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Eddy Currents (ECs) for Non Destructive Testing (NDT) is a method to determine the presence of flaws in metal
materials. The estimation of flaw parameters like position and size through physical models is usually difficult.
This article offers an alternative technique based on machine learning algorithms such as Artificial Neural
Networks (ANNs). This approach often requires simulated signals to build an exhaustive training data-set,
leading to a considerable amount of calculation time and resources. To deal with this problem, this article

proposes a new method based on data augmentation via Principal Component Analysis (PCA). The presented
method is evaluated using different kinds of simulated and experimental signals.

1. Introduction

Non Destructive Testing (NDT) is a wide group of analysis techniques
employed to asses the quality and to evaluate the safety of materials in
building or transport industry [1]. These non invasive methods allow to
monitor materials during their manufacturing, assembling and their
lifetime. The flaws to be detected can be of different types, sizes and
orientations and may be located in a large variety of materials. Various
techniques are used in NDT such as Ultrasonic Testing (UT), Eddy Cur-
rents (ECs), radiography, penetrant testing and thermography [2,3].
These methods present different advantages on their capabilities to
detect flaws of specific shapes, on their implementations and on the
nature of the materials that can be tested. Most NDT techniques make
use of ECs to determine position and size of structural flaws in metal
materials [4-9]. An electromagnetic field is induced into the conductive
material under investigation, creating an ECs flow propagating into the
structure. Variations on the coil impedance are monitored to detect and
characterize defects eventually present [10]. However, the skin effect
limits the use of ECs in cases where flaws are located very close to the
surface of the inspected parts. UT is another NDT method widely used in
a large variety of materials. Mechanical waves traveling through the
inspected parts are reflected by flaws present. However the blind zone
called near field of UT makes it unsuitable for detecting surface of

sub-surface flaws without using specific coupling techniques (i.e.
wedges).

Hence, this article represents a first step for a future combined use of
ECs and UT. It focuses on the ECs part, while the combination with ul-
trasonic inspection is still object of current study.

Generally speaking, the state of the art related to ECs testing con-
siders complex physical modeling leading to difficult estimations of flaw
parameters like length and depth [11]. Some works analytically solve
this inversion problem under particular conditions as surface cracks or
specific geometries [12,13]. An analytic algorithm for defect shape
reconstruction using multi-coil measurement system is also presented in
Ref. [14]. Other approaches make use of surrogate models [15], in
which look-up tables are composed by experimental measurements
and/or numerical simulations. New measurement data are subsequently
treated via regression or interpolation algorithms [16-19].

During the last decade, Machine Learning (ML) approaches making
use of ECs measurements have been employed to estimate flaws pa-
rameters such as depth and length. Algorithms based on Support Vector
Machines (SVMs) registered good performances if applied to data-sets of
areduced size, making use of under-constraints optimization routines to
reach the global minimum [20-25].

Other studies focus instead on Artificial Neural Networks (ANNSs)
[26-33], as they can theoretically learn any function as long as one can
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provide enough data [34-36]. To improve the ANNs generalization
performances, a feature extraction approach has been proposed in
Ref. [37].

In this paper an ML approach based on ANN will be presented. The
main reason behind this choice is to exploit the ANN flexibility for future
integration with UT data. Due to the difficulties often encountered on
building an exhaustive experimental data-set to train the ANN, mea-
surements have been replaced by numerical simulations. The main
disadvantage in using simulated data is represented by the significant
computing time and resources needed to build an exhaustive training
data-base [38]. This drawback has been overcome in Refs. [21,23,39],
by computing only the minimal number of well-chosen training sample
by means of space filling algorithms [40], i.e. Latin Hypercube Sampling
[39]. However, these methods still need a grid sampling as starting point
and to validate the final results.

This article presents a new approach based on data augmentation
algorithms via Principal Component Analysis (PCA). The aim is to pro-
vide an exhaustive training data-base, together with a significant
reduction of computing time and resources. All simulations are adapted
to an Aluminum block using a Finite Element Method (FEM) which re-
fers to the electric vector potential and magnetic scalar potential T — Q
formulation [41,42], as briefly reported in Section 2.1. The data
augmentation algorithm is implemented via 3D interpolations over the
principal components, as described in Section 2.2. The simulated orig-
inal data-set, the PCA compressed data and the augmented ones are
employed to train the ANN described in Section 3. The main results are
reported in the same section. Measurements are then performed on an
Aluminum block providing a first experimental validation (see Section
4.1). Final results are reported in Section 4.2 proving that an ANN is able
to estimate Side Drill Holes (SDHs) parameters (radius and depth) and
that the data augmentation allows the use of a reduced training set
without deteriorating the flaws parameters estimations.

2. Simulated data-base for non destructive Eddy Currents testing
2.1. Finite elements method in presence of Side Drill Holes

In this section, signals from homogeneous Aluminum blocks con-
taining SDHs are obtained via the electric vector potential and magnetic

scalar potential T — Q FEM formulation adapted to multi-connected
geometries [42]. This formulation allows reduction of simulation time
by computing electric vector potential only in the conductive domain.
The coil supply is sinusoidal, which allows the study in the harmonic

regime. The magnetic field His expressed through a magnetic source
field Hs and an electric potential vector T such that J;,g = V x T inthe
conductive domain and T = 0 outside. H and T are linked by H=

_— - — . . . .

Hs + T — grad (©) where Q is the magnetic scalar potential. To obtain a
unique solution and because magnetic potential varies from zero to in-
finity, Q = 0 is imposed on the surface of an air box surrounding the

— —
simulated domain. Moreover, T is set to 0 on the conductive domain
surface. An implicit gauge condition through an iterative resolution al-
gorithm allows convergence and uniqueness of the solution. The elec-
trical conductivity and magnetic relative permeability are defined as ¢
=377 MS m ! and y, = 1. These calculations allow to compute the

induced currents 7, the electric field f, the magnetic induction B and

the magnetic field H. The active and reactive impedance R and X of the
simulated probe are derived from the active dissipated power in the
conductive domain D, and the reactive dissipated power in the simu-
lated domain D following Eq. (1) and Eq. (2). This allows computation of
the impedance variation of the inductor due to the presence of the flaw.
In order to avoid the meshing of the coil, the reaction of the probe to the
electro-magnetic field generated by ECs has not been taken into account
during the simulation phase.

An ’in house’ data-set of 3000 different cases is built, varying the
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Fig. 1. Simulated Aluminum block containing a Side Drill Hole (SDH).
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Fig. 2. Active R and reactive X impedance variations obtained simulating
SDHs, with radius from 1 (cyan) to 5 mm (black) at a depth of 1 mm. (For
interpretation of the references to colour in this figure legend, the reader is
referred to the Web version of this article.)

parameters of cylindrical flaws from a radius of 0.6-8 mm and from a
depth of 0.1-4 mm (see Fig. 1), depth being the distance between the
surface and the top of each flaw. A nonlinear least-squares optimization
[43] between simulations and experimental signals (Section 4.1) is
implemented to estimate the probe parameters, leading to an ECs coil
composed by a 2.25 mm height and 1400 windings with inner and outer
radius of 2.22 and 2.48 mm driven by a sinusoidal signal at 1 kHz. Air
gap is set to 0.18 mm. The skin depth §, defined by Eq. (3), is equal to
2.59 mm, consequently no SDH is expected to be detected after 7 mm
depth, corresponding to 35. The probe response is simulated every
millimeter along the inspection direction (see Fig. 1). A workstation
equipped with an Intel I7 Processor, an NVIDIA Quadro P3000 Graphic
Computing Units (GPUs) and 16 Gb of RAM has been employed to
produce the data-set, requiring a calculation time of approximately
2000 h. The data augmentation method proposed in Section 2.3 will
artificially replace some portions of this original data set, according to a
decimation factor. The ANN performances will be than compared to the
ones obtained with the complete data-set and the decimated one. Ex-
amples of simulated signals interacting with SDHs from 1 to 5 mm radius
and located at 1 mm depth under the inspected surface are depicted in
Fig. 2. The ECs signals show symmetrical properties. These symmetries
imply redundancy in the training data, which could protract the ANN
training time. For these reasons, input data need to be pre-processed in
order to discriminate useful information. To do so, a method based on
PCA will be presented in the next paragraph.
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Fig. 3. Simulated flaws radius and depths represented as a function of the two
first principal components. Radius varies from 0.6 (blue) to 8 mm (yellow) and
depth from 0.1 to 4 mm. (For interpretation of the references to colour in this
figure legend, the reader is referred to the Web version of this article.)
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Fig. 4. Normalized cumulative sum of the first ten eigenvalues. The two first
PCs have captured 99% of the information from the original data.
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2.2. Principal Component Analysis

By definition, PCA is a statistical method that uses an orthogonal
transformation to express potentially correlated observations into line-
arly uncorrelated variables called Principal Components (PCs). This
transformation is defined in a way that the first PC presents the largest
possible variance, and each succeeding component in turn has the
highest variance possible in the orthogonal basis [44]. Some work suc-
cessfully processed ECs signals with the use of PCA [28,45]. By selecting
specific PCs, it is possible to compress the original data by avoiding
redundancy that is present. As example, Fig. 3 depicts the radius (top
graph) and depth (bottom graph) evolution in function of the two fist
PCs. A common way to choose the minimum number of PCs needed to
correctly represent the original data is to look at the cumulative sum of
eigenvalues. For illustration purposes, the cumulative sum of the first
ten eigenvalues is plotted in Fig. 4, indicating that 99% of PCA space
information is concentrated in the first two components.
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Fig. 5. Augmented data for flaws radius (top graph) and depths (bottom graph)
represented in function of the two principal components. Radius varies from 0.6
(blue) to 8 mm (yellow) and depth from 0.1 (blue) to 4 mm (yellow). (For
interpretation of the references to colour in this figure legend, the reader is
referred to the Web version of this article.)

2.3. Data augmentation procedure

This section presents the data augmentation method used to process
simulated signals. This approach relies on PCA method, mentioned in
the previous paragraph. Indeed, from the PCA representation, additional
artificial data at given depth and radius can be inserted in the PCA space.

In example, for the case of the first PCs, artificial data are inserted
computing cubic spline interpolations [46]. More in detail, if r; and ry
represent two simulated radius at a given depth, we indicate their cor-
responding first PCs as PC;(r = ry) and PCy(r =r2). The slope of the curve
PCy(r) is instead labeled as t; for r =r; and t, for r = ry, as reported in Eq.
(4). The first interpolated PC at a given radius between r; and r5 is given
by PCI™™(r) in Eq. (5) where py, p1, p2 and p3 are defined in Eq. (6).
Subsequently, the augmented second PCs for the new artificial radius
values, here called PCiz"m'?(r), are calculated through linear two dimen-
sional Delaunay triangulation interpolations [47]. It can be shown that
this will result in a PCI™P (r) being function of PC™"™P(r), PCy(r = r1),
PC1(r = r3), PCo(r = 1), PCo(r = 15) and PCilme'p (r). The entire mathe-
matical formulation for PCiz"te'p(r) will not be reported here. We refer to
Ref. [47] for additional details.

To sum-up, Fig. 5 depicts the new data-set artificially augmented by
a factor of five. This means that five artificial points have been added for
every simulated point, corresponding to five new radii at each simulated
depth.

In the next section the ANN estimations will be presented, offering a
comparison between the different training procedures composed by the
original simulated data-set and the artificial one.

dPC,

PC] = PCl(r:rl), dr =1 r=r, (4)
dpPC
PC, =PCi(r=n), —drlztz at r=r,.
PCY(r)=po +pi(r—r1) +pa(r —r1)* + ps(r— 1)’ (5)
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3. Artificial neural network training and preliminary results

Artificial Neural Networks (ANNs) are employed in this work to es-
timate flaws parameters from ECs signals, offering an alternative to
inversion algorithms based on physical models. Generally speaking, an
ANN is composed of simple interconnected computing units trained to
fit relations between data. An algorithm based on error back-
propagation is implemented to find the weights firstly randomly
initialized. The goal is to minimize the chosen error function between
the network outputs and the desired ones over the training samples [34].
Eventually, the Mean Squared Error (MSE) is calculated to evaluate the
ANN performances [48]. As the weights are randomly initialized, each
training procedure can lead to different results. For this reason, ANNs
are often trained several times in order to get the mean value of the
different results that ware obtained. The ANN presented in this study
was implemented making use of Matlab Statistics and Machine Learning
Toolbox. The architecture is composed by two inputs corresponding to
two features extracted from ECs signals. Firstly, the two inputs of the
ANN are chosen as the maximum of the complex impedance of each
defect, i.e. the simulated signals for a probe position of zero millimeter.
Secondly, the two first principal components are used as inputs as they
contain most of the information from the simulated signals. The ANN
inputs are connected to an hidden layer of 20 neurons. This value, being
set empirically, assures accurate estimations without risking
over-fitting. The final layer is composed of two outputs neurons repre-
senting the radius and depths estimations. The activation functions are
chosen to form an universal function estimator [34,36].

In order to evaluate the estimation errors of the ANN simulated data
are split into training data-set (50%), validation data-set (25%) and test
data-set (25%), as proposed in Refs. [35,36]. Validation and test samples
are evenly distributed to assess performances of the ANN all over the
flaw parameters space. The PCA presented in the previous section is then
employed for the training data-base. Validation and test data-set are
subsequently projected in the created PCs space. Same procedure will be
followed for the experimental measurements presented in Section 4.
Training samples are used by the training algorithm to update the
weights of the network at every iteration, called epoch. In order to
obtain an ANN with good generalization performances, the validation
samples are employed to implement an early stopping strategy. The
training algorithm monitors validation error and stops when prediction
performances begin to decrease. The test samples are not used during
training and are considered as new measurements allowing to measure
the estimation errors of the ANNs in presence of unknown data.

We now focus our attention in the optimization procedure employed
to find the best values for the ANN weights during the ANN training. In
detail, we refer to the Levenberg-Marquardt back-propagation algorithm
[35,49], where the optimal values W which minimize the overall
quadratic error E of the training data-set are calculated iteratively.
Hence, starting from initial conditions randomly chosen, the weights
Wi.1 at the k + 1 iteration are computed following Eq. (7). The update
parameter AW is defined in Eq. (8). The matrix J appearing in Eq. (8)
represents the Jacobian matrix computed through back-propagation,
while e indicates the error vector between actual and desired output.

The advantage of this method is the introduction of the parameter y
in Eq. (8). This can be considered an adaptive learning rate which

104 Performance is 2.08792¢-09

1075 .

1076

1077

Performance

1078

107°

0 100 200 300 400 500 600 700

L I L

799 Epochs

Fig. 6. Train (blue), validation (green) and test (red) ANN performances in
function of the number of epochs for a training example, with fg.. and Sin.
respectively set to 0.1 and 10. (For interpretation of the references to colour in
this figure legend, the reader is referred to the Web version of this article.)

provides an automatic trade-off between guaranteed algorithm
convergence and speed. With high values of y, Eq. (8) becomes similar to
the steepest descent, with descent speed modulated by /% On the other

hand, when y is small Eq. (8) approximates the Gauss-Newton method
[49]. To sum-up the, the ANN weights optimization follows the steps
indicated below:

1. Compute the ANN output for each training samples and the actual
overall quadratic error E.
2. Compute the Jacobian matrix.
. Compute the weights update using Eq. (8).
4. Compute the variation of the overall quadratic error AE with the
updated weights W + AW:
@ if AE < 0 p, is multiplied by a reduction factor fg. and the al-
gorithm goes back to step 1.
@ if AE > 0 y, is multiplied by an increasing factor fi,c and the al-
gorithm goes back to step 3.
5. The algorithm stops when the quadratic error over the validation
data-set increases for more than 10 epochs.

w

Wipr = W + AW 7

AW = [JT (W) (W) + ) JT (W)e(W) ®)

As staring point, the initial value for ; has been set to 0.001. Values
for Bgec and finc have been set empirically to 0.1 and 10 respectively. It is
worthy to mention that values of f4,. and fi,. close to 1 lead to an
optimization procedure characterized by a slow convergence and
consequently it implies a considerable amount of epochs. Values much
greater than 1 could make the algorithm converge to a local minimum.
The evolution of the MSE over each data-set during a training example is
plotted in Fig. 6. As expected, the training error MSE decreases over
training samples. The validation and test error closely follow the
training one, showing a good generalization. Eventually, the training
stops at 799 epochs because the validation MSE did not change over the
last ten epochs.

In the next paragraph, different training strategies will be presented,
using as ANN inputs the simulated impedance at the center of flaws and
the two first PCs, alternatively. Eventually, the proposed data augmen-
tation will be evaluated by progressively decimating the training data-
set and by replacing the missing points with artificial ones following
the procedure mentioned in Section 2.2.

No scaling have been applied to raw data as they already vary in the
range [-1 1], nor to PCs as they are scaled by construction.
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Fig. 7. ANN depths and radius estimations (circles) compared to actual pa-
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of the ANN. The corresponding RMSE registered the value of 0.09 mm.
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Fig. 9. Absolute error map of the radius estimations as a function of the actual
depths and radius using complex impedance values as inputs of the ANN.
For a flaw with a radius between 1 and 2 mm located at a depth between 0.5
and 1.5 mm (continuous box), the radius mean absolute error estimation is
0.05 mm.

3.1. Artificial neural network results with simulated data

This section presents the radius and depths estimations obtained
using three different strategies. First, the ANN is trained and tested using
complex impedance from the original data-set (i.e. the 3000 cases re-
ported in Section 2.1). Fig. 7 shows the comparison between ANN esti-
mations and actual values over the test data-set. These estimations
present a Root Mean Square Error (RMSE) of 0.09 mm. The estimations
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Fig. 10. Absolute error map of the radius estimations as a function of the actual
depths and radius using principal components as inputs of the ANN. For a

flaw with a radius between 1 and 2 mm located at a depth between 0.5 and 1.5
mm (dotted box), the radius mean absolute error estimation is 0.01 mm.
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Fig. 11. Absolute error map of the depths estimations as a function of the
actual depths and radius using complex impedance values as inputs of the
ANN. For a flaw with a radius between 1 and 2 mm located at a depth between
0.5 and 1.5 mm (continuous box), the depth mean absolute error estimation is
0.02 mm.

are expected to be less accurate as the radius of SDHs become larger than
the probe. The mean absolute error for radius and depths estimations are
respectively averaged by zones in Fig. 9 and Fig. 11. The radius absolute
estimation error varies from 0.032 to 0.33 mm and the depth absolute
estimation error from 0.0082 to 0.087 mm. For example, a given flaw
with an estimated radius of 2 mm located at an estimated depth of 1 mm
(continuous boxes in Figs. 9 and 11) presents a mean absolute error of
0.05 and 0.02 mm for the radius and depth respectively.

Secondly, the ANN is trained and tested using the two first principal
components. Fig. 8 compares ANN estimations over the test data-set
versus actual values. The RMSE is decreased by a factor of three,
reaching 0.03 mm. The estimations are improved even for large radius.
Figs. 10 and 12 respectively present the radius and depth mean absolute
estimations errors by zones. These errors vary from 0.012 to 0.084 mm
for the radius and from 0.0051 to 0.062 mm for the depth. For example,
a given flaw with a radius of 2 mm located at a depth of 1 mm (dotted
boxes in Figs. 10 and 12) shows a mean absolute error of 0.01 mm for the
radius and 0.008 mm for the depth. The first important conclusion is that
PCA gives the possibility to reduce the estimation errors, in particular
for the radius.

To examine the effect of decimation and augmentation further pairs
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Fig. 12. Absolute error map of the depths estimations as a function of the
actual depths and radius using principal components as inputs of the ANN.
For a flaw with a radius between 1 and 2 mm located at a depth between 0.5
and 1.5 mm (dotted box), the depth mean absolute error estimation is
0.008 mm.

of ANNs were trained. In one (decimated), the training data was deci-
mated by a given factor (0 = no decimation, 10 = reduced by a factor of
10). In the complimentary ANN (augmented), the decimated data was
replaced by interpolated (augmented) data to bring the size of the
training set back up to the original size. For example, a factor of five
leads to take into account for the training procedure only one point
every five simulated ones, with the direct consequence of dividing the
simulation time by the same factor. The removed samples are replaced
using the proposed data augmentation algorithm. Radius and depths
estimations accuracy is monitored through the relative MSE over the
original test data-set. Fig. 13 compares the MSE obtained decimating
and augmenting the training data-set as function of the decimated fac-
tor. Using the decimated data-set, an average error of 1000% is recorded
for a decimation factor of eight. This high error value was expected as
the ANN is trained with a reduced data-set and tested on the original test
data. The best performance was reached at the error of 46%. In com-
parison, an average error of 9% and a minimum error of 6% are recorded
for the same decimation factor using the data augmentation to replace
decimated samples. In conclusion, despite a number of actual simula-
tions divided by a factor of eight, the proposed method allows to greatly
reduce the estimations MSE. Moreover, it needed only 250 h of calcu-
lation time instead of the 2000 h necessary to build the original data-

base. In addition, this method also reduced the variability of ANN per-
formances avoiding the need for a large number of training. Taking into
account these preliminary results a first experimental validation to this
approach is presented in the next section, with the aim to evaluate the
entire procedure when using experimental data.

4. Experimental validation
4.1. Experimental set-up for Eddy Currents evaluation

In order to validate the proposed approach, ECs signals are measured
over an Aluminum test sample containing two SDHs. The two flaws
present a radius of 2.5 mm and are located at depths of 1 and 3 mm as
depicted in Fig. 14. The experimental setup consists of a NORTEC 600
flaw detector with a low frequency probe provided by Olympus. Care
was taken to configure the experimental set-up as close as possible to the
simulations parameters detailed in Section 2.1. The measuring device
induces an electromagnetic field at the frequency of 1 kHz and monitors
the impedance variations. The electrical conductivity and magnetic
relative permeability are considered as equal to o = 37.7 MS m ! and y,
=1, leading to a skin depth § of approximately 2.5 mm as reported in Eq.
(3). We empirically set the optimal angle between the probe and the
surface under test, monitoring the signal amplitude recorded during
repeated measurements. The probe is moved by a step motor along the
inspected surface. The active (R) and reactive (X) impedances are
measured every millimeter. The measured signals and the corresponding
simulated ones are compared in Fig. 15. Signals from the first flaw (see
Fig. 15 (a)) located at a depth of 1 mm are close to the corresponding
simulated ones, offering a validating to the numerical procedure. Signals
from the second flaw Fig. 15 (b) at a depth of 3 mm are slightly different
compared to the simulated reactive impedance. This difference is due to
the fact that the simulations of Section 2 did not take into account the
reaction of the probe to the field generated by ECs [42], as already

1 mm s

5 mm

3 mm I—o

5 mm

Fig. 14. Scheme of the experimental sample containing two SDHs with radius
of 2.5 mm and located at depths of 1 and 3 mm.
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Fig. 13. Maximum (+), mean (o) and minimum (x) MSEs obtained decimating the training data-set (grey) and using the data augmentation procedure (black). For a
decimation factor of eight, the radius and depths estimations present an average error of 9%, within a minimum value of 6% and a maximum of 15% using data
augmentation against an average error of 1000%, within a minimum value of 46% and a maximum of 2400% when only decimating the training data.
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Table 1
Radius and depths estimations [mm] obtained analyzing measured signals from
the first flaw using the ANN trained with different inputs.

Flaw 1 Radius Depth

True values 2.5 1

Original data-set estimation 2.61 + 0.05 1.06 + 0.02
Principal components estimation 2.38 £0.03 1.03 + 0.02
Data augmentation estimation 2.36 £ 0.03 1.03 £0.01

Table 2
Radius and depths estimations [mm] obtained analyzing measured signals from
the second flaw using the three different inputs.

Flaw 2 Radius Depth

True values 2.5 3

Original data-set estimation 1.23 £+ 0.05 2.25 +0.02
Principal components Estimation 1.27 +£0.03 2.25 +0.02
Data augmentation Estimation 1.22 +0.08 2.24 +0.03

mentioned in Section 2.1.

4.2. Results and discussions

This paragraph presents the radius and depths estimations obtained
with measured signals using the ANN trained firstly with complex
impedance from simulated data-set, secondly with the two first principal
components and eventually with the proposed data augmentation pro-
cedure. The radius and depths estimations given by the ANN using the
three types of inputs as training data are respectively reported in Table 1
and Table 2 for the first and second flaw. The first SDH with a radius of
2.5 mm and located at a depth of 1 mm is estimated with radius of 2.61,

Impedance [0]
ks
2

-30 -20 -10 0 10 20 30
Probe Position [mm]

(a) Experimental (=) ECs signals from SDHs with radius of

2.5 mm located at depths of 1 and simulated (——) signals [rom
SDHs with a radius of 2.36 mm located at a depth of 1.03 mm.

2.38 and 2.36 mm and at estimated depths of 1.06, 1.03 and 1.03 mm
(Table 1), using original data, principal components and augmented
data respectively. These results show that the ANN can estimate the flaw
parameters relatively accurately in each training case. The second flaw
with a radius of 2.5 mm and located at a depth of 3 mm is estimated with
radius of 1.23, 1.27 and 1.22 mm and at depths of 2.25, 2.25 and 2.24
mm (Table 2), respectively, using the three types of inputs. These esti-
mation errors are explained by the differences between simulations and
measurements observed in Fig. 15 (b). For the first flaw, the simulated
signal which better represented the experimental one presented a radius
of 2.36 mm and was located at the depth of 1.03 mm (see. Fig. 16 (a)),
explaining the values reported in Table 1. For the second flaw, the best
match between simulated and measured signal was reached at the depth
of 2.24 mm and a radius of 1.22 mm (see. Fig. 16 (b)). This explains the
difficulties to properly estimate the real flaw parameters, especially the
radius as highlighted in Table 2. It is also important to point out that,
even in the experimental case, the proposed data augmentation method
helps achieve better accuracy and precision, despite the fact that the
number of simulated samples is divided by eight.

5. Conclusion

Artificial Neural Networks are a promising tool for Eddy Currents
testing as they offer an alternative way for flaw parameters estimations.
Nowadays, the main drawback of this method still resides on the large
amount of training data. To overcome this limitation, a data augmen-
tation method based on Principal Component Analysis and 3D interpo-
lation has been presented in this article. The proposed procedure was
adapted to Side Drill Holes.

More complex flaw geometries may require different linear or non-
linear transformations of the input data.

First results using simulated data showed that this procedure allowed

o (b)
01
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03
04
05
30 20 -10 0 10 20 30

Probe Position [mm)]

(b) Experimental (=) ECs signals [rom SDHs with radius of
2.5 mm located at depths of 3 mm and simulated (——) signals
from SDHs with a radius of 1.22 mm located at a depth of
2.24 mm.

Fig. 16. Simulated signals which better represent the experimental ones. Active impedance R is traced in black and reactive one X in grey.



to reduce the number of samples by analytically completing a sparse
data-base. Eventually, the ANN has been implemented to process
experimental data. Due to some limitations concerning the FEM model
used to compute the training data-set, one experimental flaw radius was
not properly estimated. Nevertheless, the depth estimations recorded a
limited error of 0.75 mm. This leads to the conclusion that more accurate
simulations would improve the ANN training procedure and conse-
quently flaws radius and depths estimations when using experimental
data.

The ultimate goal is to implement an ANN algorithm coupling
different Non Destructive Testing methods. This could allow exploita-
tion of the advantages of each technique and to properly detect and
evaluate a large variety of flaws, overcoming the limitations due to the
ECs skin effect.
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