Self-Dual Maps I: Antipodality - Archive ouverte HAL
Article Dans Une Revue SIAM Journal on Discrete Mathematics Année : 2022

Self-Dual Maps I: Antipodality

Résumé

A self-dual map is said to be antipodally self-dual if the dual map is antipodal embedded in with respect to . In this paper, we investigate necessary and/or sufficient conditions for a map to be antipodally self-dual. In particular, we present a combinatorial characterization for map to be antipodally self-dual in terms of certain involutive labelings. The latter lead us to obtain necessary conditions for a map to be strongly involutive (a notion relevant for its connection with convex geometric problems). We also investigate the relation of antipodally self-dual maps and the notion of antipodally symmetric maps. It turns out that the latter is a very helpful tool to study questions concerning the symmetry as well as the amphicheirality of links.
Fichier principal
Vignette du fichier
DualMaps1.pdf (543.81 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04524667 , version 1 (28-03-2024)

Identifiants

Citer

Luis Montejano, Jorge Luis Ramírez Alfonsín, Ivan Rasskin. Self-Dual Maps I: Antipodality. SIAM Journal on Discrete Mathematics, 2022, 36 (3), pp.1551-1566. ⟨10.1137/20M1367076⟩. ⟨hal-04524667⟩
4 Consultations
10 Téléchargements

Altmetric

Partager

More