ABOUT SEMILINEAR LOW DIMENSION BESSEL PDEs
Résumé
We prove existence and uniqueness of
solutions of a semilinear PDE driven by a Bessel type generator
$L^\delta$ with low dimension $0 < \delta < 1$.
$L^\delta$ is a local operator, whose drift is the
derivative of $x \mapsto \log (\vert x\vert)$:
in particular it is a Schwartz distribution, which
is not the derivative of a continuous function.
The solutions are intended in a duality ("weak") sense
with respect to state space
$L^2(\R_+, d\mu),$ $\mu$ being
an invariant measure for the Bessel semigroup.
Origine | Fichiers produits par l'(les) auteur(s) |
---|