Investigations on Physics-Informed Neural Networks for Aerodynamics - Archive ouverte HAL
Communication Dans Un Congrès Année : 2024

Investigations on Physics-Informed Neural Networks for Aerodynamics

Résumé

Physics-Informed Neural Networks (PINNs) have recently emerged as a novel approach to simulate complex physical systems on the basis of both data observations and physical models. In this work, we investigate the use of PINNs for various applications in aerodynamics and we explain how to leverage their specific formulation to perform some tasks effectively. In particular, we demonstrate the ability of PINNs to construct parametric surrogate models, to achieve multiphysic couplings and to infer turbulence characteristics via data assimilation. The robustness and accuracy of the PINNs approach are analysed, then current issues and challenges are discussed.
Fichier principal
Vignette du fichier
aero2024.pdf (1.06 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04519693 , version 1 (25-03-2024)

Licence

Identifiants

  • HAL Id : hal-04519693 , version 1

Citer

Guillaume Coulaud, Maxime Le, Régis Duvigneau. Investigations on Physics-Informed Neural Networks for Aerodynamics. 58th 3AF International Conference on Applied Aerodynamics, Mar 2024, Orleans, France, France. ⟨hal-04519693⟩
175 Consultations
117 Téléchargements

Partager

More