Parameters estimation of a Threshold CKLS process from continuous and discrete observations - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2024

Parameters estimation of a Threshold CKLS process from continuous and discrete observations

Résumé

We consider a continuous-time process which is self-exciting and ergodic, called threshold Chan–Karolyi–Longstaff–Sanders (CKLS) process. We allow for the presence of several thresholds which determine changes in the dynamics. We study the asymptotic behavior of the maximum and quasi-maximum likelihood estimators of the drift parameters in the case of continuous time and discrete time observations. We show that for high frequency observations and infinite horizon the estimators satisfy the same asymptotic normality property as in the case of continuous time observations. We discuss diffusion coefficient estimation as well. Finally, we apply our estimators to simulated and real data to motivate considering (multiple) thresholds.
Fichier principal
Vignette du fichier
CIR_estimation-24.pdf (672.38 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence

Dates et versions

hal-04524431 , version 1 (28-03-2024)
hal-04524431 , version 2 (30-06-2024)

Licence

Identifiants

  • HAL Id : hal-04524431 , version 2

Citer

Sara Mazzonetto, Benoît Nieto. Parameters estimation of a Threshold CKLS process from continuous and discrete observations. 2024. ⟨hal-04524431v2⟩
288 Consultations
183 Téléchargements

Partager

More