Strengthened injectivity radius bounds for manifolds with positive scalar curvature - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2024

Strengthened injectivity radius bounds for manifolds with positive scalar curvature

Résumé

Green's inequality shows that a compact Riemannian manifold with scalar curvature at least $n(n-1)$ has injectivity radius at most $\pi$, and that equality is achieved only for the radius 1 sphere. In this work we show how extra topological assumptions can lead to stronger upper bounds. The topologies we consider are $\mathbb{S}^2\times\mathbb{T}^{n-k-2}\times\mathbb{R}^k$ for $n\leq 7$ and $0\leq k\leq 2$ and 3-manifolds with positive scalar curvature except lens spaces $L(p,q)$ with $p$ odd. We also prove a strengthened inequality for $3$-manifolds with positive scalar curvature and large diameter. Our proof uses previous results of Gromov and Zhu.
Fichier principal
Vignette du fichier
main.pdf (380.24 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04544498 , version 1 (12-04-2024)
hal-04544498 , version 2 (09-10-2024)
hal-04544498 , version 3 (18-10-2024)

Identifiants

Citer

Thomas Richard. Strengthened injectivity radius bounds for manifolds with positive scalar curvature. 2024. ⟨hal-04544498v2⟩
132 Consultations
72 Téléchargements

Altmetric

Partager

More