m0, v(T, ·) ≡ G(µT ),

(MFGsys)

where F is the running cost function. Similarly as in the classical case, we can apply Lasry
and Lions [LL07] monotonicity hypothesis to prove the uniqueness of this system.

Definition 2.6. (Monotone) F :M × P(M) −→ R, is said to be monotone if,∫
M

(F (x, µ)− F (x, ν))(µ(dx)− ν(dx)) ≥ 0,∀µ, ν ∈ P(M)
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Furthermore, F is said to be strictly monotone if,∫
M

(F (x, µ)− F (x, ν))(µ(dx)− ν(dx)) > 0,∀µ, ν ∈ P(M), µ ̸= ν.

Theorem 2.7. Suppose that G is monotone, F strictly monotone and that H is convex in the p
variable, then the solution to MFGsys is unique.

Proof. Let (ui,mi), i = 1, 2 be two solutions, denote by m̄ = m1 −m2 and ū = u1 − u2, then using
the Fokker-Planck equation with ū as a test function, we get,∫ T

0

∫
M

(m̄(∂tū+∆ū) +∇ū · (DpH(∇u1)m1 −DpH(∇u2)m2))dxdt

=

∫
M

(G(m1
T )−G(m2

T ))m̄T (dx)︸ ︷︷ ︸
≥0

−
∫
M

ū(0)m̄0(dx)︸ ︷︷ ︸
=0

≥ 0.

Now using the Hamilton-Jacobi-Bellman equation, one gets,

−
∫ T

0

∫
M

((F (m1
t )− F (m2

t ))m̄t(dx)dt ≥−
∫ T

0

∫
M

m̄(H(∇u1)−H(∇u2))dxdt

+

∫ T

0

∫
M

∇ū · (DpH(∇u1)m1 −DpH(∇u2)m2))dxdt

Noting that from the convexity of H,

H(t, x, q)−H(t, x, p) ≤ DpH(t, x, q) · (q − p), ∀t ∈ [0, T ],∀x ∈M,∀p, q ∈ TxM.

This implies that the right and side of the last inequality is positive, so that∫ T

0

∫
M

((F (m1
t )− F (m2

t ))m̄t(dx)dt ≤ 0.

From the strict monotonicity of F for any t this implies that m1 = m2.

2.5 Curvature mean field game

Inspired by the asymptotic Ollivier curvature, we propose the following mean field toy model.
Let (M, g) be a compact manifold, fix some r > 0, and consider the stationary mean field game of
the form, {

0 = div(∇vm) + ∆gm, on M

0 = −rv − 1
2
|∇v|2g +∆gv +Rm, on M.

Recalling that Rm is defined as gijRicmij = Rg−∆gln(m). This system can be interpreted as the
equilibrium of an infinite horizon stochastic linear quadratic Mean Field Game, wherein the cost
function corresponds to the local average Ollivier curvature of the limit of a large graph formed
by the aggregated strategies of the agents. Each agent controls its speed and minimizes a kinetic
energy term plus its average curvature. In this model, the agents desire to minimize the curvature
since, in discrete settings, a negative curvature implies a dependency of the agent’s neighbors on

11



the agent for connecting with the rest of the graph (For example, a tree-like graph, similar to a
hierarchical structure, exhibits negative curvature).

Since M is compact, e−vdvolM = m is a finite-mass measure solution of the first equation, so
up to a renormalisation it is a probability solution to the equation. The second equation becomes,

−rv − 1

2
|∇v|2g +∆gv +Rg + 2∆gv︸ ︷︷ ︸

Rµ

= −rv − 1

2
|∇v|2g + 3∆gv +Rg = 0.

Thus, the system reduces to a quasi-linear elliptic equation.{
m = e−vdvolM

1∫
e−vdvolM

,

−rv − 1
2
|∇v|2g + 3∆gv +Rg = 0.

If the scalar curvature is constant, then the solution is explicitly given by v ≡ 1
r
Rg and m

is the uniform measure on the manifold, there is no preferred position. In the general case, the
mean-field curvature Rm tends to be an averaged version of the scalar curvature of the base
space. Near equilibrium, the nodes are attracted towards minima of the scalar curvature, causing
a concentration of the measure in that area and thus increasing the local scalar curvature, turning
the neighborhood into a less desirable target.

The main motivation is to give meaning to dynamic graphs and controlled geometries. This
example hints that geometric graphs provide a simple framework that allows for computations,
while still preserving some geometric information at the limit. We believe that this represents a
first step in the modeling process and that geometric graphs offer a wide range of tools to introduce
complexity into future models.

2.6 The case of hyperbolic geometry

The hyperbolic space proves to be an adequate base space to reproduce real-life network prop-
erties, from the seminal work of [KPK+10] there has been an ongoing literature on hyperbolic
graph models, one can consult [ACL01, GPBAS16, AOK15]. From a modelization point of view,
it comes with the benefits of having models with global charts, the study can thus be reduced
to classical forward-backward systems in domains of Rn with coefficients issuing from the met-
ric tensor in the global chart. We propose to expand the equations in the Poincaré disk model:
(BRn(0, 1),

4δij
(1−∥x∥2)2 ).

The domain of the chart is the unit ball of Rn, and it has a conformal metric defined as,

gij(x) = 4δij/(1− ∥x∥2)2,

where δij is the Kronecker delta symbol. Here ∇,∆, div, ⟨·, ·⟩, ∥ · ∥ respectively correspond to the
gradient, the Laplacian, divergence, scalar product and norm of Rn. By definition, the Laplace-
Beltrami operator writes,

∆gu =
1√
G
∂i(

√
Ggij∂ju) =

1

4
(1− ∥x∥2)n

n∑
i=0

∂i((1− ∥x∥2)2−n∂iu),

developing one gets,

∆gu =
(n− 2)(1− ∥x∥2)

2
⟨x,∇u⟩+ (1− ∥x∥2)2

4
∆u.
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The norm of the gradient writes,

∥∇gu∥2g = ∂iug
ij∂ju =

1

4
(1− ∥x∥2)2

∑
(∂iu)

2 =
1

4
(1− ∥x∥2)2∥∇u∥2.

So that mean field game system with quadratic Hamiltonian on the n-dimensional hyperbolic
space writes as,{

−∂tu− (n−2)(1−∥x∥2)
4 ⟨x,∇u⟩ − (1−∥x∥2)2

8 ∆u+ (1−∥x∥2)2
8 ∥∇u∥2 = F (mt, x) on [0, T ]×BRn(0, 1)

∂tm− (n−2)(1−∥x∥2)
4 ⟨x,∇m⟩ − (1−∥x∥2)2

8 ∆m+ 1
4(1− ∥x∥2)2div(∇um) + (n−2)

2 (1− ∥x∥2)⟨x,∇u⟩m = 0

One can check that the operator of the Hamilton-Jacobi-Bellman equation satisfies an invari-
ance domain condition[CDPF10], however, the operator of the Fokker Planck equation is not the
adjoint of the linearised with respect to the Lebesgue measure, it is true w.r.t to the volume mea-
sure of the manifold dvol = 2dx/(1 − ∥x∥2)n. One should note that in this case, we could study
the system following the work of [PR20], since the metric gives an invariance condition for the
domain, with the difference that the Fokker-Planck equation is satisfied w.r.t the volume measure
induced by g, and not the Lebesgue measure.

3 A case study: mean field games systems on Riemannian

manifolds of bounded geometry with quadratic Hamil-

tonian

In this section, we prove existence in the case of a quadratic Hamiltonian on (possibly) non-
compact class of Riemannian manifold. We restrict the model system (MFGsys) so that each player
controls its speed, with E = TM . We consider the separated cost of the form: F (t, µ, x, α) :=
F̃ (µ, x) + 1

2
∥α∥2g. Thus, for (x, p) ∈ TM , that is x ∈ M, p ∈ TxM , the associated Hamiltonian is

of the form,

H(x, p, µ) = inf
α∈TxM

{
⟨α, p⟩g(x) +

1

2
∥α∥2g(x)

}
+ F̃ (µ, x),

using a local chart and writing,

inf
α∈Rd

{
αigijp

j +
1

2
αigijα

j
}
+ F̃ (µ, x),

one concludes that, the infimum is −1
2
pigij(x)p

j + F̃ (µ, x), thus,

H(x, p, µ) = −1

2
∥p∥2g + F̃ (µ, x),

with the optimal α given by DpH(x, p, µ) = −p. Finally, we obtain the following system,
−∂tv −∆gv +

1
2
|∇v|2g = F (mt), on [0, T ]×M

∂tm− divg(∇vm)−∆gm = 0, on [0, T ]×M

mt=0 = m0, v(T, ·) = G(mT ).

(QuadSys)
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3.1 Riemannian Manifolds of bounded geometry

In order to study the system we need to introduce the hypotheses on the geometry of the
manifold.

Definition 3.1. Let i :M → R+ be the injectivity radius function, that is i(x) is the largest radius
for which the exponential map expx is a diffeomorphism. Note i(M) = inf

m∈M
i(x). A manifold is

said to have a positive injectivity radius if i(M) > 0.

Definition 3.2 (Manifold of bounded Geometry). A Riemannian manifold (M, g) equipped with
its Levi-Civita connection is said to be of bounded geometry if, it is a complete metric space, it
has positive injectivity radius, and if all covariant derivatives of the Riemann curvature tensor are
bounded,

∥|∇kR|g∥∞ ≤ C(k), ∀k ∈ N0.

In the following, we will use Herbert Amann [Ama16] result of maximal regularity for parabolic
equations on uniformly regular manifold. A notable result proven by M. Disconzi, Y. Shao, and G.
Simonett in [DSS14], is the equivalence between the geometrical definition of manifold of bounded
geometry and the notion of uniformly regular manifold. A few examples of Manifolds of bounded
geometry, are any Euclidean space, any isometric images of uniformly regular Riemannian mani-
folds, any compact Manifold, the d-dimensional hyperbolic space or the d-dimensional sphere.

3.2 Parabolic equations on Riemannian manifolds

We now state a maximal regularity result for linear parabolic equations on manifolds due to
Herbert Amann [Ama17, Theorem 1.23], needed for the analysis. To this end, we define the
following function spaces. For σ, τ ∈ N, let V = T σ

τ M be a tensor bundle on M. For k ∈ N, we
denote by Ck(V ) the space of k-derivable sections of V , and Ck

b (V ) the subspace of bounded section
with bounded derivatives, it is a Banach space with the norm ∥ · ∥k,∞, defined for u ∈ Ck

b (V ) as,

∥u∥k,∞ := max
0≤i≤k

∥|∇iu|g∥∞

where | · |g denotes the complete contraction induced by the metric g. Now, let α ∈ (0, 1), we
define the (k + α)-little Holder space as,

Ck+α
b (V ) := (Ck

b (V ), Ck+1(V ))0α,∞,

where (·, ·)0α,∞ is the continuous interpolation method [Ama17, Ama13]. Now we introduce the
parabolic anisotropic function spaces [Ama12], for T ∈ R, let J = [0, T ],

C
((k+α)/2,k+α)
b (J × V ) = BUC(J,Ck+α

b (V )) ∩ C(k+α)/2(J,Cb(V )),

where BUC is the space of bounded uniformly continuous functions.
We have the following equivalence,

u ∈ C
((k+α)/2+1,k+α+2)
b (J × V ) iff

∇ju ∈ C
((k+α)/2,k+α)
b (J × V σ

τ+j) for 0 ≤ j ≤ 2 and ∂tu ∈ C
((k+α)/2,k+α)
b (J × V )

14



Proposition 3.3. Let (M, g) be a manifold of bounded geometry, J = [0, T ], k ∈ N and 0 < α < 1.

Take B ∈ C
k+α,(k+α)/2
b (J × TM), a ∈ C

k+α,(k+α)/2
b (J ×M), f ∈ C

k+2+α,(k+2+α)/2
b (J ×M) and φ ∈

Ck+2+α
b (M). Then, there exists a unique solution u belonging to the space C

k+2+α,(k+2+α)/2
b (J×M),

solution of the backward parabolic problem,{
∂tu+B · ∇gu+∆gu = f on (0, T )×M,

ut=T = φ on M,

Furthermore, we have the estimate,

∥u∥
C

k+2+α,(k+2+α)/2
b

≤ C(∥f∥
C

k+2+α,(k+2+α)/2
b

+ ∥φ∥Ck+2+α
b

),

where C depends on geometrical bounds, the norm of the coefficients, and on T only.

Remark. The more general theorem holds true for r−th order operators defined on (σ, τ)−tensors
fields.

3.3 Maximum principle for parabolic equations.

For the upcoming analysis, we require a maximum principle. On a Riemannian manifold, at a
maximal point of some sub-solution to a parabolic equation, one can conclude, using a local chart,
a similar contradiction as in the classical maximum principle. In an unbounded domain, one must
employ an auxiliary function to establish the existence of such a maximizer. In the case of Rd, one
can use x 7→ ϵ

2
|x|2, to obtain a maximizer of u(x)− ϵ

2
|x|2, and conclude a contradiction for any ϵ > 0.

However, on a general Riemannian manifold, the distance function to a reference point squared
might not be twice differentiable everywhere. A simple example is the infinite cylinder: T × R,
where (x, y) ∈ [0, 1]×R 7→ d2((0, 0), (x, y)) is not differentiable along {(1/2, y), y ∈ R}, essentially
the distance function will not be differentiable where there is more than one geodesic connecting
the two points. We give in Proposition 3.5 several conditions on the Riemannian manifold under
which the maximum principle holds.

Definition 3.4. We say that (M, g) satisfies the parabolic maximum principle if, for any bounded
u in C1,2([0, T ]×M), sub-solution of the parabolic equation,

−∂tu−∆gu+ ru ≤ 0 in M̊T ,

with inf
(t,x)∈MT

r(t, x) > 0, and MT = [0, T ]×M . We have,

u(T, ·) ≤ 0 in M =⇒ u ≤ 0 in MT

Proposition 3.5. Each of the following conditions are sufficient for a Riemannian manifold to
satisfy a parabolic comparison principle.

1. If (M, g) is compact.

2. ∀λ > 0,∃ψλ ∈ C2(M), such that limd(x0,x)−→+∞ ψλ(x) = +∞ for some x0 ∈ M , and ψλ is a
super-solution of the elliptic equation,

0 ≤ λψλ −∆gψ
λ in M (Ψ)
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3. If (M, g) is connected and has negative sectional curvature, and the Ricci curvature is bounded
below.

4. If (M, g) is connected and of bounded geometry.

It is noteworthy that the third assumption is closely related to the one used in stochastic theory
on manifolds to prove global existence results, as demonstrated in [Elw82]. Moreover, to prove the
second and fourth points, we will construct such super-elliptic functions on the manifold. For the
proof of this result, we need to use the following two results.

Lemma 3.6 ([Shu92] Lemma 2.1, p.70). Suppose that (M, g) is a connected manifold of bounded
geometry. There exists a function d̃ :M ×M −→ [0,∞) satisfying the following conditions,

1. there exists ϵ > 0 such that:
|d̃(x, y)− d(x, y)| < ϵ.

2. ∀x ∈M , r̃x : y 7→ d̃(x, y) is C∞(M), and its derivatives are uniformly bounded in x, in other
words, for n > 0,

∥∇nr̃x∥∞ ≤ C(n) ∀x ∈M

This result is due to Yu.A. Kordyukov and relies on an appropriate partition on the unity to
regularise the distance function. There exists a proof in English, in [Shu92], where the statement
give a uniform bound in coordinates of |∂αy d̃(x, y)|, to conclude one uses the uniform equivalence
of the euclidean norm in a local chart and the pullback metric. Finally, in order to prove the
maximum principle we recall the following result.

Proposition 3.7 (Comparison Theorem for the Laplacian, [Hsu88] Theorem 3.4.2, p.90). Let
(M, g) be a n-dimensional Riemannian manifold and x0 ∈ M and note r(x) = d(x0, x), suppose
that the sectional curvature is bounded from above by K2

1 and the Ricci curvature is bounded from
below by −(n− 1)K2

2 . Then inside the cut locus of x0,

(n− 1)K1cot(K1r(x)) ≤ ∆gr(x) ≤ (n− 1)K2coth(K2r(x)).

Proof of Proposition 3.5. 1. There exists a maximizer of u thus, it is a straightforward applica-
tion of the maximum principle.

2. Take u a bounded C1,2 sub-solutions of the parabolic equation, satisfying (3.4). Let 0 < λ <
inf

(t,x)∈MT

r(t, x), take ψλ satisfying (Ψ), let δ > 0, and, arguing by contradiction, suppose that:

sup
(t,x)∈MT

u(t, x)− δ(ψ(x) +
1

t
)︸ ︷︷ ︸

:=J(δ,t,x)

> 0

Since, u is bounded, and ψ is coercive, and since they are continuous, we know that there
exists a maximizer (t̄, x̄) ∈MT , since :

lim
t−→0+

J(δ, t, x) = −∞,

and the fact that J(δ, T, x) ≤ 0, ∀δ > 0, ∀x ∈M ensures that (t̄, x̄) ∈ (0, T )×M . Now,
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0 < r(t̄, x̄)
(
u(t̄, x̄)− δ(ψ(x̄) +

1

t̄
)
)

≤ (∂tu+∆gu)(t̄, x̄)− δr(t̄, x̄)(ψ(x̄) +
1

t̄
)

≤ − δ

t̄2
− δr(t̄, x̄)

t̄
+∆gu(t̄, x̄)− δ∆gψ(x̄) + δ(λ− r(t̄, x̄))ψ(x̄)

≤ ∆gu(t̄, x̄)− δ∆gψ(x̄) + δ(λ− r(t̄, x̄))ψ(x̄)

Using the first and second-order optimality condition on the Laplace Beltrami Operator in
any local chart around t̄, x̄, one deduces that :

∆gu(t̄, x̄)− δ∆gψ(x̄) = −gijΓk
ij ∂i(u− δψλ)︸ ︷︷ ︸

=0

+gij∂ij(u− δψλ) ≤ 0.

We can always suppose that ψλ is positive because since it is coercive (infM ψλ) ∈ R and
thus,

ψ̃λ(x) = ψλ(x) + | inf
M
ψλ|,

still satisfies (Ψ) and is positive.

Finally,

δ(λ− r(t̄, x̄))ψ(x̄) ≤ 0,

yields the desired contradiction. We conclude that,

u(T, ·) ≤ 0 ∀x ∈M =⇒ u(t, x) ≤ δ(ψλ(x) +
1

t
) ∀δ > 0, x ∈M, t ∈ (0, T ].

Passing to the limit as δ −→ 0+, yields the maximum principle.

3. If the sectional curvature is everywhere negative, the injectivity radius is +∞ everywhere,
thus ∀x0 ∈ M , x 7→ d2(x0, x) is C∞(M) and x 7→ d(x0, x) is C∞(M\{x0}). Define the
following auxiliary function ϕ ∈ C2

b (R+,R+) as,

ϕ(r) =

{
− r4

8
+ 3r2

4
(0, 1),

r − 3
8

[1,+∞).

Take an arbitrary x0 ∈M , note r(x) = d(x0, x), and define ψ(x) = ϕ(r(x)), then ψ ∈ C2(M),
and:

∆gψ(x) = ∆gr(x)ϕ
′(x) + |∇r(x)|2ϕ′′(r(x)),

using Theorem 3.7, we obtain:

−∆gψ ≥ −(n− 1)Kϕ′(r(x))coth(Kr(x)) + |∇r(x)|2ϕ′′(r(x))

≥ −CK .
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Thus, for any λ > 0,

ψλ(x) = ψ(x) +
CK

λ
,

satisfies (Ψ), we can conclude using 2.

4. Fix some x∗ ∈ M , and let d̃ be the regularised distance function of Lemma 3.6, let ψ : x 7→
d̃(x∗, x). For any λ > 0, define ψλ(x) = ψ(x) + dC

λ
, where C is the constant in the previous

lemma for n = 2. Now note that ψλ is positive, and coercive, in the sense of the third point.
Finally, since

∥∆gψ
λ∥∞ ≤ d∥|∇2ψλ|g∥∞ ≤ dC.

One can check that it is indeed a super solution of the desired elliptic equation. By applying
the second point, we obtain the comparison principle.

3.4 Weak flow solutions to the Fokker-Planck equation.

We now introduce the concepts needed to define the notion of solution considered for the
Fokker-Planck equation.

Definition 3.8 (Wasserstein Spaces). Let (M,d) be a complete separable metric space, note B its
borelians. Define,

Pp(M) = {µ ∈ P(M),∃x0 ∈M,

∫
M

dp(x0, x)µ(dx) < +∞},

the set of p-integrable probabilities on (M,B), and define Wp as the p-Wasserstein distance on
Pp(M) as,

Wp(ν, µ)
p = inf

π∈Π(µ,ν)

∫
M×M

dp(x, y)π(dx, dy).

Then, (Pp(M),Wp) is a complete metric space (see appendix for more details).

Definition 3.9. A probability flow solution associated to B ∈ L∞([0, T ], C1
b (T

1M)), is a probability
flow m ∈ C([0, T ],P(M)), such that for any test function φ ∈ C1,2

b ([0, T ]×M) and for all t ∈ [0, T ],∫
M

φ(t, x)mt(dx)−
∫
M

φ(0, x)m0(dx) =

∫ t

0

∫
M

(∂tφ+B · ∇gφ+
1

2
∆gφ)dmsds.

We now prove existence and uniqueness of such solution.

Theorem 3.10. Let (M, g) be a connected manifold of bounded geometry, suppose that the drift
is in L∞([0, T ], C1

b (T1M)), and that m0 ∈ P2(M).
Then, there exists a weak solution in C([0, T ],P1(M)), with Hölder estimate,

W1(ms,mt) ≤ C
√
t− s,

and it is bounded in P2(M), i.e there exists x0 ∈M such that,

sup
t∈[0,T ]

∫
M

d2(x0, x)mt(dx) < C,
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with C depending on the geometry of M , ∥|B|g∥∞, and
∫
M
d2(x0, x)m0(dx).

Furthermore, if the drift is in C
(α,α/2)
b ([0, T ] × TM) for some 0 < α < 1, then the solution is

unique.

Proof. According to Lemma B.22 in the appendix, we can always construct a probability space to
apply Theorem 2.5 in [Rak24] with A = IdTM and yield existence of a process (X·), projection
on M of a moving frame solution (U·) taking values on the orthonormal frame bundle. Such that
using Proposition 1.7 of [Rak24], for any φ ∈ C1,2

b ([0, T ]×M),

φ(t,Xt)− φ(0, X0) =

∫ t

0

(∂tφ+B · ∇gφ+
1

2
∆gφ)(u,Xu)du+Mt,

where Mt is a martingale starting at zero. This gives,

E[φ(t,Xt)]− E[φ(0, X0)] = E[
∫ t

0

(∂tφ+B · ∇gφ+
1

2
∆gφ)(u,Xu)du]

Thus considering mt = L(Xt), that is the law of the continuous process, we obtain m ∈
C([0, T ],P(M)) is a weak flow solution. Finally, using the estimate of Theorem 2.10 of [Rak24],
one easily verifies the Hölder and moment estimate.

Uniqueness is left to prove. Let t ∈ [0, T ] and take a test function φ ∈ C
(2+α)
b (M). Since

the drift is in the space C
(α,α/2)
b ([0, T ] × TM), from Proposition 3.3, there exists a solution ψ ∈

C
(α+2,α/2+1)
b (M × J) of : {

∂tψ +B · ∇gψ +∆gψ = 0 M × [0, t),

ψ(t, ·) = φ.

Take m1 and m2 two weak solutions, starting from the same probability measure m0, we have :

∫
M

ψ(t, x)m1
t (dx) =

∫
M

ψ(0, x)dm1
0(dx)+

∫ t

0

∫
M

(∂tψ+B∇gψ+∆gψ)dm
1
sds =

∫
M

ψ(0, x)dm1
0(dx)

Since ψ is a solution to a parabolic equation. We have the same equation with m2, and since
m1

0 = m2
0, we can conclude that,

∫
M
ψ(t, x)m1

t (dx) =
∫
M
ψ(t, x)m2

t (dx), and by construction of ψ,∫
M

φdm1
t =

∫
M

φdm2
t , (6)

for any φ ∈ C2+α
b (M). We now prove why this implies that m1 = m2. Note that this would be

immediate in Rd, but since we could not find a proper reference for this specific case we give the
following details.

Define C as, C = {O open,∃x ∈M s.t O ⊂ B(x, ϵ/3)}. It is straightforward to prove that it is a
π-system. For any O ∈ C, take any x ∈M such that O ⊂ B(x, ϵ/3), and take a normal coordinate
system at x up to ϵ, it exists since we supposed that ϵ < i(M), and introduce the regularised
sequence of function,

φn = (1{·∈ϕ(O)} ∗ fn) ◦ ϕ−1,

where fn is a sequence of mollifier in Rd with support in BRd(0, ϵ/2), so that suppφn ⊂⊂ B(x, ϵ),
φn can be extended in a C∞-manner to M by setting it 0 outside of B(x, ϵ). We also have that
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supn ∥φn∥∞ ≤ 1, the simple convergence φn(x) −−−−→
n−→∞

1x∈O, and φ
n ∈ C∞

b (M). So that, we can

use (6) for any n, and pass to the limit using dominated convergence theorem, and conclude that,
m1

t (O) = m2
t (O) for any O in the π-system C and any t ∈ [0, T ]. From Dynkin’s π−λ-theorem, we

obtain that m1
t and m

2
t agree on the σ-algebra generated by C. It rests to show, that this σ-algebra

contains any open set. Let {Oα}α∈N be a countable topological basis of (M, g), we can assume that
for any α ∈ N, that the closure of Oα is compact, thus for any α there exists a finite collection
x1, · · · , xnα ∈M , so that {B(xi, ϵ/2)}nα

i=1 covers Oα, and define {V α,i}nα
i=1 as,

V α,1 = Oα ∩B(x1, ϵ/2), V α,k = (Oα ∩B(xk, ϵ/2))
/
(
k−1⋃
i=1

V α,i).

So that, {V α,i} is still a countable basis and V α,i ∈ C. This implies that, σ(C) coincide with the
Borel σ-algebra. And thus, that m1

t = m2
t .

Lemma 3.11. (Compactness of Probability flow) Suppose (M, g) is a complete metric space,

K(C1) = {µ ∈ C([0, T ],P1(M)),W1(µs, µt) ≤ C1

√
t− s,∃x0 ∈M,

∫
M

d2(x0, y)dµt(y) < C1}

is convex and compact in (C([0, T ],P1(M)),D(µ, ν) := sups∈[0,T ] W1(µs, νs))

Proof. The result follows from Arzela-Ascoli Theorem and the compactness criterion Lemma B.21
of the appendix.

3.5 Analysis of second order mean field games with quadratic Hamil-
tonian.

We now can formulate and prove the main theorem of this section.

Theorem 3.12. Let M be a connected manifold of bounded geometry, and suppose that,

Assumption HMFG. m0 ∈ P2(M),∃α ∈ (0, 1),∃C0 > 0, such that ∀µ, ν ∈ P1(M) :

G : P1(M) −→ C2+α(M), ∥G(µ)∥C2+α < C0, ∥G(µ)−G(ν)∥C2+α ≤ C0W1(µ, ν),

F : P1(M) −→ Cα
b (M), ∥F (µ)∥Cα < C0, ∥F (µ)− F (ν)∥Cα ≤ C0W1(µ, ν).

Then, the system (QuadSys) admits a solution (v,m), where v ∈ C
(1+α/2,2+α)
b (J ×M) solution

in the classical sense of the Hamilton-Jacobi-Bellman equation, and m ∈ C([0, T ],P1(M)) is a
weak flow solution of the Fokker-Planck equation.

Proof. We find a fixed point using Schauder’s fixed point theorem. Let (mt)t ∈ K be a probability
flow, (K defined as in Lemma 3.11), and consider the following equation :{

−∂tu−∆gu+
1
2
|∇u|2g = F (mt)

u(T, ·) = G(mT )
(HJB)

Introduce the following Cole-Hopf transformation w = e−u/2 and observe that, since :

∆gw =
1

2
w(−∆gu+

1

2
|∇u|2g),
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then w solves the following linear backward parabolic equation :{
∂tw +∆gw − 1

2
F (mt)w = 0

w(T, ·) = e−G(mT ,·)/2

The fact that (mt)t ∈ K ensures that:

a0 := ((x, t) 7→ F (mt, x)),

is in the space Cα/2,α(M × J), thus Theorem 3.3 gives existence and uniqueness of a classical

solution of 3.5, in C
(1+α/2,2+α)
b (J ×M), and thus of the Hamilton-Jacobi-Bellman equation.

We can apply the maximum principle to w̃ = we
1
2
C0t, since it is bounded by the estimate in

Proposition 3.3, and it is a solution of :

−∂tw̃ −∆gw̃ +
1

2
(a0 + C0)w̃ = 0,

with r = 1
2
(a0 + C0) > 0, with the sub-solution (t, x) 7→ e−

1
2
C0(T−2t+1)and the super-solution

(t, x) 7→ e
1
2
C0(T−t+1), one can deduce that :

e−
1
2
C0(T−t+1) ≤ w(t, x) ≤ e

1
2
C0(T−t+1)

and thus,

sup
(t,x)∈MT

|u(t, x)| ≤ C0(T + 1)

We now want a uniform estimate on the gradient. By a density argument [Ama17], suppose that
a0 : t, x 7→ F (mt, x) is in C

(1+α)/2,1+α([0, T ]×M), and that the terminal condition is in C3+α(M),
so that we can differentiate at the third order, according to Proposition 3.3, the solution w of the
linear parabolic equation. From Bochner’s formula, applied to w, one gets,

1

2
∆g|∇w|2g = ⟨∇∆gw,∇w⟩g + |∇2w|2g +Ric(∇w,∇w).

Using the fact that w is a solution of a parabolic equation,

0 = ⟨∇(−∂tw +
a0
2
w),∇w⟩ − 1

2
∆|∇w|2 + |∇2w|2 +Ric(∇w,∇w)

0 = −1

2
∂t|∇w|2 +

a0
2
|∇w|2 + 1

2
w⟨∇a,∇w⟩ − 1

2
∆|∇w|2 + |∇2w|2 +Ric(∇w,∇w)

Since M is of bounded geometry, its Ricci curvature is uniformly bounded below on M,

−K2|∇w|2 ≤ Ric(∇w,∇w)

Using Bernstein’s method with the auxiliary function ϕ = 1
2
|∇w|2eλt, with λ to we be specified

later, we note that,

−∂tϕ−∆gϕ+ λϕ = −eλt
(a0
2
|∇w|2 + 1

2
w⟨∇a,∇w⟩+ |∇2w|2g +Ric(∇w,∇w)

)
≤ −a0ϕ+ eλt(

1

2
∥w∥∞∥|∇a|g∥∞|∇w|g +K2|∇w|2g)

≤ (∥a0∥∞ + 2K2)ϕ+
1

2
eλt∥w∥∞∥|∇a|g∥∞(1 + |∇w|2g)
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We obtain,

−∂tϕ−∆gϕ+ (λ− ∥a0∥∞ − 2K2 − ∥w∥∞∥|∇a|g∥∞)︸ ︷︷ ︸
:=r

ϕ ≤ 1

2
eλt∥w∥∞∥|∇a|g∥∞.

Fixing λ > ∥a0∥∞ − 2K2 − ∥w∥∞∥|∇a|g∥∞, so that r > 0, we can verify that,

φ = ϕ− 1

2r

1

2
eλT∥w∥∞∥|∇a|g∥∞,

is a sub-solution to the parabolic equation,

−∂tφ−∆gφ+ rφ ≤ 0.

Subtracting 1
2
∥|∇G|2g∥∞eC0/2, since from the estimate in Proposition 3.3 φ is bounded, we conclude

from the maximum principle (see Proposition 3.4) that there exists C, only depending on C0, K2,
T such that,

∥|∇w|g∥∞ < C.

We conclude by density the desired estimate, and using the representation of u, we deduce that
∥|∇u|g∥∞ < C, only depending on C0 and K2 and T .

Since w and thus v are classical solutions according to Proposition 3.3, the drift −∇u satisfies
the hypothesis of Theorem 3.10, thus there exists a unique solution to the Fokker Planck equation
that we note Ψ(m). Furthermore, from the uniform bound on the norm of the gradient, it follows
from Theorem 3.10 that for any m ∈ K, the solution Ψ(m) stays in K, if we pick C1 large enough.
Thus the map,

Ψ : K ⊂ C([0, T ],P1(M)) −→ K,
is well-defined. Next, we show that Ψ is continuous.

Let µn ∈ K be a sequence converging to µ ∈ K, denote by un(resp. u) the solutions to HJB
equation associated to the µn(resp. µ), and mn = Ψ(µn) (resp. m = Ψ(µ)). The mapping Ψ takes
value in the compact K, so we can extract a sub-sequence (still noted (mn)n) converging to some
ν ∈ K. Take φ ∈ C∞

c (MT ), and define the differential operator as A[b]φ = bi∂iφ+ 1
2
∆gφ, then we

have the following convergence, uniformly on any compact set,

lim
n

sup
K

|(∂tφ+A[−∇un]φ)− (∂tφ+A[−∇u]φ)| = 0 ∀K ⊂⊂M.

Indeed, first we notice that,

|(∂tφ+A[−∇un]φ)− (∂tφ+A[−∇u]φ)| ≤ |∇un −∇u|g|∇φ|g

And since ∂iju =
∂ijw

w
− ∂iw∂jw

w2 , we have that :

(∇2u)ij=̇∂iju− Γk
ij∂ku=̇

1

w
(∂ijw − Γk

ij∂kw)−
1

w2
∂iw∂jw=̇

1

w
(∇2w)ij −

1

w2
∂iw∂jw

Using that the norm of the (0, 2)−tensor (∂iw∂jw) is :

gi1j1gi2j2∂i1w∂j1w∂i2w∂j2w = |∇w|4g.
And the triangular inequality on the tensor norm, we get that :

|∇2u|g ≤
1

w
|∇2w|g +

1

w2
|∇w|2g

22



We deduce that,

∥|∇2un|g∥∞ ≤ C,

uniformly in n, since ∥w∥bc2+s,1+s/2 is uniformly bounded by a constant depending on the ge-
ometry and on C1. This implies that the (∇un)n are uniformly continuous, and since they are
uniformly bounded, by Arzela Ascoli theorem the sequence is compact on any compact subset of
M , the simple convergence of the ∇un to ∇u, is given by the continuity estimate in Proposition
3.3. We obtain the uniform convergence on any compact subset of M of |∇un −∇u|g. Thus

Φn(t) = (∂tφ+A[−∇un]φ)t,
is uniformly continuous, bounded and converges uniformly on any compact subset of M to

Φ(t) = (∂tφ+A[−∇u]φ)t.
From Lemma B.20, defining Ξn(t) =

∫
M
Φn

t dm
n
t , and Ξ(t) =

∫
M
Φtdνt. We have the convergence

for any t ∈ [0, T ] of Ξn(t) to Ξ(t).
We can control Ξn in time with,

|Ξn(t)− Ξn(s)| ≤ ∥Φn(t)− Φn(s)∥M,∞ +W1(mn
t ,m

n
s ).

And since ∇nu is uniformly bounded, and is in BUC([0, T ], Cα
b (M)), and φ is regular, we

have a uniform in time convergence of ∥Φn(t)−Φn(s)∥M,∞. And W1(mn
t ,m

n
s ) is controlled by the

estimate of theorem 3.10, meaning that (t 7→ Ξn(t)) is continuous in time, thus measurable, and
uniformly bounded. From dominated convergence, we conclude that for any t ∈ [0, T ]:

lim
n

∫ t

0

∫
M

(∂tφ+A[−∇nu]φ)dmn
sds =

∫ t

0

∫
M

(∂tφ+A[−∇u]φ)dνsds.

And since the weak solution is unique: ν = m. It is true for any subsequence, and the sequence
takes values in the compact set K, thus the sequence tends to m. Hence, Ψ is continuous.

Finally, from Schauder’s fixed point theorem, there exists a solution to the system.

This study allows to highlight the technicalities encountered when studying mean field games
systems on Riemannian manifolds. The analysis could be pursued further for Lipschitz Hamilto-
nian, and local couplings adapting the classical approach to the geometric case.
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Appendix

A Reminders in Riemannian geometry

Definition A.13 (Smooth Manifold). A d-dimensional manifoldM is second countable topological
space, such that there exists an atlas {Ui, ϕk}i∈K, where the Ui forms an open cover of M and ϕi

is a diffeomorphism from M to Rn. A couple U, ϕ is called a local chart.
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Definition A.14 (Tangent space). Note Cx(M) the set of all smooth path γ : R ⊃ U −→M defined
on U a neigbourhood of 0, s.t γ(0) = x. Define the following equivalent relation on Cx(M) :

γ1 ∼ γ2 ⇔ for all chartsϕ at x, (ϕ ◦ γ1)′(0) = (ϕ ◦ γ2)′(0)
⇔ there exist a chartϕ at x, (ϕ ◦ γ1)′(0) = (ϕ ◦ γ2)′(0)

The tangent space TxM at x is defined as the quotient TxM = Cx(M)/ ∼

Definition A.15 (Vector Bundle). A vector bundle of rank k on a manifold M consist of:

1. a manifold E

2. a continuous surjection π : E −→M

3. ∀x ∈M , the fiber π−1({x}) =: Ex has a k−dimensionnal real vector space structure.

Such that every point x ∈M admits a neighbourhood U ⊂M and an homeomorphism

ϕ : U × Rk −→ π−1(U),

such that (π ◦ ϕ)(x, v) = x ∀v ∈ Rk and the map v 7→ ϕ(x, v) is a linear isomorphism between
the vector spaces Rk and π−1({x}).

Formally, a vector bundle is a varying family of vector spaces on M . It is a generalization of
a production space, since E ×M the product space is a Vector Bundle, if a vector bundle can be
expressed as a product space it is said to be trivial. An important vector bundle is the tangent
bundle TM = {(x, ξ)|x ∈M, ξ ∈ TxM}.

Definition A.16 (Riemanian Metric). A Riemanian metric g assigns to each point x ∈ M an
inner product the tangent space at x, gx : TxM × TxM −→ R. In each charts, it is associated with
a symmetric positive definite matrix gij(x), which is supposed to be smooth. The metric induces

volume measure on M , dvol =
√
| det g|dx.

Definition A.17 (Connection). Let π : E −→M be a smooth vector bundle over a smooth manifold
M, and let C1(E) denote the space of C1 sections of E. A connection in E is a map :

∇ : X (M)× C1(E) −→ C(E),

written (X, Y ) 7→ ∇XY , satisfying the following properties:

1. ∇XY is linear over C∞(M) in X, ∀f1, f2 ∈ C∞(M) and X1, X2 ∈ X (M),

∇f1X1+f2X2Y = f1∇X1Y + f2∇X2Y

2. ∇XY is linear over R in Y , ∀a1, a2 ∈ R and Y1, Y2 ∈ C1(E),

∇X(a1Y1 + a2Y2) = a1∇XY1 + a2∇XY2.

3. ∇ satisfies the following product rule, ∀f ∈ C∞(M),

∇X(fY ) = f∇XY + (Xf)Y.
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Theorem A.18 (Fundamental Theorem of Riemanian Geometry). Let (M, g) be a Riemannian
Manifold, there exist a unique connection that is compatible with the metric and symetric. It
is called the Levi-Cevita connection.

In chart using the Christofel symbol, it writes,

Γk
ij =

1

2
gkl(∂igjl + ∂jgil − ∂lgij)

At the first order, a Riemannian manifold locally resembles Euclidean space. At the second
order, the Riemann curvature tensor characterizes how the manifold deviates from being locally
isometric to Euclidean space.

Definition A.19 (Riemann Curvature Tensor). Let X, Y, Z ∈ C2(TM) be three vector fields on
M . We define the Riemann curvature tensor with the following formula,

R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z,

where [X, Y ] is the Lie bracket of the vector fields. In coordinates it writes,

Rl
ijk = ∂jΓ

l
ik − ∂kΓ

l
ij + Γl

jmΓ
m
ik − Γl

kmΓ
m
ij

From the Riemann curvature tensor we can introduce, the Ricci curvature tensor, it is defined
as the contraction of the Riemann tensor. In coordinate it writes,

Ricij = Rk
ikj.

We say that the Ricci curvature tensor is bounded below, if there exists a scalar λ > 0, such that
∀X ∈ C(TM),

−λg(X,X) ≤ Ric(X,X) (resp. Ric(X,X) ≤ λg(X,X)),

or equivalently in coordinates, −λgij ≤ Ricij in the sens of positive definite matrices.
We also introduce, for u, v ∈ T{x}M two linearly independent tangent vectors in the tangent

space at a point x, the sectional curvature as,

gx(Rx(u, v), u)

gx(u, u)gx(v, v)− gx(u, v)2
.

Finally, recall that the covariant derivative of a tensor is induced from the connection on the
tangent space, it is defined as follows, for a tensor field A ∈ C1(T n

mM), the covariate derivative is
a (n,m+ 1)-tensor, defined in coordinate as,

(∇A)=̇∂iak1···knj1···jm + Γk1
il a

lk2···kn
j1···jm + . . .+ Γkn

il a
k1···kn−1l
j1···jm − Γl

j1i
ak1···knlj2···jm − . . .− Γl

jnia
k1···kn
j1···jm−1l

.

For the following section of the appendix, we will need the following definitions and properties.

B Probability Measure Spaces

The following Lemmas are classical, for the sake of completeness, we give their proof in the
current setting.
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Lemma B.20. Let (E, d) metric separable complete (Polish space), note B its Borelians. Let
Pn,P ∈ P(E,B), if Pn converge weakly to P and if Φn converges uniformly on any compact to Φ
and the Φn are uniformly bounded. Then,

lim
n

∫
E

ΦndPn =

∫
E

ΦdP

Proof. Since (Pn) converges weakly, it is tight (from Prokhorov theoreme) thus : ∀ϵ > 0,∃Kϵ a
compact set of E suck that supn Pn(K

c
ϵ ) ≤ ϵ.

∫
E

Φ∞dP∞ −
∫
E

ΦndPn =

∫
E

Φ∞dP∞ −
∫
E

Φ∞dPn︸ ︷︷ ︸
→0,weak convergence

+

∫
E

Φ∞dPn −
∫
E

ΦndPn

Since the sequence is uniformly bounded Φ∞ is bounded and the first term tends to 0.∫
(Φ∞ − Φn)dPn =

∫
Kϵ

(Φ∞ − Φn)dPn +

∫
Kc

ϵ

(Φ∞ − Φn)dPn

≤ sup
Kϵ

|Φ∞ − Φn|Pn(Kϵ) + ϵ(||Φ∞||∞ + sup
n

||Φn||∞)

Lemma B.21 (Compactness Criterion). Let r ≥ p > 0 and K ⊂ Pp(M) be s.t ∃x0 ∈M ,

sup
µ∈K

∫
M

dr(x0, x)dµ(x) < +∞

Then, K is tight(for the weak topology). If moreoever r > p, then K is relatively compact for
the dp distance.

Proof. Let ϵ > 0 and R > 0 sufficiently large. We have for any µ ∈ K:

µ(M\BR(x0)) ≤
∫
d(x0,x)≥R

d(x0, x)
r

Rr
dµ(x) ≤ C

Rr
< ϵ

where C = supµ∈K
∫
M
d(x0, x)

rdµ < ∞. So K is tight. From Prokhorov Theorem, we deduce
that K is sequentially compact for the weak comvergence. Let (µn) a sequence weakly converging
to µ. If we notice that,∫

d(x0,x)≥R

dp(x0, x)dν(x) ≤
1

Rr−p

∫
d(x0,x)≥R

dr(x0, x)dν(x) ≤
C

Rr−p

holds for any probability in K, in particular for the sequence. This gives us that :

lim
R−→∞

lim sup
n−→∞

∫
d(x0,x)≥R

dp(x0, x)dµn(x) = 0

and we conclude from Theorem 7.2 p212 [Vil21] that the sequence actually converges for the
Wasserstein-p metric.
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Finally, we prove the following lemma required for the existence of weak flow solutions.

Lemma B.22. Let (M, g) be a complete connected n-dimensional Riemannian Manifold. Given a
random variable X0 defined on a probability space (Ω,F ,P) taking values in M.

Then, there exists a random variable U0 on (Ω,F ,P) taking value in the orthogonal frame
bundle OM , such that π(U0) = X0, where π is the projection on M .

Proof. We are going to use Kuratowski and Ryll-Nardzewski measurable selection theorem. Set
ψ(ω) = π−1(X0(ω)) is a closed non-empty subset of OM .

OM is a Polish space since M is connected and complete this implies that it is complete, it
is metrizable with the induced metric from the metric on M, and noting that (π−1(B(x, n)))n∈N
are compact, for some reference point x ∈ M , gives that it is locally compact and countable at
infinity since the orthogonal frame bundle over a compact manifold (restriction of the manifold to
the balls) is compact.

Now take an open set U of OM , we need to show the weak measurability of ψ.

{ω, ψ(ω) ∩ U ̸= ∅} = {ω, π−1(X0(ω)) ∩ U ̸= ∅}
= {ω,X0(ω) ∈ π−1(U)}.

π−1(π(U)) =
⋃

g∈O(n)

gU .

Right is open, so since OM is equipped with the final topology, π(U) is open. And thus

{ω,X0(ω) ∈ π−1(U)} ∈ F .

Thus ψ is weakly measurable, by Kuratowski theorem, there exists a measurable selection U0,
that is a random variable taking values in O(M) and by construction π(U0) = X0.
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[ACL22] Alexander Aurell, René Carmona, and Mathieu Lauriere. Stochastic graphon games:
Ii. the linear-quadratic case. Applied Mathematics & Optimization, 85(3):39, 2022.

[ALP23] Marc Arnaudon, Xue-Mei Li, and Benedikt Petko. Coarse ricci curvature of weighted
riemannian manifolds. arXiv preprint arXiv:2303.04228, 2023.

[Ama12] Herbert Amann. Anisotropic function spaces on singular manifolds. arXiv preprint
arXiv:1204.0606, 2012.

[Ama13] Herbert Amann. Function spaces on singular manifolds. Mathematische Nachrichten,
286(5-6):436–475, 2013.

[Ama16] Herbert Amann. Parabolic equations on uniformly regular riemannian manifolds and
degenerate initial boundary value problems. In Recent developments of mathematical
fluid mechanics, pages 43–77. Springer, 2016.

[Ama17] Herbert Amann. Cauchy problems for parabolic equations in sobolev–slobodeckii
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