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Abstract. We consider a continuous-time process which is self-exciting and ergodic,
called threshold Chan–Karolyi–Longstaff–Sanders (CKLS) process. We allow for the
presence of several thresholds which determine changes in the dynamics. We study the
asymptotic behavior of the maximum and quasi-maximum likelihood estimators of the
drift parameters in the case of continuous time and discrete time observations. We show
that for high frequency observations and infinite horizon the estimators satisfy the same
asymptotic normality property as in the case of continuous time observations. We discuss
diffusion coefficient estimation as well. Finally, we apply our estimators to simulated and
real data to motivate considering (multiple) thresholds.

Keywords: CIR, CKLS, maximum likelihood, regime-switch, self-exciting process, thresh-
old diffusion.
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1 Introduction
We deal with parameter estimation of a stochastic process which follows different Chan-
Karolyi-Longstaff-Sanders (CKLS) dynamics separately on different intervals (see equa-
tion (2.1) for a definition), that we call threshold CKLS (T-CKLS) process. T-CKLS is
in particular a Self Exciting Threshold model [10]. It excites itself by changing dynamics
according to its own position. The class of T-CKLS models includes several threshold
and non-threshold models such as Ornstein-Uhlenbeck (OU) or Vasicek, Cox-Ingersoll-
Ross (CIR), Black-Scholes, Merton, Constant Elasticity of Variance (CEV) model. Let
us recall the equation satisfied by (non-threshold) CKLS:

Xt = X0 +

∫ t

0

(a− bXs) ds+

∫ t

0

σ|Xs|γ dBs (1.1)

where σ ∈ (0,∞), b ∈ R, γ ∈ [0, 1]. Assume also that the deterministic initial condition
X0 and the coefficient a are strictly positive. CKLS was considered for interest rate
modeling in [8]. Among statistical study of non-threshold diffusions such as CKLS and
CIR let us mention [26] and [4, 5]. The approaches exploit the knowledge of the law of
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some functionals of the process. Except for very special threshold diffusions (TDs), this
law is not available or not easily exploitable. Therefore, for dealing with TDs, one must
consider different techniques which would hold also for non-threshold cases (see Section 5.2
for details).
Recently, several studies have been conducted on the parametric estimation of TDs. Just
to mention some results, in the case of continuous time observations [17, 30, 22], high-
frequency observations on finite or infinite horizon [20, 24, 25], low frequency ones [33,
12, 25]. TDs attract attention for applications, in financial modelling e.g. [10, 21, 28],
population ecology [7], etc. One of the features of the TDs is that they allow for mean
reversions even with several mean reversion levels.
In this paper we focus on ergodic T-CKLS. Note that this includes ergodic T-CIR model
and allows for different dynamics on fixed intervals: OU on a region, CIR on another, and
possibly other special cases of CKLS on another interval. We consider both continuous
time observations and discrete observations which are not necessarily equally spaced.
We study both maximum likelihood estimation (MLE) and a quasi maximum likelihood
estimation (QMLE) for the drift coefficients and we also propose an estimator for the
diffusion coefficients σ based on quadratic variation. We study the asymptotic behavior
of these estimators, obtaining a law of large numbers and a central limit theorem for
the drift coefficients estimators. We discuss these asymptotic results in long time in the
continuous time setting, see Theorem 3.5, and in high frequency and long time in the
discrete time setting, see Theorem 4.5. We also study consistency and provide a lower
bound for the speed of convergence for the diffusion coefficient estimator in high frequency
and long time, see Theorem 4.3.
In the continuous time setting, Theorem 3.5 is new for MLE estimator. The drift QMLE
estimator was considered in [30]. In the same paper, numerical studies were conducted
on the discretization of the QMLE. The statistical properties of the discretized MLE and
QMLE are proven in Theorem 4.5, which is the main result of this paper. Let us mention
that the results obtained in this document are new also when the process follows some
special dynamics of T-CKLS process, such as T-CIR. In the context of TDs observed in
high frequency and long time, Theorem 4.3 on diffusion coefficient estimation is the first
result of its kind.
In the case of discrete observations, we assume that the process is in its stationary regime
(Xt is distributed according to the stationary distribution for all t ≥ 0) and it is ob-
served on a time-grid of N observations 0 = t0 < t1 < . . . < tN = TN with maximal
lag between two consecutive observations, say ∆N , such that limN→∞ TN = +∞ and
limN→∞∆N → 0. To prove the convergence speed, we require an additional condition of
the form limN→∞∆α

NTN = 0, for some power α ∈ (0, 1] that depends on the parameter
vector γ. This is consistent with the existing literature in the context of parameter esti-
mation of diffusions from discrete observations with and without threshold, e.g. [2, 4, 24]
(where α = 1). Further comments on our results, their assumptions, possible extensions
and comparisons with the literature are provided in Section 5.

Outline. In Section 2, we introduce the model and the quasi-likelihood and likelihood
functions associated to the T-CKLS process. In Section 3, we deal with estimation of
T-CKLS from continuous observations. We provide some statistical properties related to
the drift estimator. The main results of this article are provided in Section 4, which deals
with drift and volatility estimation from discrete observations. We study the asymptotic
behavior in high frequency and long time for both estimators. In Section 5 we comment

2



on the results. Numerical experiments are provided in Section 6, where the estimators
are implemented and tested on simulated data and US interest rates data. Proofs are
collected in Section 7. Further useful results are available in Appendix A.
Throughout the paper, we use the notion of stable convergence, denoted stably−−−→. Further
details on this type of convergence can be found in [14] and [15].

2 The framework: model and assumptions
The T-CKLS process solves the following one-dimensional SDE:

Xt = x0 +

∫ t

0

(a(Xs)− b(Xs)Xs) ds+

∫ t

0

σ(Xs)|Xs|γ(Xs) dBs, t ≥ 0, (2.1)

with x0 > 0, piecewise constant coefficients a, b, σ and γ possibly discontinuous at levels
0 = r0 < r1 < · · · < rd < rd+1 = +∞, d ∈ N. More precisely, let Ij := [rj, rj+1), for
j ∈ {0, · · · , d}, unless γ(0) = 0, in which case I0 = (−∞, r1). The drift coefficients are
given by

a(x) =
d∑
j=0

aj1Ij(x) ∈ R and b(x) =
d∑
j=0

bj1Ij(x) ∈ R, (2.2)

and similarly the volatility coefficients are given by

σ(x) =
d∑
j=0

σj1Ij(x) > 0 and γ(x) =
d∑
j=0

γj1Ij(x) ≥ 0. (2.3)

We focus on the case γ(R) ⊆ [0, 1] and we assume that the process spends no time at 0.
For existence of a pathwise unique strong solution to (2.1) if γ0 ∈ [1/2, 1] ∪ 0, we refer
to [19]. In the case γ0 ∈ (0, 1/2), weak existence and uniqueness in law of solutions which
do not spend time at 0 holds for the SDE (2.1) (see e.g. [11]). Pathwise uniqueness and
strong existence are more subtle (we refer the reader to [3] for more details). Moreover,
T-CKLS is a Markov process (see e.g. [11]).
When γ0 ∈ (0, 1] the process is always non-negative and 0 is either an unreachable point or
a reflecting one (see Lemma 7.1 in Section 7.1). When γ0 = 0 the T-CKLS is a threshold
OU process, hence one can remove the assumptions that the thresholds rj are positive
and the initial condition x0 is allowed to be non-positive.
We suppose that (γj)dj=0 and the thresholds (rj)dj=0 are known, and we estimate drift and
diffusion parameters vectors a, b, σ for continuous time observations and discrete (non
necessarily equally spaced) high frequency observations and infinite horizon.

Definition 1 (Ergodicity). We say that the process is ergodic, if it is positive recurrent.

In this article we consider only the case in which the process is ergodic. For instance, the
process is ergodic if we restrict the drift coefficients of the first interval I0 and the last
interval Id to satisfy

(a0, b0) ∈ (0,+∞)× R and (ad, bd) ∈ R× (0,+∞).

More precise restrictions to the parameters are given in Table 4 in Section 7.1.
When the process is ergodic, there exists a stationary distribution (invariant distribution
for the transition semigroup), denoted by µ. An expression for the stationary distribution
is given in Section 7.1.
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Definition 2 (Stationarity). We say that the process is stationary if it is ergodic and
X0 is independent of the driving Brownian motion and it is distributed according to the
stationary distribution.

The maximum likelihood estimation method for the drift parameter also requires param-
eter restrictions. Assume we have access to an observation of an entire trajectory on
the time interval [0, T ] of the T-CKLS. We denote by θ := (a, b) = (aj, bj)

d
j=0 the drift

parameters and we assume the thresholds r and the coefficients γ to be known. In the
next section we assume σ to be unknown, and we propose an estimator. Yet, in the next
lines, the reader should think as if σ is known (replaced by an estimator). We consider
two different contrast functions: likelihood and quasi-likelihood. The likelihood function
θ 7→ LT (θ;σ, γ) is the Girsanov weight:

LT (θ;σ, γ) = exp

(∫ T

0

a(Xs)− b(Xs)Xs

σ(Xs)2(Xs)2γ(Xs)
dXs −

1

2

∫ T

0

(a(Xs)− b(Xs)Xs)
2

σ(Xs)2(Xs)2γ(Xs)
ds

)
. (2.4)

Note that it is well defined if the integrals above are well defined. Hence, we further restrict
the parameter space Θ(L) such that γ0 ∈ {0} ∪ (1/2, 1], or γ0 = 1/2 and a0 ≥ σ2

−/2. The
likelihood is well defined on Θ(L) (see Proposition A.1 for details).
We consider the quasi-Likelihood function θ 7→ q-LT (θ) := lnL(θ; 1, 0). Hence,

q-LT (θ) =
∫ T

0

a(Xs)− b(Xs)Xs dXs −
1

2

∫ T

0

(a(Xs)− b(Xs)Xs)
2 ds. (2.5)

The advantage of this contrast function is the fact that it does not depend on the diffusion’s
coefficients γ, σ. We denote Θ(q-L) the set of parameters such that the quasi-likelihood is
well defined. Note that q-L is always well defined because the process we consider has
continuous trajectories. So, it covers a wider range of parameters than the likelihood
function.
Summarizing, in the next sections, we suppose that the parameter r = (rj)

d
j=1 and γ =

(γj)
d
j=0 are known. We denote θ⋆ := (a, b) = (aj, bj)

d
j=0 and σ⋆ the parameters to be

estimated. We suppose that the parameters are in Θ(L), resp. Θ(q-L), when dealing with
the likelihood, resp. quasi-likelihood function. Moreover, we assume that the process is
ergodic (see Table 4 in Section 7.1 for the parameter restrictions ensuring ergodicity).

3 Estimation from continuous time observations
Let T ∈ (0,∞), and assume we have at our disposal continuous time observations on the
interval [0, T ] of a trajectory of the process X solution to the SDE (2.1).
First, we provide estimators which maximize likelihood L and quasi-likelihood q-L. Next,
we study the asymptotic behavior of the estimators in long time under the assumption
that the process is ergodic.

3.1 Estimators expressions

The drift parameters estimators are defined as the maximal argument of the likelihood
(3.2) and the quasi-likelihood (3.3):

θ
(L)
T := argmax

θ∈Θ(L)

lnLT (θ;σ, γ) and θ
(q-L)
T := argmax

θ∈Θ(q-L)

q-LT (θ).
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We look for expressions for MLE and QMLE in terms of the following quantities:

Qj,m
T :=

∫ T

0

Xm
s 1Ij(Xs) ds and M j,m

T :=

∫ T

0

Xm
s 1Ij(Xs) dXs (3.1)

for j ∈ {0, · · · , d} and m ∈ {−2γj, 1 − 2γj, 2 − 2γj, 2γj} ∪ {0, 1, 2}. It is convenient to
express log-likelihood and quasi-likelihood as follows. The likelihood satisfies

lnLT (θ;σ, γ) :=
d∑
j=0

1

σ2
j

(
ajM

j,−2γj
T − bjM

j,1−2γj
T −

a2j
2
Q
j,−2γj
T − ajbjQ

j,1−2γj
T −

b2j
2
Q
j,2−2γj
T

)
,

(3.2)
and the quasi-likelihood q-LT (θ) := lnLT (θ; 1, 0), which rewrites as

q-LT (θ) =
d∑
j=0

ajM
j,0
T − bjM

j,1
T −

a2j
2
Qj,0
T − ajbjQ

j,1
T −

b2j
2
Qj,2
T . (3.3)

The following proposition provides explicit expression of MLE and QMLE, in terms of
the quantities in (3.1).

Proposition 3.1. Let T ∈ (0,∞), The maximum of the likelihood LT (θ;σ, γ) is achieved
at θ(L)T := (aj,γT , bj,γT )dj=0 with

(aj,γT , bj,γT ) =

(
M

j,−2γj
T Q

j,2−2γj
T −Q

j,1−2γj
T M

j,1−2γj
T

Q
j,−2γj
T Q

j,2−2γj
T − (Q

j,1−2γj
T )2

,
M

j,−2γj
T Q

j,1−2γj
T −Q

j,−2γj
T M

j,1−2γj
T

Q
j,−2γj
T Q

j,2−2γj
T − (Q

j,1−2γj
T )2

)
.

(3.4)
The maximum of the quasi-likelihood q-LT (θ) is achieved at θ(q-L)T := (aj,0T , b

j,0
T )dj=0, that is

(aj,0T , b
j,0
T ) =

(
M j,0

T Qj,2
T −Qj,1

T M
j,1
T

Qj,0
T Q

j,2
T − (Qj,1

T )2
,
M j,0

T Qj,1
T −Qj,0

T M
j,1
T

Qj,0
T Q

j,2
T − (Qj,1

T )2

)
. (3.5)

Proof. We sketch the proof for MLE. The same works for QMLE. One shows that (3.4)
is the unique singular point of the gradient (vector of the derivatives with respect to aj
and bj for all j ∈ {0, · · · , d}) of (3.2) and the Hessian is negative definite.

Remark 3.2. If γ ≡ 0, then the diffusion coefficient is piecewise constant, so T-CKLS
is a threshold OU (T-OU) and QMLE and MLE coincide, as noticed in [24].

Remark 3.3. For every j = 0, . . . , d, (aj,γT , bj,γT ) only depend on the observations of the
trajectory t 7→ Xt which belong to Ij.

MLE and QMLE do not depend on σ⋆ explicitly, but only on the quantities in (3.1).
The following result ensures that σ⋆ is a.s. equal to an estimator expressed in terms of
Qj,·
T ,M

·,0
T ,M

j,1
T , XT , X0.

Proposition 3.4. Let T ∈ (0,∞) and j ∈ {0, · · · , d}. Then

σj =

√
Qj
T

Q
j,2γj
T

a.s. on the event {Qj,0
T > 0} (3.6)
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where, for j ∈ {0, d},

Qj
T := (fj(XT ))

2 − (fj(X0))
2 + 2

(
r(j+1)∧dM

j,0
T −M j,1

T

)
(3.7)

with fj(x) = 1Ij(x)|rj − x|, otherwise when j ∈ {1, . . . , d− 1}:

Qj
T := (fj(XT ))

2 − (fj(X0))
2 − 2M j,1

T + 2

(
rj

d∑
i=j

M i,0
T − rj+1

d∑
i=j+1

M i,0
T

)
(3.8)

with fj(x) = 1Ij(x)(x− rj) + rj+11[rj+1,+∞)(x).

Proof. We only consider the case j ∈ {1, . . . , d − 1}. When j ∈ {0, d} the proof works
analogously. Considering the event {Qj,0

T > 0} corresponds to take trajectories which
spend some time in Ij and so Qj,2γj

T does not vanish. Applying Itô-Tanaka formula (see
[29, Chapter VI, exercice 1.25]) ensures that

dfj(Xs) = (aj − bjXs)1Ij(Xs) ds+ σj(Xs)
γj1Ij(Xs) dBs +

1

2
d
(
Lsrj(X)− Lsrj+1

(X)
)
.

The quadratic variation of fj,1(X) satisfies a.s. the equality:

⟨fj(X)⟩T = σ2
j

∫ T

0

(Xs)
2γj1Ij(Xs) ds = σ2

jQ
j,2γj
T .

Itô formula applied to (fj(XT ))
2, ensures that ⟨fj(X)⟩T is a.s. equal to Qj

T , indeed for
every semi-martingale Y it holds a.s. that dY 2 = 2Y dY + d⟨Y ⟩.

3.2 Asymptotic properties: long time

In this section, we explore the statistical properties as T → ∞ of the MLE and QMLE
from continuous time observations of a trajectory of the T-CKLS process.
We assume that the process is ergodic, µ is the stationary distribution given in Section 7.1,
and we introduce the following hypotheses:

• HL : µ admits finite (−2 max
j=0,··· ,d

γj)-th and (2− 2 max
j=0,··· ,d

γj)-th moment,

• Hq-L : µ admits finite (2 + 2 max
j=0,··· ,d

γj)-th moment.

See Section 5.3 for comments on these assumptions.
The asymptotic behavior of the MLE and QMLE are provided in the following theorem
which states that MLE and QMLE are strongly consistent and asymptotically normal
estimators of the drift parameter θ⋆.

Theorem 3.5. For ℓ ∈ {L, q-L}, under Hypothesis Hℓ, the MLE and QMLE are strongly
consistent estimators of θ⋆ i.e.

θ
(ℓ)
T

a.s.−−−−→
T→+∞

θ⋆. (3.9)

Furthermore, the following convergence is satisfied:
√
T
(
θ
(ℓ)
T − θ⋆

)
stably−−−−→
T→+∞

N(ℓ), (3.10)
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where N(ℓ) = (N
(ℓ)
j,a , N

(ℓ)
j,b )

d
j=0 are d + 1 independent, independent of X, two-dimensional

centered Gaussian random variables with covariance matrices respectively given by σ2
jΓ

(ℓ)
j

such that

Γ
(L)
j := Γ

(L,γj)
j :=

 Q
j,−2γj
∞ −Qj,1−2γj

∞

−Qj,1−2γj
∞ Q

j,2−2γj
∞

−1

and Γ
(q-L)
j = Γ

(L,0)
j Γ

(L,−γj)
j Γ

(L,0)
j

where Qj,.
∞ are real constant defined in Lemma 3.6.

Proof. The proof is similar to the one in [22, 24], nevertheless we summarize the steps and
stress the specificity of the case we consider in this article. Note that MLE and QMLE
rewrite as follows:

θ
(L)
j

a.s.
= θj + σj

(
M

j,−γj
T ,−M

j,1−γj
T

)
Γ(L) and θ

(q-L)
j

a.s.
= θj + σj

(
M

j,γj
T ,−M

j,1+γj
T

)
Γ(L,0)

where Mj,k
T =

∫ T
0
(Xs)

k1Ij(Xs) dBs for k ∈ {−γj, 1−γj, γj, 1+γj} are martingales. Indeed,
note that Qj,2k+2γj

T is the quadratic variation of Mj,k
T which is the one of M j,k

T up to a
multiplicative factor. We can now exploit martingale theorems. The consistency of the
estimator (MLE and QMLE) follows directly from [23, Theorem 1] and the ergodicity of
the process which implies, for instance, Lemma 3.6. The asymptotic normality property
follows from [9, Theorem 2.2]. Hypotheses HL and Hq-L are necessary for the application
of [23, Theorem 1].

Lemma 3.6 (Ergodic properties). For j ∈ {0, · · · , d} and m ∈ R, if the m-th moment
of µ is finite on the set Ij, then

Qj,m
∞

a.s.
:= lim

T→∞

Qj,m
T

T
=

∫
Ij

xmµ( dx),

are non-vanishing constants.

Remark 3.7. The above asymptotic normality of the estimators implies the local asymp-
totic normality (LAN) property (see [18]). The LAN property, is a fundamental concept
in the asymptotic theory of statistics. For instance, when it is satisfied, it can be com-
bined with the Minimax theorem to establish a lower bound for the asymptotic variance of
estimators.
Since statement and proof are analogous to the one of the T-OU process (corresponding
to γ = 0) given in [24, Theorem 1.(iv)], we just provide a short statement.
Let ℓ ∈ {L, q-L} and assume that Hℓ holds. The LAN property holds for the ℓ-function
with rate of convergence 1/

√
T . Furthermore, the asymptotic Fisher information is given

by

Γ(ℓ) =



1
σ2
0

(
Γ
(ℓ)
0

)−1

0R2×2 . . . 0R2×2

0R2×2
. . . . . . ...

... . . . 1
σ2
d−1

(
Γ
(ℓ)
d−1

)−1

0R2×2

0R2×2 . . . 0R2×2
1
σ2
d

(
Γ
(l)
d

)−1


.
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4 Estimation from discrete observations
In this section, we assume to observe the process on a discrete time grid 0 = t0 < t1 · · · <
tN−1 < tN = TN <∞, for N ∈ N.
First, we provide estimators which maximize a discretized versions of likelihood L and
quasi-likelihood q-L. Next, we study the asymptotic behavior of the estimators in high
frequency and long time under the assumption that the process is stationary.

4.1 Estimators expressions

There is no exploitable explicit expression for the transition densities of the T-CKLS
process, nor for the finite dimensional distributions. This is true also in the well known
special case of threshold Brownian motion with piecewise constant drift. Hence, instead
of considering a likelihood or quasi-likelihood function, we considered a discretization of
the likelihood LT (2.4) and quasi-likelihood q-LT (2.5). Further comments on this choice
are given in Section 5. Once these discretizations introduced, we denote them respectively
by LTN ,N and q-LTN ,N and we compute the estimators

θ
(L)
TN ,N

= argmax
θ∈Θ(L)

LTN ,N(θ;σ, γ) and θ
(q-L)
TN ,N

= argmax
θ∈Θ(q-L)

q-LTN ,N(θ). (4.1)

Let us denote by Qj,m
TN ,N

the discrete versions of Qj,m
TN ,N

and M j,m
TN ,N

in (3.1):

Qj,m
TN ,N

:=
N−1∑
i=0

Xm
ti
1Ij(Xti)(ti+1− ti) and M j,m

TN ,N
:=

N−1∑
i=0

Xm
ti
1Ij(Xti)(Xti+1

−Xti) (4.2)

for j ∈ {0, · · · , d} and m ∈ {−2γj, 1 − 2γj, 2 − 2γj, 2γj} ∪ {−1, 0, 1, 2}. To obtain the
discretized (quasi-)likelihood, it would be natural to replace the above quantities in the
continuous-time observations (quasi-)likelihood function given in (3.2)-(3.3). The dis-
cretized quasi-likelihood is then

q-LTN ,N(θ) :=
d∑
j=0

ajM
j,0
TN ,N

− bjM
j,1
TN ,N

−
a2j
2
Qj,0
TN ,N

− ajbjQ
j,1
TN ,N

−
b2j
2
Qj,2
TN ,N

, (4.3)

and we could do similarly for the likelihood. We would get

lnLTN ,N(θ;σ, γ) =
d∑
j=0

1

σ2
j

(
ajM

j,−2γj
TN ,N

− bjM
j,1−2γj
TN ,N

−
a2j
2
Q
j,−2γj
TN ,N

− ajbjQ
j,1−2γj
TN ,N

−
b2j
2
Q
j,2−2γj
TN ,N

)
.

(4.4)
Actually, we do not choose the latter quantity as discretized-likelihood. Instead, we con-
sider a different discretization of M j,m based on an alternative expression which depends
on M j,0 and Qj,0 and Qj,−1 (see Lemma 5.1 in Section 5, where we also explain this choice
for the discretization). For every j ∈ {0, . . . , d} we define Mj,0

TN ,N
:= M j,0

TN ,N
and for

m ∈ {−2γj, 1− 2γj} \ {0},

Mj,m
TN ,N

:= fj,m+1(XTN )− fj,m+1(X0)−
m

2
σ2
jQ

m+2γj−1
TN ,N

+

j+1∑
k=j

(−1)1−krmk

d∑
i=k

(
M i,0

TN ,N
+

d∑
l=k

fl,1(X0)− fl,1(XTN )

)
, (4.5)
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if j ∈ {1, . . . , d− 1} and if j ∈ {0, d}:

Mj,m
T :=fj,m+1(XTN )− fj,m+1(X0)−

m

2
σ2
jQ

m+2γj−1
TN ,N

+ (r(j+1)∧d)
m
[
M j,0

TN ,N
+ (fj,1(X0)− fj,1(XTN ))

]
, (4.6)

where f0,m(x) = max{0,
∫ r1
x
ym−1dy}, fd,m(x) = max{0,

∫ x
rd
ym−1dy} and for j ∈ {1, · · · , d−

1}, fj,m(x) = max{0,
∫ x
rj
ym−1dy}−max{0,

∫ x
rj+1

ym−1dy}. Finally, we consider the follow-
ing discretized log-likelihood:

lnLTN ,N(θ;σ, γ) =
d∑
j=0

1

σ2
j

(
ajM

j,−2γj
TN ,N

− bjM
j,1−2γj
TN ,N

−
a2j
2
Q
j,−2γj
TN ,N

− ajbjQ
j,1−2γj
TN ,N

−
b2j
2
Q
j,2−2γj
TN ,N

)
.

(4.7)
The following proposition establishes an explicit expressions of the discretized MLE and
discretized QMLE.

Proposition 4.1. Let (TN)N∈N be a sequence in (0,∞) and let N ∈ N. The maximum
of the discretized likelihood is achieved at θ(L)TN ,N

= (a
j,γj
TN ,N

, b
j,γj
TN ,N

)dj=0 with

(a
j,γj
TN ,N

, b
j,γj
TN ,N

) :=

(
Mj,−2γj

TN ,N
Q
j,2−2γj
TN ,N

−Q
j,1−2γj
TN ,N

Mj,1−2γj
TN ,N

Q
j,−2γj
TN ,N

Q
j,2−2γj
TN ,N

− (Q
j,1−2γj
TN ,N

)2
,
Mj,−2γj

TN ,N
Q
j,1−2γj
TN ,N

−Q
j,−2γj
TN ,N

Mj,1−2γj
TN ,N

Q
j,−2γj
TN ,N

Q
j,2−2γj
TN ,N

− (Q
j,1−2γj
TN ,N

)2

)
.

(4.8)
The maximum of discretized quasi-likelihood is achieved at θ(q-L)TN ,N

= (aj,0TN ,N , b
j,0
TN ,N

)dj=0 with

(aj,0TN ,N , b
j,0
TN ,N

) =

(
M j,0

TN ,N
Qj,2
TN ,N

−Qj,1
TN ,N

M j,1
TN ,N

Qj,0
TN ,N

Qj,2
TN ,N

− (Qj,1
TN ,N

)2
,
M j,0

TN ,N
Qj,1
TN ,N

−Qj,0
TN ,N

M j,1
TN ,N

Qj,0
TN ,N

Qj,2
TN ,N

− (Qj,1
TN ,N

)2

)
. (4.9)

The proof is omitted because it is analogous to the one of Proposition 3.1.
Note that the QMLE does not depend on the parameter vector σ⋆ = (σj)

d
j=0, instead the

MLE does because the expressions Mj,m
TN ,N

involve the parameter σ⋆. Since we assume σ
is not known, we replace it by an estimator.
For j ∈ {0, · · · , d},

σjTN ,N =

√√√√Qj
TN ,N

Q
j,2γj
TN ,N

, (4.10)

where Qj
TN ,N

is obtained by discretizing the right hand side of formula (3.7) and (3.8) in
Proposition 3.4. Note that Qj

TN ,N
depends on M j,1

TN ,N
and M j,0

TN ,N
defined in (4.2). For

instance,
Qd
TN ,N

:= (fd(XTN ))
2 − (fd(X0))

2 + 2
(
rdM

d,0
TN ,N

−Md,1
TN ,N

)
.

4.2 Asymptotic properties: high frequency - long time

In this section, we state the statistical properties of the discretized MLE and QMLE.
Let ∆N := maxk=1,··· ,N{tk − tk−1} denote the maximal lag between two consecutive ob-
servations. We assume that the observation time window goes to infinity (long time) and
the maximal lag between consecutive observations vanishes (high frequency):

lim
N→+∞

TN = +∞ and lim
N→+∞

∆N = 0. (4.11)
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Moreover we assume that the process is stationary.
The results of this section require additional assumptions on the moments of the stationary
distribution:

• HL : µ admits finite (−p)-th and 4-th moments with p > 4 max
j=0,··· ,d

γj.

• Hq-L : µ admits finite 4-th moment.

These assumptions depend on the fact that σ⋆ is supposed to be unknown and on the
discretization chosen for the likelihood and quasi-likelihood as well. See Section 5.3 for
more details.
Without loss of generality we assume ∆N ∈ (0, 1) for all N . Then, we also introduce the
following quantities g(q-L)N = ∆N ,

g
(L)
N = max

j=0,··· ,d



∆
2−2γj
N if γj ∈ (3

4
, 1),

∆
2γj−1
N if γj ∈ (1

2
, 3
4
],

∆
1−2γj
N if γj ∈ (1

4
, 1
2
),

∆
2γj
N if γj ∈ (0, 1

4
],

∆N if γj ∈ {0, 1
2
, 1},

g
(σ)
N := max

j=0,··· ,d


∆
γj
N if γj ∈ (1

2
, 1),

∆
2γj
N if γj ∈ (0, 1

2
),

∆N if γj ∈ {0, 1
2
, 1}.

(4.12)

Remark 4.2. If max{γj : j = 0, . . . , d} ∈ {0, 1/2, 1}, then ∆N = g
(q-L)
N = g

(L)
N = g

(σ)
N .

We are now ready to provide our first convergence result in the discrete setting. We
consider the volatility estimator in (4.10) and we prove consistency, and show that the
speed of convergence is higher than

√
TN .

Theorem 4.3. Assume that (4.11) holds, that the T-CKLS X is stationary and that
Hypothesis Hq-L holds. Then, the estimator σ2

TN ,N
= ((σjTN ,N)

2)dj=0 in (4.10) is a consistent
estimators of the diffusion coefficient vector σ2

⋆ = ((σj)
2)dj=0, i.e.

σ2
TN ,N

P−−−−→
N→+∞

σ2
⋆. (4.13)

Under the additional assumption that lim
N→+∞

TNg
(σ)
N = 0, it holds that

√
TN
(
σ2
TN ,N

− σ2
⋆

) P−−−−→
N→+∞

0Rd+1 . (4.14)

Since we assume that the diffusion coefficient σ vector is unknown, we replace it by
estimator (4.10) in the expression of Mj,·

TN ,N
.

Remark 4.4. The results of the section about MLE and QMLE estimation hold with less
restrictive assumptions if σ⋆ is known, see Section 5.3.

The following theorems state the asymptotic properties in high frequency and long time
observations of the discretized MLE and QMLE of θ⋆.

Theorem 4.5. Assume that (4.11) holds and that the T-CKLS X is stationary. For
ℓ ∈ {L, q-L}, under Hypothesis Hℓ, the MLE and QMLE are weak consistent estimators
of θ⋆ i.e.

θ
(ℓ)
TN ,N

P−−−−→
N→+∞

θ⋆. (4.15)
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Furthermore, if lim
N→+∞

TNg
(ℓ)
N = 0, then under the same hypothesis, we have

√
TN

(
θ
(ℓ)
TN ,N

− θ⋆

)
stably−−−−→
N→+∞

N(ℓ), (4.16)

where N(.) is defined in Theorem 3.5.

The proof of Theorem 4.3 and Theorem 4.5 are postponed to Section 7. Nevertheless we
give the main ideas and tools in Section 5.

Remark 4.6. For ℓ ∈ {L, q-L}, it follows from the previous results that the estimator
(θ

(ℓ)
TN ,N

, σTN ,N) is a consistent estimator of (θ⋆, σ⋆). By the stable convergence properties,
√
TN(θ

(ℓ)
TN ,N

, σTN ,N) converges stably to the vector (N(ℓ), 0Rd+1) If σ is known, the analogous
to the LAN property in Remark 3.7 holds for the discretized MLE and QMLE.

5 Comments on the results and their proofs
In this section, we comment the results of the previous section and we summarize the key
elements of the proofs of consistency and asymptotic normality of the continuous time
and discretized MLE and QMLE. Moreover, we discuss assumptions and extensions, and
compare with related literature.
The main results of this article are the asymptotic results in the context of a T-CKLS
process observed in high frequency and long time: Theorems 4.3 and 4.5. As we already
mentioned, these results are new also in the context of other threshold diffusions such
as T-CIR, and for mixed dynamics: CIR on a space interval, OU on another, CKLS
on another one. We exploit this feature in Section 6. In Section 5.1 we comment on
the estimators. In particular, we discuss the discretization choice M and the novelty on
estimation of σ⋆.
Since the process is ergodic, the proofs of the asymptotic results in the context of con-
tinuous time observations follow from standard martingale central limit theorems. This
is the case in other results for TDs, e.g. [30, 22, 24]. Therefore, in this section, we only
comment on the proofs in the case of discrete observations. This is done in Section 5.2.
Nevertheless, in Section 5.3, we provide some comments on the assumptions of the results
both in the context of discrete and continuous time observations and we compare our
assumptions with those considered in the literature.

5.1 On the estimators

On the volatility estimator. Estimator (4.10) is inspired by the results in [20]. The
latter reference studies some estimators for the volatility of oscillating Brownian motion
(null drift, γ = 0, one threshold) from high frequency discrete observations over a finite
time horizon. The estimators are based on quadratic variation, but on two separate inter-
vals over which the volatility is constant. Our estimator exploits a different discretization
choice for the quadratic variation over the intervals Ij, which allows to obtain information
about its behavior in high frequency and long time. Up to our knowledge, this is the
first time an estimator of the volatility for TDs (even with γ ≡ 0) is analyzed in high
frequency and long time.
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Likelihood discretization: M .,m
TN ,N

versus M.,m
TN ,N

. Let us first introduce an expres-
sion P-a.s. equal to M j,m

T which would not involve any term M j,k except if k = 0.

Lemma 5.1. Let T ∈ (0,∞), j ∈ {1 · · · , d} and m ∈ {−2γj, 1−2γj}. It holds P-a.s. that

M j,m
T = fj,m+1(XT )− fj,m+1(X0)−

m

2
σ2
jQ

m+2γj−1
T

+

j+1∑
k=j

(−1)1−krmk

d∑
i=k

(
M i,0

T +
d∑
l=k

fl,1(X0)− fl,1(XT )

)
, (5.1)

for j ∈ {1, . . . , d− 1} and for j ∈ {0, d}:

M j,m
T =fj,m+1(XT )− fj,m+1(X0)−

m

2
σ2
jQ

m+2γj−1
T + (r(j+1)∧d)

m
[
M j,0

T + (fj,1(X0)− fj,1(XT ))
]
.

(5.2)

Proof. We prove only the case j ∈ {1, . . . , d − 1}, and the case j ∈ {0, d} works simi-
larly. Applying Itô-Tanaka formula (see e.g. [29, Chapter VI, exercice 1.25]), yields the
a.s. equality

fj,m+1(XT ) = fj,m+1(X0) +
m

2
σ2
jQ

m+2γj−1 +M j,m
T +

rmj
2

(
L
rj
T (X)− L

rj+1

T (X)
)
. (5.3)

We now replace the dependence on the local time on a dependence on M j,0, XT , X0.
Applying a second time Itô-Tanaka formula to

∑d
i=k fi,0(XT ) with k ∈ {1, . . . , d − 1},

shows that a.s.
1

2
LrkT (X) =

d∑
i=k

fi,0(XT )− fi,0(X0)−M i,0
T . (5.4)

Combining equation (5.4) for k = j and k = j + 1 with (5.3) completes the proof.

We used the latter result to obtain Mj,m
TN ,N

: we just considered the discretized versions of
the right hand side of (5.1) and (5.2) in Lemma 5.1 by replacing the quantities M j,0 and
Qj,m+2γj−1 by their discretized versions (4.2).
This choice impacts hypothesis HL. See Section 5.3 for more details.

5.2 Key elements of proofs, comments and extensions.

We now comment on the proofs of consistency and asymptotic normality for drift and
diffusion coefficient, namely Theorems 4.3 and 4.5. They rely on the next Lemma 5.2
and on the continuous time results Proposition 3.4 for the drift in Theorem 3.5. More
precisely, one shows that the rescaled difference between the discrete-time and continuous-
time estimators (e.g.

√
TN

(
θ
(L)
TN ,N

− θ
(L)
TN

)
) vanishes as N → ∞. Since all estimators

depend on M j,m
TN ,N

and Qj,m
TN ,N

, the proof is based on the following result.

Lemma 5.2. Assume that (4.11) holds and that the T-CKLS X is stationary. Let λ ∈
{1, 2}, j ∈ {0, · · · , d}, and m ∈ {0, 1}. Then

lim
N→∞

T
−1/λ
N E

[
|Qj,k

TN
−Qj,k

TN ,N
|
]
= 0 and lim

N→∞
T

−1/λ
N E

[
|M j,m

TN
−M j,m

TN ,N
|
]
= 0 (5.5)

in each one of the following cases
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1. for k ∈ {2γj},
under the assumptions: lim

N→+∞
T

1−1/λ
N g

(σ)
N = 0 and hypothesis Hq-L holds.

2. for k ∈ {−2γj, 1− 2γj, 2− 2γj, 2γj} ∪ {−1, 0, 1},
under the assumptions: lim

N→+∞
T

1−1/λ
N g

(L)
N = 0 and hypothesis HL holds,

3. for k ∈ {0, 1, 2},
under the assumptions: lim

N→+∞
T

1−1/λ
N g

(q-L)
N = 0 and hypothesis Hq-L holds.

The proof of Lemma 5.2 is provided in Section 7. It is quite technical so we give the main
ideas and tools here.
The proof of Lemma 5.2 relies on two auxiliary results for T-CKLS processes: Propo-
sitions 5.3-5.4 whose proofs are postponed to Section 7.5 and Section 7.6 respectively.
Proposition 5.3 is a property very commonly exploited in statistics for diffusion processes.

Proposition 5.3. Assume that the T-CKLS X is stationary. Let j ∈ {0, · · · , d} and
m ≥ 1. Assume that the m-th moment of µ is finite. Then there exists a constant
C ∈ (0,∞) such that for all 0 ≤ s < t it holds E [|Xt −Xs|m] ≤ C(t− s)m/2.

Proposition 5.4, instead, is the remedy to the lack of knowledge of the finite dimensional
distributions of TDs. Indeed, the quantities M j,·, Qj,· consider only observations taking
values on Ij together with their following observation. Hence, in the proof of Lemma 5.2,
one needs to bound the probability that the process crossed a threshold between two
consecutive observations.

Proposition 5.4. Assume that the T-CKLS X is stationary. Let j ∈ {0, · · · , d} and
m ∈ R, if the m-th moment of µ is finite on the set Ij. Then there exists a constant
C ∈ (0,∞) such that for all 0 ≤ s < t, we have:

E
[
|Xs|mPXs

(
τ ξ

j

Ij
< t− s

)
1Ij(Xs)

]
≤ C(t− s)

1/2, (5.6)

where ξj is a CKLS process with parameters (aj, bj, σj, γj) starting at Xs and driven by a
Brownian motion independent of Fs, and τ ξ

j

Ij
is the first hitting time of the interval Ij for

the process ξj.

Differences with respect to related literature Let us first consider standard diffu-
sions related to T-CKLS, for instance CIR process. The proofs in [4, 5] rely on the knowl-
edge of the law of the process, and some other quantities such as the integral

∫ t
0
(Xs)

−1 ds.
We do not have access to the law of T-CKLS, nor even of T-Brownian motion. Under the
ergodicity assumption, in the context of discrete observations our Theorem 4.5, recovers
and improves the existing result for CIR.
The proof strategy that we just illustrated above, is analogous to the one exploited in [24]
for drift estimation of T-OU. Nevertheless, we believe that the way we deal with controlling
the probability of crossing a threshold between two consecutive observations (proof of
Lemma 5.4) is the key to extend the results of this paper to more general TDs. Hence,
in our opinion, Proposition 5.4 is one of the most important results of this document.
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5.3 Comments on assumptions

Assumptions in the continuous setting: Hq-L and HL. In the case of T-OU process
(solution to 2.1 with γ ≡ 0), Hq-L and HL rewrite as follows: µ admits finite second
moment. When T-OU is ergodic (see Table 4), µ admits moments of all order (see
Proposition A.3), so Hq-L and HL hold. Indeed, in [24], no additional assumptions have
been introduced.
For CIR process (solution to the SDE (1.1), with γ = 1/2). The asymptotic behavior of
the MLE of an ergodic standard CIR process with a, b > 0 is studied in [5] under the
additional condition a ≥ σ2/2. This condition ensures that µ admits finite (−1)-moment
(see Proposition A.3) and so HL is satisfied.
In a similar way, in [26], the author study the asymptotic behavior of the MLE of a CKLS
process, solution to the SDE (1.1), in the ergodic case with a, b > 0 and γ ∈ (1/2, 1). Un-
der these hypotheses on the parameters, the stationary distribution of the CKLS process
admits moments of all order (see [26, Proposition 2.1] or next Proposition A.3). Therefore,
Hq-L and HL are satisfied.
We improve the conditions in [30], where consistency and asymptotic normality of the
QMLE has been proven. More precisely, in [30], the process is supposed to be stationary
and geometrically ergodic and they require finiteness of the fourth-moment. We only as-
sume ergodicity, and, for the QMLE, assumption Hq-L is less restrictive than the existence
of the fourth-order moment.

Assumptions in the discrete setting: the discretization choice. Let us note that
in the likelihood function (4.4) there could be a term such as M0,−1

T (take γ0 = 1/2). If
one takes M0,−1

T,N for the discretization of the likelihood function, then one should prove
the convergence in Lemma 5.2 for it. This requires stronger hypothesis than HL, which
instead is sufficient considering the discretization M0,−1

TN ,N
because, in this case, one only

needs to prove Lemma 5.2 for the quantities Q0,−1
TN ,N

and M0,0
TN ,N

.
We chose to illustrate the effect by taking γ0 = 1/2, because the idea of considering a
different expression is inspired by [5] which deals with non-threshold CIR process.

Assumptions in the discrete setting: asymptotic normality. In case γ ≡ 0 (T-
OU) or γ ≡ 1

2
(T-CIR), the hypotheses limN→∞ TN∆N = 0 has been considered for the

asymptotic normality of estimators for CIR and T-OU process in [5, 24]. It has recently
been considered also in [25] for T-drifted Brownian motion. The latter case is not covered
by our article because we assume that a > 0. Our conditions for the convergence speed,
limN→∞ TNg

(L)
N = 0 and limN→∞ TNg

(σ)
N = 0 degrade when the diffusion coefficient is

non-linear in some interval, i.e. when max{γj : j = 0, 1, . . . , d} is not equal to 0, 1/2, or
1. Indeed, ∆N = g

(q-L)
N ≤ g

(L)
N ∈ {∆N} ∪ [

√
∆N , 1) and ∆N = g

(q-L)
N ≤ g

(σ)
N ∈ [∆N , 1).

The quantities g(L)N and g
(σ)
N involve a maximum over all intervals (related to γ) because

we estimate over different intervals where the volatility might be non-linear. So, on each
interval, the result on the convergence speed requires a condition which allows to apply
Lemma 5.2.

Theorem 4.5 when σ⋆ is known. When σ⋆ is known, there is no need to replace it
by its estimator. Theorem 4.5 holds with weaker assumptions.
In Hypothesis HL the moment of order 4 can be replaced by the moment of order
(2q max

j=0,··· ,d
γj) with q > 1.
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In the precise case max
j=0,··· ,d

(γj) = 1/2, the p in hypothesis Hq-L, can be chosen such that

2 < p < 2a−/σ
2
− (see Proposition A.3). This condition is the one in [5, Proposition 5] in

the case of the CIR process (solution to (1.1) with γ = 1/2).
For the QMLE, we can improve the conditions in the case γd ≥ 1/2, by considering
a different discretization of the QMLE (4.3): take M.,1

TN ,N
instead of M .,1

TN ,N
. In this

case, we have a different estimator, and assumption Hq-L can be replaced by the weaker
finite 2 max

j=0,··· ,d
γj-nd moment of µ. Furthermore, the additional condition appearing in the

asymptotic normality property can be replaced by the weaker condition as well, namely
limN→+∞ TNg

(σ)
N = 0.

6 Numerical Experiments
In this section, we implement the MLE and QMLE based on discrete observations on
simulated and US interest rates data.

6.1 Simulated Data

In this section, we investigate the efficiency of our estimators on simulated data. We
simulate the T-CKLS process combining known Euler-Type schemes on different intervals
such as the implicit scheme in [1, equation (3)] when the process is a CIR or a drifted
version of the scheme in [32] when the diffusion coefficient is non-linear. More precisely
we use the following scheme. Given X0 ∈ (0,∞) and (Gk)k∈N a sequence of i.i.d. standard
Gaussian random variables, next we set X(n)

0 = X0 and , we define for all k ∈ N

X
(n)
(k+1)/n :=

∣∣∣∣X(n)
k/n +

1

n

(
a(X

(n)
k/n)− b(X

(n)
k/n)X

(n)
k/n

)
+

1√
n
σ(X

(n)
k/n)(X

(n)
k/n)

γ(X
(n)
k/n

)Gk

∣∣∣∣ .
Further discussion about the most suitable numerical scheme for T-CKLS is beyond the
purpose of this document. To estimate the parameters from the simulated data, we use
the estimators from discrete observations in Section 4.1. The implementation has been
done using Matlab and parameters are as in Table 1.

a0 b0 σ0 γ0

0.3 0.2 0.2 0.5

a1 b1 σ1 γ1

0 0 0.4 0

a2 b2 σ2 γ2

0.3 0.2 0.2 0.5

r1 r2

1 1.5

Table 1: Simulations parameters.

Firstly, we illustrate Theorem 4.5 for the drift parameters θ⋆ = (ai, bi)
d=2
i=0 , diffusion pa-

rameters σ⋆, γ and two thresholds r1, r2 given in Table 1. We consider a process which
follows a CIR dynamic close to 0 and far away from 0 and is a BM on an intermediate
bounded interval. We simulate 104 trajectories of the T-CKLS with two threshold the set
of numerical parameters (T,N) = (103, 106) with starting condition determined as follows.
As the process is supposed to be stationary, we first simulate one trajectory starting from
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X0 > 0 chosen arbitrarily, say X0 = 1, with the scheme X(n) given above with n = kN/T
for some k ∈ N \ {0} (we took k = 1). Then we consider the final value of the latter
trajectory as initial condition of the 104 trajectories.

Figure 1: Asymptotic normality property in Theorem 4.5, with parameters as in Ta-
ble 1. We plot the theoritical distribution using (7.1) and compare with the empirical
distribution on 104 trajectories.

Remark that, despite the set of numerical parameters (T,N) does not satisfy the condi-
tions for the asymptotic normality in Theorem 4.5, numerics shows good results.
We compare the estimators by means of relative root-mean-square error (RMSE) and
mean-error (ME) in Table 2.

Estimator Relative RMSE ME

(a
0,(L)
TN ,N

, a
1,(L)
TN ,N

, a
2,(L)
TN ,N

) (0.3206, 0.2341, 0.2921) (0.0154, 0.0092, 0.0156)

(b
0,(L)
TN ,N

, b
1,(L)
TN ,N

, b
2,(L)
TN ,N

) (0.5500, 0.1857, 0.2439) (0.0173, 0.0069, 0.0093)

(a
0,(q-L)
TN ,N

, a
1,(q-L)
TN ,N

, a
2,(q-L)
TN ,N

) (0.3233, 0.2341, 0.2965) (0.0170, 0.0092, 0.0191)

(b
0,(q-L)
TN ,N

, b
1,(q-L)
TN ,N

, b
2,(q-L)
TN ,N

) (0.5555,0.1857, 0.2478) (0.0182,0.0069, 0.0112)

(σ0
TN ,N

, σ1
TN ,N

, σ2
TN ,N

) (0.0088, 0.0087, 0.0015) (0.0087, -0.0034 , 0.001)

Table 2: Table of the relative RMSE and ME for the estimator of (θ⋆, σ⋆) using the MLE
(4.8), QMLE (4.9) and volatility estimator (4.10).

Observe that the MLE gives a better estimation of the drift parameters, which is easily
explained by the fact that the likelihood contains more information about the model. In
general the MLE tends to have a better RMSE and ME than the QMLE. Applying the
estimator on several data set, we remark that that the QMLE have a greater variance
than the MLE.

Remark 6.1 (Threshold estimation). The thresholds can be estimated using the method
proposed in [30] based on continuous observations. We use this procedure in the next
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section. It is a QMLE-based method without an explicit expression for the threshold es-
timator. Consequently, the numerical cost of this method increases with the number of
thresholds. However, satisfactory results can still be achieved in the case of two thresholds.
Mathematical study of the estimator for discrete observations should be conducted.

Remark 6.2 (Diffusion exponent estimation). The parameter γ was estimated in [26] for
non-threshold CKLS. A study on the estimator properties for discrete observations in the
context of CKLS or its generalisation to T-CKLS in necessary. However we expect that
the estimator converges quite slowly especially around 0.

6.2 Interest rates analysis

In this section, we apply our estimators to the ten-years US treasury rate based on the
Federal Reserve Bank’s H15 data set. We apply a discretized version of the test to evaluate
the existence of one threshold (see [30], see Remark 6.1) or more thresholds (see [31]) in
this dataset. In [31], the authors introduce a test statistic to identify thresholds in the
drift term of a diffusion model: detect their presence and estimate them. They also
develop a computationally efficient approach to calibrate the p-value and extend the test
to detect multiple thresholds. Inspired by [33], we exploit here a discretized version of the
method presented in [31] and combine with the drift MLE and σ⋆ estimator considered in
this document.

General step. Let us describe the test to be applied at a general step and then the
procedure describing the steps. Suppose that there are m thresholds, and that we look
for the presence of an additional threshold on the k-th interval Ik = (rk−1, rk) (we know
the value of rk−1, rk: either known or estimated in previous steps). We consider the
hypothesis:  H0 : Null hypothesis m thresholds

H1 : Alternative hypothesis (m+ 1) thresholds
(6.1)

Under the null hypothesis H0, the model has m thresholds. Under hypothesis H1, there
is an additional threshold r̄ in the k-th regime meaning that the sequence of thresholds
becomes −∞ = r0 < r1 < · · · < rk−1 < r̄ < rk < · · · < rm. The quasi-likelihood ratio test
statistic is given by

T = sup
r̄∈[a,b]

T (r̄)

with
T (r̄) := 2

(
q-LTN ,N

(
θ
(H1)
TN ,N

(m+ 1, r̄)
)
− q-LTN ,N

(
θ
(H0)
TN ,N

(m)
))

(6.2)

where a and b are 20 and 80 percentiles of the data in [rk−1, rk], the value θ(H1)
TN ,N

(m+1, r̄)

is the drift MLE under hypothesis H1 with additional threshold given by r̄, and θ(H0)
TN ,N

(m)
is the drift MLE of the model under hypothesis H0. The MLE is given in Proposition 4.1,
with volatility parameter σ⋆ estimated by (4.10).
We compute the statistics for some values of r̄, say r̄j := a(1−j/n)+bj/n, j ∈ {0, 1, . . . , n}
(we choose n = 103). Then we take as an estimator for the threshold rj the r̄j which
maximises T (r̄) and the observed test statistics Tdata is then the quantity T (r̄j).
The distribution of the test statistic (6.2) is obtained using a bootstrap method. To
compute the p-value we simulate 103 trajectories of the process with the parameters
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under H0, we compute Tj the statistics on the j-th trajectory. Then the p-value is given
by #{j : Tdata < Tj}/103.
We fix the significance level at the conventional 5%.

Procedure. We apply the test above as follows, in a sequential procedure. We first
test for the presence of a threshold on the data: applying this test for m = 0. If the
test is significant, then we take as estimator for the threshold r̂1 the r̄ which realises the
maximum in the test statistics. This threshold divides the state space into two intervals.
We then we test the presence of thresholds on each of the two intervals, starting from
the left to the right. On each interval we consider, if the test is significant, we keep
dividing the interval into two sub-intervals and so on. Once we do not have evidence of
new thresholds in the interval we are considering, we go to the next interval.

Application to ten years US treasury rate. We consider the ten-years US Treasury
rate and we adopt the convention that the daily time intervals is dt = 0.046, where one
unit of time represents one month. We assume that the data follow a T-CIR dynamics,
i.e. γ ≡ 1/2.
We consider the ten-years US Treasury rate for two different time windows: Jan 2016 -
Dec 2019, and Jan 2020 - Jan 2024 represented in Figure 2.

Figure 2: The figure shows the interest rate daily data (solid line) for the time windows
Jan 2016 - Dec 2019, and Jan 2020 - Jan 2024. The fitted thresholds are represented by
the dashed lines.

Let us consider the time window Jan 2016 - Dec 2019. The threshold test (6.1) for m = 0
is significant and the threshold estimation is r1 = 2.0303. We apply the test (6.1) to
detect a threshold on (0, r1). It is not significant. The same conclusion holds testing for
threshold presence on (r1,+∞).
On the time window Jan 2020 - Jan 2024 the threshold test (6.1) for m = 0 is significant
and we estimate the threshold r1 = 2.0507. There is no evidence of additional thresholds
on (0, r1), and the null hypothesis is rejected for the existence of a threshold r2 = 3.5112
on (r1,+∞). Instead, the tests 6.1 withm = 2 to find a threshold on (r1, r2) and (r2,+∞),
the null hypothesis H0 is not-rejected.
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Jan 2016 - Dec 2019

Estimator Value

(a
0,(L)
TN ,N

, a
,(L)
TN ,N

) (1.6434 , 0.1713)

(b
0,(L)
TN ,N

, b
1,(L)
TN ,N

) (0.9410, 0.0723)

(σ0
TN ,N

, σ1
TN ,N

) (0.1616, 0.1053)

r1TN ,N (2.0303)

Jan 2020 - Jan 2024

Estimator Value

(a
0,(L)
TN ,N

, a
1,(L)
TN ,N

, a
2,(L)
TN ,N

) (0.2013, 0.5826, -0.0207)

(b
0,(L)
TN ,N

, b
1,(L)
TN ,N

, b
2,(L)
TN ,N

) ( 0.1556, 0.0670, 0.0236)

(σ0
TN ,N

, σ1
TN ,N

, σ2
TN ,N

) ( 0.2129, 0.2091, 0.1807)

(r1TN ,N , r
2
TN ,N

) (2.0507, 3.5112)

Table 3: Estimated parameters corresponding to Figure 2.

Therefore, we conclude that there is a single threshold in the time window Jan 2016 - Dec
2019 and two thresholds in Jan 2020 - Jan 2024. In Table 3, we summarize the values
obtained for each of the fitted parameters using the estimators.

7 Proofs
In this section, recalling some well known results, we show under which conditions on the
parameters the process admits a stationary distribution. Then, we prove Theorem 4.3,
Theorem 4.5, Lemma 5.2, Proposition 5.3 and Proposition 5.4.
Notation. We sometimes denote a0, b0, σ0, γ0 by a−, b−, σ−, γ− and ad, bd, σd, γd by
a+, b+, σ+, γ+. These parameters determine the behavior of the process and moment
properties. We use the alternative notation, when we wish to emphasize their role.

7.1 The process: properties of solutions and conditions for the
stationary distribution

T-CLKS shows several behaviors, it may behave as an OU process on some intervals, a
CIR or CKLS in others. Let us recall that we assumed that our process spends 0 time
at 0. The state space of T-CKLS is determined by the process behavior around 0, in
particular at I0 where it behaves as a standard CKLS process. The regime of the process
(transient, recurrent, positive-recurrent) is also determined by the behavior at I0 and Id.
Let us introduce the scale function S and the speed measure m(x) dx. The interested
reader could refer to [6, II.4] for a summary or find more details e.g. in [29, Chapter
VII, Section 3]. The scale function is continuous, unique up to a multiplicative constant,
and its derivative satisfies S ′(x) = exp

(∫ x
r1

2(a(y)−b(y)y)
σ(y)2y2γ(y)

dy
)
. The speed measure is given

by m(x) dx = 2
σ(x)|x|γ(x)S′(x)

dx. The state of space of the T-CKLS process, denoted I =

∪dj=0Ij, depends on the value of the parameters in I0 (a−, σ− and γ−). The Feller boundary
classification criteria (see e.g. [29]) implies the following lemma.

Lemma 7.1. Let X be the solution to the SDE (2.1).

• If γ− = 0, the state of space of the process is I = R.

• The state space is I = [0,+∞) and the point 0 is instantaneously reflecting, if
0 < γ− < 1/2 or if γ− = 1/2 and a− ≤ σ2

−/2.

• If γ− ∈ [1/2, 1], then I = (0,+∞) and 0 is an unattainable boundary.
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The regime of the process can be obtained by properties on the scale function and the
spead measure (see e.g. [29, Exercice 3.15 in Chapter X] and [16, Theorem 20.15]). We
recall that, in the recurrent case the measure m(x) dx is a stationary measure and in the
positive recurrent (we say ergodic) case it is a finite measure, so it can be renormalized
to the stationary distribution:

µ(dx) =
m(x)∫

I
m(y) dy

dx. (7.1)

The recurrent positivity property of the process only depends on the parameters below
the first threshold (on I0) and above the last threshold (on Id). In the following table, we
give conditions on the parameters a±, b± and σ± depending on the value of γ± such that
the process is ergodic (admits a stationary distribution).

a− > 0 and b− ∈ R, or

γ− = 1 a− = 0 and b− ≤ −σ2
−
2

γ− ∈ (0, 1) no other choice

γ− = 0 a− = 0 and b− > 0

a+ ∈ R and b+ > 0, or

γ+ = 1 a+ ∈ R and b+ ∈
[
− σ2

+

2
, 0
]

γ+ ∈ (1/2, 1) a+ ∈ R and b+ = 0

γ+ ∈ [0, 1/2] a+ < 0 and b+ = 0

Table 4: Parameter conditions for ergodicity of T-CKLS process X solution to (2.1).

7.2 Proof of Theorem 4.3

This proof relies on Lemma 5.2 whose proof is provided in Section 7.4.
We study the asymptotic behavior of (σTN ,N)2 − σ2

⋆. For j ∈ {0, · · · , d}, by Proposition
3.4, on the event {Qj,0

T > 0}, we have:

(σjTN ,N)
2 − σ2

j = σ2
j

Q
j,2γj
TN

−Q
j,2γj
TN ,N

Q
j,2γj
TN ,N

+
Qj
TN ,N

−Qj
TN

Q
j,2γj
TN ,N

.

By equations (3.8)-(3.7), we have:

∣∣Qj
TN

−Qj
TN ,N

∣∣ ≤ 2
∣∣M j,1

TN
−M j,1

TN ,N

∣∣+ 2max(|rj|, |rj+1|)
d∑
i=j

∣∣M i,0
TN

−M i,0
TN ,N

∣∣ ,
for j ∈ {1, · · · , d− 1} and for j ∈ {0, d}∣∣Qj

TN
−Qj

TN ,N

∣∣ ≤ 2
∣∣M j,1

TN
−M j,1

TN ,N

∣∣+ 2|r(j+1)∧d|
∣∣M j,0

TN
−M j,0

TN ,N

∣∣ .
Then, we conclude by making use of item (1) in Lemma 5.2 and the fact that
P
(
limT→+∞Qj,0

T > 0
)
= 1.

7.3 Proof of Theorem 4.5

This proof relies on Lemma 5.2 that we prove in the next section. For all N ∈ N and
ℓ ∈ {L, q-L} it holds that(

θ
(ℓ)
TN ,N

− θ⋆

)
=
(
θ
(ℓ)
TN ,N

− θ
(ℓ)
TN

)
+
(
θ
(ℓ)
TN

− θ⋆

)
.
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The second term on the right hand side of the equality provides the asymptotic behavior
by applying Theorem 3.5.
In the case ℓ = L, for j ∈ {0, · · · , d}, using equations (4.8) and (3.4), each component of
the first term can be rewritten as follows:(

Qj,k
TN ,N

Q
j,−2γj
TN ,N

Q
j,2−2γj
TN ,N

− (Q
j,1−2γj
TN ,N

)2
−

Qj,k
TN

Q
j,−2γj
TN

Q
j,2−2γj
TN

− (Q
j,1−2γj
TN

)2

)
Mj,m

TN

+
Qj,k
TN ,N

(Mj,m
TN ,N

−Mj,m
TN

)

Q
j,−2γj
TN ,N

Q
j,2−2γj
TN ,N

− (Q
j,1−2γj
TN ,N

)2
,

with k ∈ {−2γj, 1−2γj, 2−2γj} andm ∈ {−2γj, 1−2γj}. Let r̄ := max{|rj|, j = 1, . . . , d}.
Then, using formula (5.1) and (5.2), for j ∈ {1, · · · , d− 1}, we have

|Mj,m
TN

−Mj,m
TN ,N

| ≤ r̄m
d∑
i=j

|M i,0
TN

−M i,0
TN ,N

|+ |m|
2

∣∣∣(σjTN ,N)2 − σ2
j

∣∣∣ ∣∣∣Qj,m+2γj−1
TN

−Q
j,m+2γj−1
TN ,N

∣∣∣ .
and for j ∈ {0, d}:

|Mj,m
TN

−Mj,m
TN ,N

| ≤ r̄m|M j,0
TN

−M j,0
TN ,N

|+ |m|
2

∣∣∣(σjTN ,N)2 − σ2
j

∣∣∣ ∣∣∣Qj,m+2γj−1
TN

−Q
j,m+2γj−1
TN ,N

∣∣∣ .
This, Item (2) in Lemma 5.2 and Theorem 4.3 ensure that

T
−1/λ
N

∣∣∣Qj,k
TN ,N

−Qj,k
TN

∣∣∣ P−−−−→
N→+∞

0 and T
−1/λ
N

∣∣Mj,m
TN ,N

−Mj,m
TN

∣∣ P−−−−→
N→+∞

0

with λ = 1 to get the consistency of the MLE and λ = 2 for the speed of convergence.
The case ℓ = q-L, the first term

(
θ
(ℓ)
TN ,N

− θ
(ℓ)
TN

)
works analogously, exploiting Item (3) in

Lemma 5.2.

7.4 Proof of Lemma 5.2

This proof relies on Propositions 5.3 and 5.4, that we prove in the next sections. Hypoth-
esis HL and Hq-L ensure that we can apply these propositions.
In this proof we use the round ground notation ⌊t⌋∆N := tk for t ∈ [tk, tk+1) ⊆ [tk, tk+∆N ].
Moreover, without loss of generality, we assume TN ≤ N for all N ∈ N.
We need to prove that E

[
|Qj,k

TN
−Qj,k

TN ,N
|
]

and E
[
|M j,m

TN
−M j,m

TN ,N
|
]

are o(T 1/λ
N ). We follow

a similar reasoning as in [24] to show that the proof is based on Proposition 5.3 and 5.4:
For j ∈ {0, · · · , d} and k ∈ {−2γj, 1− 2γj, 2− 2γj, 2γj} ∪ {−1, 0, 1, 2}:

Qj,k
TN

−Qj,k
TN ,N

=

∫ TN

0

(Xk
t −Xk

⌊t⌋∆N
)1Ij(Xt) dt+

∫ TN

0

Xk
⌊t⌋∆N

(1Ij(Xt)− 1Ij(X⌊t⌋∆N )) dt

=

∫ TN

0

Xk
⌊t⌋∆N

(1Xt∈Ij ,X⌊t⌋∆N
/∈Ij − 1Xt /∈Ij ,X⌊t⌋∆N

∈Ij) dt+

∫ TN

0

(Xk
t −Xk

⌊t⌋∆N
)1Ij(Xt) dt,

therefore

E
[
|Qj,k

TN
−Qj,k

TN ,N
|
]
≤
∫ TN

0

E
[
|Xk

t −Xk
⌊t⌋∆N

|
]
dt+

∫ TN

0

E
[
|X⌊t⌋∆N |

k1Xt∈Ij ,X⌊t⌋∆N
/∈Ij

]
dt

+

∫ TN

0

E
[
|X⌊t⌋∆N |

k1Xt /∈Ij ,X⌊t⌋∆N
∈Ij

]
dt. (7.2)
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In a similar way, for m ∈ {0, 1} it holds

M j,m
TN ,N

−M j,m
TN

=

∫ TN

0

(
Xm
t 1Ij(Xt)−Xm

⌊t⌋∆N
1Ij(X⌊t⌋∆N )

)
(a(Xt)− b(Xt)Xt) dt

+

∫ TN

0

(
Xm
t 1Ij(Xt)−Xm

⌊t⌋∆N
1Ij(X⌊t⌋∆N )

)
σ(Xt)(Xt)

γ(Xt) dBt.

Using Triangular inequality, Hölder’s inequality, and Itô-isometry, we obtain

E
[
|M j,m

TN
−M j,m

TN ,N
|
]
≤
∫ TN

0

E
[
|Xm

t −Xm
⌊t⌋∆N

|(|aj|+ bj|X⌊t⌋∆N |+ bj|Xt −X⌊t⌋∆N )|)
]
dt

+

∫ TN

0

E
[
|X⌊t⌋∆N |

m1Xt∈Ij ,X⌊t⌋∆N
/∈Ij

(
max
i=0,··· ,d

|ai|+ max
i=0,··· ,d

|bi|(|X⌊t⌋∆N |+ |Xt −X⌊t⌋∆N |)
)]

dt

+

∫ TN

0

E
[
|X⌊t⌋∆N |

m1Xt /∈Ij ,X⌊t⌋∆N
∈Ij

(
max
i=0,··· ,d

|ai|+ max
i=0,··· ,d

|bi|(|X⌊t⌋∆N |+ |Xt −X⌊t⌋∆N |
)]

dt

+
√
2 max
i=0,··· ,d

(σi)

(∫ TN

0

E
[
(Xm

t −Xm
⌊t⌋∆N

)2(Xt)
2γ(Xt) +X2m

⌊t⌋∆N
(Xt)

2γ(Xt)1Xt∈Ij ,X⌊t⌋∆N
/∈Ij

+X2m
⌊t⌋∆N

(Xt)
2γ(Xt)1Xt /∈Ij ,X⌊t⌋∆N

∈Ij

]
dt
)1/2

. (7.3)

Hence, for λ ∈ {1, 2}, the proof of Proposition 5.2, reduces to prove the following state-
ments: ∫ TN

0

E
[
|Xt −X⌊t⌋∆N |

p
]
dt is o(T

1/λ
N ), (7.4)

and∫ TN

0

E
[
|X⌊t⌋∆N |

q1Xt /∈Ij ,X⌊t⌋∆N
∈Ij

]
dt and

∫ TN

0

E
[
|X⌊t⌋∆N |

q1Xt∈Ij ,X⌊t⌋∆N
/∈Ij

]
dt (7.5)

are o(T 1/λ
N ) where p and q depend on the value of m and k, the coefficients of M j,m and

Qj,k. In Table 5, we summarize the different values of p and q according to the estimators
we study. Hypothesis HL and Hq-L ensure that the moments corresponding to Table 5
are finite.
We are now reduced to prove equations (7.4) and (7.5) instead of (7.2) and (7.3). To do
so, we exploited Hypotheses HL and Hq-L on moments of µ. More precisely, in the case
of the QMLE and the volatility estimator, the hypothesis Hq-L was used in the bounds
for (7.3) with m = 1. Instead, for the MLE, the hypothesis HL was used to bound (7.2)
with k = −2γj and k = 2− 2γj.

θ
(1)
TN ,N

m ∈ {0}
k ∈ {−2γj,−1, 0, 1− 2γj, 2− 2γj}

p ∈ {1, 2, 4γj}
q ∈ {−1,−2γj, 1− 2γj, 0, 2− 2γj}

θ
(2)
TN ,N

m ∈ {0, 1}
k ∈ {0, 1, 2}

p ∈ {1, 2, 4}
q ∈ {0, 1, 2, 4}

σTN ,N
m ∈ {0, 1}
k ∈ {2γj}

p ∈ {1, 2}
q ∈ {0, 1, 2}

Table 5: Summary of quantity control in the MLE (4.8), QMLE (4.9) and the volatility
estimator (4.10).
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Note that, equations (7.5) can be simplified as follows. The tower property of conditional
expectation and Markov property imply that

E
[
|X⌊t⌋∆N |

q1Xt /∈Ij ,X⌊t⌋∆N
∈Ij

]
≤ E

[
|X⌊t⌋∆N |

qPX⌊t⌋∆N

(
τ ξ

j

Ij
< ∆N

)
1Ij(X⌊t⌋∆N )

]
,

and

E
[
|X⌊t⌋∆N |

q1Xt∈Ij ,X⌊t⌋∆N
/∈Ij

]
≤

d∑
i=0
i ̸=j

E
[
|X⌊t⌋∆N |

qPX⌊t⌋∆N

(
τ ξ

i

Ii
< ∆N

)
1Ii(X⌊t⌋∆N )

]
,

where ξj is a CKLS process with parameter (aj, bj, σj, γj) starting at ξj0 = X⌊t⌋∆N but
driven by a BM independent of F⌊t⌋∆N and τ

ξj
Ij

is the first hitting time of the interval Ij
for the process ξj.
The fact that (7.5) and (7.4) hold, follows from Proposition 5.4 and Proposition 5.3.

7.5 Proof of Proposition 5.3

Given s and t such that 0 ≤ s < t, we show that for every m ≥ 1 such that µ admits
finite m-th moment, there exists a constant C ∈ (0,∞) depending only on m and the
parameters of the process such that E [|Xt −Xs|m] ≤ C(t− s)m/2.
By the triangular inequality,

|Xt −Xs| ≤
∫ t

s

|a(Xu)− b(Xu)Xu| du+
∣∣∣∣∫ t

s

σ(Xu)(Xu)
γ(Xu) dBu

∣∣∣∣
≤ (t− s) max

i=0,··· ,d
|ai|+ max

i=0,··· ,d
|bi|
∫ t

s

|Xu| du+
∣∣∣∣∫ t

s

σ(Xu)(Xu)
γ(Xu) dBu

∣∣∣∣ .
Then, Jensen’s inequality ensures that for m ≥ 1 it holds that

E [|Xt −Xs|m] ≤ 22m−2 max
i=0,··· ,d

|ai|(t− s)m + 22m−2 max
i=0,··· ,d

|bi|(t− s)m−1

∫ t

s

E [|Xu|m] du

+ 2m−1E
[∣∣∣∣∫ t

s

σ(Xu)(Xu)
γ(Xu) dBu

∣∣∣∣m] .
Since X0 is distributed as the stationary distribution µ and µ admits finite m-th moment,
then supu∈[s,t] E [|Xu|m1Id(Xu)] <∞.
Burkholder-Davis-Gundy inequality implies that

E
[∣∣∣∣∫ t

s

σ(Xu)(Xu)
γ(Xu) dBu

∣∣∣∣m] ≤ E

[(∫ t

s

max
i=0,··· ,d

|σi|(Xu)
2γ(Xu) du

)m/2]
.

Then, we distinguish the case m ≥ 2 and m ∈ [1, 2). In both cases we apply Hölder’s
inequality but in a differnet way. If m ≥ 2, we obtain

E
[∣∣∣∣∫ t

s

σ(Xu)(Xu)
γ(Xu) dBu

∣∣∣∣m] ≤ (t− s)
m/2−1( max

i∈{0,··· ,d}
|σi|)

m/2

∫ t

s

E [|Xu|mγ+ ] du

≤ C(t− s)
m/2, (7.6)
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since, supu∈[s,t] E [|Xu|mγ+1Id(Xu)] < ∞. If m ∈ [1, 2), we reduce to the previous case
(m ≥ 2):

E
[∣∣∣∣∫ t

s

σ(Xu)(Xu)
γ(Xu) dBu

∣∣∣∣m] ≤
(
E

[∣∣∣∣∫ t

s

σ(Xu)(Xu)
γ(Xu) dBu

∣∣∣∣2m
])1/2

≤ C(t− s)
m/2.

The proof is thus completed.

7.6 Proof of the key result: Proposition 5.4

For all j ∈ {0, · · · , d}, let ξj denote a standard CKLS process with parameters (aj, bj, σj, γj)
starting at Xs. Let s, t ∈ [0,∞) be fixed such that 0 ≤ s < t. Note that:

E
[
|Xs|mPXs

(
τ ξ

j

Ij
< t− s

)]
≤ E

[
|Xs|m

(
PXs

(
τ ξ

j

rj ,↘ < t− s
)
+ PXs

(
τ ξ

j

rj+1,↗ < t− s
))

1Ij(Xs)
]
,

where τ ξ
j

rj ,↘ is the first hitting time from above of the level rj, τ ξ
j

rj+1,↗ is the first hitting
time from below of the level rj+1 of the process ξj.
Without loss of generality, we reduce to show that:

E
[
|Xs|mPXs

(
τ ξ

+

rd,↘ < t− s
)
1Id(Xs)

]
≤ C2(t− s)

1/2, (7.7)

and
E
[
|Xs|mPXs

(
τ ξ

−

r1,↗ < t− s
)
1I0(Xs)

]
≤ C1(t− s)

1/2, (7.8)

where C1 and C2 are strictly positive constant.
Indeed, in the other cases, Xs belongs in Ij for j /∈ {0, d}, which is compact, and the
desired inequality can be deduced using a similar reasoning.

7.6.1 Bounds on the first hitting time from above of the level rd: (7.7)

Let ξ+ := ξd, we focus on the case γ+ ∈ [0, 1). The case γ+ = 1 can be proven using a sim-
ilar reasoning, the proof is thus omitted. Let us recall that the parameters (a+, b+, σ+, γ+)
satisfy the ergodicity conditions in Table 4 in Section 7.1, in particular b+ ≥ 0.
The main idea of this proof is to bound the first hitting time by the hitting times of some
drifted Brownian motions. To do so, we apply the Lamperti transform and we bound the
process, over a well chosen time interval.
We define the process (Yu)u≥0 as follows. For all u ≥ 0 let Yu = ψ(ξ+u ) where
ψ(x) =

∫ x
0

1
σ+y

γ+ dy = x1−γ+

σ+(1−γ+)
(Lamperti tranform). We denote ψ−1 as the inverse

function of ψ, then Y is solution to the following SDE:

dYu =
a+
σ+

(ψ−1(Yu))
−γ+ − b+(1− γ+)Yu −

1

2
σ+γ+(ψ

−1(Yu))
γ+−1 du+ dBu.

Let ε > 0 be fixed and let τY[ψ(rd),ψ(Xs)+ε] denote the first hitting time of the boundary of
[ψ(rd), ψ(Xs) + ε] of the process Y . Then, we have

PXs
(
τ ξ

+

rd,↘ < t− s
)
= Pψ(Xs)

(
τYψ(rd),↘ < t− s

)
≤ Pψ(Xs)

(
τY[ψ(rd),ψ(Xs)+ε] < t− s

)
.
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By applying the Comparison Theorem (e.g. [13, p352]) until time τY[ψ(rd),ψ(Xs)+ε], Y −ψ(Xs)
is bounded from above by a drifted BM Bµ+ starting from 0 and from below by a drifted
BM Bµ− starting from 0 with parameters: µ+ = |a+|

σ+
r
−γ+
d

µ− = − |a+|
σ+
r
−γ+
d − b+(1− γ+)(ψ(Xs) + ε)− 1

2
σ+γ+r

γ+−1
d .

Hence, the following inequality holds:

PXs
(
τ ξ

+

rd,↘ < t− s
)
≤ P0

(
τB

µ−
ψ(rd)−ψ(Xs),↘ < t− s

)
+ P0

(
τB

µ+

ε,↗ < t− s
)
,

and classical results on the first hitting of a drifted Brownian motion (see [6]) yield

P0

(
τB

µ+

ε,↗ < t− s
)
≤ K1e

− ε2

2(t−s) , (7.9)

and,

P0

(
τB

µ−
ψ(rd)−ψ(Xs),↘ < t− s

)
≤ K2e

− |ψ(rd)−ψ(Xs)|2

2(t−s) +b+(1−γ+)ψ(Xs)2f(Xs), (7.10)

where K1 and K2 are two strictly positive constants, f is an explicit function which
depends only on Xs and such that limx→+∞ f(x)e−ψ(x)

2
= 0.

Let us note that

µ(x)1x≥rd = K3
2

σ2
+x

1−2
a+

σ2+

exp
(
−b+(1− γ+)ψ(x)

2
)
1x≥rd ,

with K3 a strictly positive constant. Since µ admits finite m-th moment by assumption,
inequality (7.7) holds. We avoid details here, but the interested reader could appreciate
the following remarks. When t − s is close to 0, e−K/(t−s) decreases faster than any
polynomial of (t− s). So, up to splitting the integral to distinguish between when
ψ(x)−ψ(rd) is small (e.g. O(

√
t− s)) and when it isn’t, we can easily compute the bounds.

To avoid repetitions, we do not mention anymore this remark.

7.6.2 Bounds on the first hitting time from below of the level r1: (7.8)

Let ξ− := ξ0, the parameters (a−, b−, σ−, γ−) satisfy the conditions ensuring ergodicity
in Table 4. We remark that, on a suitable time interval, the process (ξ−)2(1−γ−) can be
bounded from above by the norm of a multi-dimensional Brownian motion. This leads
to obtaining (7.8) under the assumption that γ− ∈ [0, 1/2]. Instead, if γ− ∈ (1/2, 1], this
bound is not enough. Thus, we additionally bound from below the Lamperti transform
of the process ξ− by a drifted Brownian motion.

The case γ− = 1/2. We remind the following results, for i ∈ {1, · · · , n}, we denote
B̃ := (B̃i)i≤n a n-dimensional Brownian motion. Itô formula and Levy characterization
imply that

∀u ≥ 0,

∣∣∣∣∣
∣∣∣∣∣σ2

−

4
B̃u −

√
Xs

n

∣∣∣∣∣
∣∣∣∣∣
2

2

= Yu,n = Xs + n
σ2
−

4
u+

∫ u

0

σ−
√
Yv,n dWv.

25



Then Y·,n is a CIR process whose coefficients satisfy the conditions for ergodicity in Table 4.
Moreover we take n such that 0 < a− < nσ2

−/4. So, by the Comparison Theorem, it holds
a.s. that ξ−u ≤ Yu,n for all 0 ≤ u ≤ τ ξ

−

r1,↗ and then:

PXs
(
τ ξ

−

r1,↗ ≤ t− s
)
≤ PXs

(
τ
Y.,n
r1,↗ ≤ t− s

)
.

Moreover, we have:

{τY.,nr1,↗ < t− s} ⊂
n⋂
i=1

{
∀u ≤ t− s,−

√
r1 ≤

(
σ2
−

4
B̃i
u −

√
Xs

n

)
≤

√
r1

}
.

Then, by the Comparison Theorem and the symmetry of BM, we obtain the following
inequality:

PXs
(
τ ξ

−

r1,↗ ≤ t− s
)
≤ 4P0

(
τ B̃

1
√
r1−

√
Xs,↗ ≤ t− s

)
≤ K4e

− (√r1−
√
Xs)

2

2(t−s) , (7.11)

with K4 a strictly positive constant. This, and the stationary distribution µ (7.1), if µ
admits finite m-th moment, yield inequality (7.8).

The case γ− ∈ [0, 1/2). By applying Itô formula on Y := (ξ−)2(1−γ−), for all u ≥ 0, we
have:

dYu = 2(1− γ−)

(
a−Y

1− 1
2(1−γ−)

u − b−Yu +
σ2
−(1− 2γ−)

2

)
du+ 2(1− γ−)σ−

√
Yu dBu

with Y0 = X
2(1−γ−)
s . Since 1 − 2γ− > 0, the Comparison Theorem ensures that for all

u ≤ τY
r2(1−γ−),↗

the process Y is bounded from above by the norm of a n-dimensional
Brownian motion. Hence, similarly to the case γ− = 1

2
, we have:

PXs
(
τ ξ

−

r1,↗ ≤ t− s
)
≤ 4P0

(
τ B̃

1

r
(1−γ−)

1 −X(1−γ−)
s ,↗

≤ t− s

)
≤ K5e

−

(
r
(1−γ−)

1 −X
(1−γ−)
s

)2

2(t−s) , (7.12)

with K5 a strictly positive constant. We conclude analogously to the case γ− = 1
2
.

The case γ− ∈ (1/2, 1). By Lamperti tranform, Yu := dψ(ξ−u ) with ψ(x) = x1−γ−

σ−(1−γ−)

(in particular Y0 = X
1−γ−
s

σ−(1−γ−)
). So,

dYu =

[
a−
σ−

((1− γ−)Yu)
1− 1

(1−γ−) − b−(1− γ−)Yu −
γ−

2(1− γ−)
Y −1
u

]
du+ dBu.

By the Comparison Theorem, it holds a.s. for all u ∈ [0,≤ τ[ψ(Xs)
2

,ψ(r1)]) that

Bµ−
u ≤ Yu and Y 2

u ≤
∣∣∣∣∣∣∣∣σ2

−

4
B̃u −

ψ(Xs)√
n

∣∣∣∣∣∣∣∣2
2

,

where Bµ− is drifted Brownian motion and B̃ := (B̃i)i≤n a n-dimensional Brownian mo-
tion. Here the drift parameter µ− and the dimension n are given by

µ− = − |b−|r1−γ−1

σ−
− γ−σ−

X
1−γ−
s

,

n(Xs) =

⌈
a−

σ2
−(1−γ−)

X1−2γ−
s + |b−|(1− γ−)

r
2(1−γ−)

1

σ2
−(1−γ−)2

⌉
.
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Finally, we obtain the following inequality:

PXs
(
τ ξ

−

r1,↗ < t− s
)
≤ P0

(
τB

µ−

−ψ(Xs)
2

,↘
< t− s

)
+ 4P0

(
τ B̃

1

ψ(r1)2−ψ(Xs)2,↗ < t− s
)

≤ K6

(
e−

|ψ(r1)−ψ(Xs)|2
2(t−s) + e−

(ψ(r1)
2−ψ(Xs)

2)
2

2(t−s)

)
, (7.13)

with K6 a strictly positive constant.
Similarly to the previous cases, this, and the stationary distribution µ (7.1), if µ admits
finite m-th moment, yield inequality (7.8).

The case γ− = 1. One can conclude by bounding directly the Lamperti transform from
above by a drifted Brownian motion as it has been done for the bounds on the first hitting
time from above of the level rd.

A Appendix: Auxiliary results
In this section, we provide some auxiliary results on well posedness of some integrals
appearing in the likelihood in Proposition A.1 and on the finiteness of the moments of
the stationary measure µ in Proposition A.3.
More precisely, we give some properties of the moments of the T-CKLS process. Some
are straightforward applications of the ergodic properties.
The following proposition describes the behavior of various integrals of the T-CKLS pro-
cess. It establishes whether the likelihood (2.4) is well defined or not.

Proposition A.1. Let X solution to the SDE (2.1).

1. If γ− = 1/2 and a− ≥ σ2
−/2 or if γ− ∈ (1/2, 1] ∪ {0}, then

∀t ≥ 0,

∫ t

0

1

X
2γ−
s

1I0(Xs) ds <∞ Px0 − a.s..

2. If γ− = 1/2 and a− < σ2
−/2 or if γ− ∈ [1/3, 1/2), then

∀t ≥ 0, Px0
(∫ t

0

1

X
2γ−
s

1I0(Xs) ds = ∞
)
> 0.

Remark A.2 (γ− < 1/3). Although we do not provide Proposition A.1 when
γ− ∈ (0, 1/3), let us mention that, if X0 is distributed according to the stationary measure
µ and γ− ∈ (1/4, 1/3), then for all t > 0 it holds Eµ

[∫ t
0
X−2γ−
s 1I0(Xs) ds

]
< ∞ and so

for all t > 0 Pµ
(∫ t

0
X−2γ−
s 1I0(Xs) ds <∞

)
= 1. Instead, if γ− ∈ (0, 1/4], then for all

t > 0 it holds Eµ
[∫ t

0
X−2γ−
s 1I0(Xs) ds

]
= ∞.

Proof. The first item follows from the fact that 0 is an unattainable boundary and con-
tinuity of the trajectories: the image of [0, t] through each trajectory s 7→ Xs(ω) is a
compact of ]0,∞[.
The second item, for γ− = 1/2 has been proven in [5] by using properties of the Laplace
transform.
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Let us consider the remaining case: γ− ∈ [1/3, 1/2). Since 1− γ− ≤ 2γ−, for every small
ε > 0 we have

P
(∫ t

0

1

X
1−γ−
s

ds = ∞, ∀s ≤ t Xs ≤ ε

)
≤ P

(∫ t

0

1

X
2γ−
s

1I0(Xs) ds = ∞
)
.

Then by applying the Itô formula, and the Comparison Theorem, on the event
{∀s ≤ t, Xs ≤ ε} it holds for all s ≤ t that X2(1−γ−)

s ≤ Y ε
s where

dY ε
s = 2(1− γ−)

(
a−ε

1− 1
2(1−γ−) − b−Y

ε
s +

σ2
−(1− 2γ−)

2

)
ds+ 2(1− γ−)σ−

√
Y ε
s dBs.

Let ε such that ε < min

{
1,
(
σ2
−γ−
2a−

)1+1/(1−2γ−)
}

, then the process Y ε is a CIR process

and it reaches the point 0. Then, Theorem 2.3 in [27] ensures that

0 < P

(∫ t

0

1√
Y ε
s

ds = ∞

)
≤ P

(∫ t

0

1

X
(1−γ−)
s

ds = ∞, ∀s ≤ t Xs ≤ ε

)
.

This completes the proof.

The following proposition describes the behaviour of the moments from the stationary
distribution of the T-CKLS process in the ergodic regime. We recall that the stationary
distribution µ is given by (7.1).

Proposition A.3. Let m ∈ [0,∞) and assume that the conditions in Table 4 (ensuring
that µ is the stationary distribution) hold. Then µ admits finite m-th moment unless it
holds simultaneously m ̸= 0, b+ = 0, and γ+ ∈ [1/2, 1) in which case the m-th moment is
finite if

• γ+ = 1/2, b+ = 0 and a+ < −mσ2
+

2
.

• γ+ ∈ (1/2, 1), b+ = 0 and m < γ+ − 1/2 < 1.

• γ+ = 1 and b+ ≥ (m−1)σ2
+

2
.

The measure µ admits finite −m-th moment unless γ− ∈ (0, 1/2] and m ̸= 0 in which
case the (−m)-th moment is finite if

• γ− = 1/2 and a− > m
σ2
−
2

.

• γ− ∈ [0, 1/2) and m < 1− 2γ− ≤ 1.
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