Beyond Model Performance: Can Link Prediction Enrich French Lexical Graphs?
Au-delà de la performance des modèles : la prédiction de liens peut-elle enrichir des graphes lexico-sémantiques du français ?
Résumé
This paper presents a resource-centric study of link prediction approaches over French lexical-semantic graphs. Our study incorporates two graphs, RezoJDM16k and RL-fr, and we evaluated seven link prediction models, with CompGCN-ConvE emerging as the best performer. We also conducted a qualitative analysis of the predictions using manual annotations. Based on this, we found that predictions with higher confidence scores were more valid for inclusion. Our findings highlight different benefits for the dense graph RezoJDM16k compared to the sparser graph RL-fr. While the addition of new triples to RezoJDM16k offers limited advantages, RL-fr can benefit substantially from our approach.
Origine | Fichiers produits par l'(les) auteur(s) |
---|