Non destructive Eddy Currents inversion using Artificial Neural Networks and data augmentation - Archive ouverte HAL
Article Dans Une Revue NDT & E International Année : 2022

Non destructive Eddy Currents inversion using Artificial Neural Networks and data augmentation

Résumé

Eddy Currents (ECs) for Non Destructive Testing (NDT) is a method to determine the presence of flaws in metal materials. The estimation of flaw parameters like position and size through physical models is usually difficult. This article offers an alternative technique based on machine learning algorithms such as Artificial Neural Networks (ANNs). This approach often requires simulated signals to build an exhaustive training data-set, leading to a considerable amount of calculation time and resources. To deal with this problem, this article proposes a new method based on data augmentation via Principal Component Analysis (PCA). The presented method is evaluated using different kinds of simulated and experimental signals.
Fichier principal
Vignette du fichier
1-s2.0-S0963869522000342-main_V3.pdf (1.02 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04527836 , version 1 (03-07-2024)

Identifiants

Citer

R. Cormerais, Roberto Longo, A. Duclos, G. Wasselynck, G. Berthiau. Non destructive Eddy Currents inversion using Artificial Neural Networks and data augmentation. NDT & E International, 2022, 129, pp.102635. ⟨10.1016/j.ndteint.2022.102635⟩. ⟨hal-04527836⟩
67 Consultations
7 Téléchargements

Altmetric

Partager

More