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Abstract

Physics-Informed Neural Networks (PINNs) have recently emerged as a novel approach to simulate
complex physical systems on the basis of both data observations and physical models. In this work,
we investigate the use of PINNs for various applications in aerodynamics and we explain how to
leverage their specific formulation to perform some tasks effectively. In particular, we demonstrate
the ability of PINNs to construct parametric surrogate models, to achieve multiphysic couplings and
to infer turbulence characteristics via data assimilation. The robustness and accuracy of the PINNs
approach are analysed, then current issues and challenges are discussed.

1 Introduction

For decades, simulation methods in engineering rely on Partial Differential Equation (PDE) solvers, such
as Finite-Volume or Finite-Element methods, which have proved their robustness and accuracy for most
application domains. Recently, data-based approaches have emerged as possible concurrents, especially
in problems for which PDE models are not well established, e.g. turbulence phenomena. However, in
several engineering domains, data are not so easy to collect or generate, which reduces the range of
applicability of this methodology. Physics-Informed Neural Networks (PINNs) [6] offer a compromise by
dealing with both PDEs and data observations to construct a mixed model. Numerous articles have since
been published in the literature to demonstrate their potentiality for different applications [2].

In this work, we investigate the use of PINNs for non-classical problems, for which their specfic
formulation can be leveraged to define an efficient resolution procedure. In particular, we investigate the
construction of parametric models that allow to get an instantaneous response for a range of physical
parameters, after the training has been achieved. Then, the use of PINNs to facilitate multidisciplinary
couplings is studied. Finally, their ability to handle both models and data is exploited to devise an
efficient data assimilation approach. In all cases, flow problems are used as illustrations.

2 Methodology

2.1 PINNs principle

The objective of PINNs is to simulate a physical system using a Multi-Layer Perceptron (MLP) neural
network, which is trained according to known physical rules as well as a set of observation data [6]. For
the sake of simplicity, we consider a generic problem to present the methodology, for which the physical
rules are expressed as a first-order PDE, associated to Dirichlet and Neumann boundary conditions, and
initial condition. The extension to more complex governing equations will be straightforward. Thus, the
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problem writes: 

∂u
∂t +N (u, ∂u

∂x ) = 0 (x, t) ∈ Ω× [0, T ]

u(xD, t) = gD(xD, t) (xD, t) ∈ ∂ΩD × [0, T ]
∂u
∂n (x

N , t) = gN (xN , t) (xN , t) ∈ ∂ΩN × [0, T ]

u(x, 0) = gI(x) x ∈ Ω

u(xi, ti) = u⋆
i i = 1, . . . , Ndata

(1)

where Ω is an open domain, (x, t) the space-time coordinates, u the solution field and N denotes a
first-order differential operator. gD, gN and gI define respectively the Dirichlet, Neumann and initial
conditions. Additionally, a set of observation data (u⋆

1, . . . , u
⋆
Ndata

) are provided.
In this context, the input of the MLP network is composed of the space-time coordinates (x, t) of

a given point, while its output predicts the solution field u at the same point. The MLP network is
controlled by a set of parameters θ, which have to be calibrated to fulfill the governing equations and
fit the observation data. This learning phase consists in the minimization of a loss function L that
embeds all different criteria. An overview of the PINNs principle is depicted in Fig. 1, while the following
subsections describe the different processing steps.

descent step ∂
∂θ L = LPDE + LI + LD + LN + Ldata

Ldata = 1
Ndata

∑Ndata

i=1 [u(xi, ti)− u⋆
i ]

2

LI = 1
NI

∑NI

i=1

[
u(xi, 0)− gI(xi, 0)

]2
LD = 1

ND

∑ND

i=1

[
u(xD

i , ti)− gD(xD
i , ti)

]2
LN = 1

NN

∑NN

i=1

[
∂u
∂n (x

N
i , ti)− gN (xN

i , ti)
]2

LPDE = 1
NPDE

∑NPDE

i=1

[
∂u
∂t (xi, ti) +N (u, ∂u

∂x )(xi, ti)
]2∂

∂x

∂
∂t

∂
∂nθ

x

t
u

Figure 1: Overview of PINNs principle

Remark 1. Additional physical parameters can be added as input of the network, allowing to construct
a parametric surrogate, as will be shown in section 3.

Remark 2. In the learning typology, PINNs can be considered as semi-supervised learning algorithms,
since they rely partially on labelled data.

2.2 Multi-layer perceptron

As explained above, the MLP network is the core of the PINNs methodology which predicts the solution
of the problem. It is composed of a set of L layers: an input layer, L− 2 intermediate hidden layers and
an output layer. Each layer contains a set of Nl neurons, each of them being connected to all the neurons
of the previous layer. A neuron is a mathematical operator that applies a non-linear activation function
α to the weighted sum of its own inputs plus a bias factor. Thus, the value of the ith neuron of the layer
l writes:

f l
i = α(

Nl−1∑
j=1

wl
ijf

l−1
j + bli) (2)

where wl
ij is the weight of the connection with the neuron j of the layer l − 1 and bli is the bias. The

values of the neurons in the first layer correspond to the MLP inputs. As a consequence, the output
of the MLP u is obtained by propagating forward the input values (x, t) through the network layers,
resulting in a composition of the activation functions. Such a network is characterized by its weights and
biases, which constitute the set of parameters θ to be calibrated during the learning phase. It has been
shown that such networks have the ability to represent a large variety of functions [3]. However, there is
no guarantee that the learning procedure converges to a satisfactoy network [4].
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Remark 3. No activation is usually applied to the last layer, then the predicted solution is just a linear
combination of the NL−1 values obtained in the last but one layer. The use of the hidden layers can
therefore be interpreted as the construction of NL−1 suitable basis functions to represent the solution.

Remark 4. The ability of neural networks to represent complex functions depends on the number of
neurons and their connections. Thus, the network parameters, i.e. connection weights and neuron biases,
play the role of degrees of freedom for classical solvers. However, they are not located spatially, contrary
to the case of nodal numerical schemes.

2.3 Physics-based loss

To train the network, one seeks for the parameters θ that minimize a loss function L, which should embed
criteria reflecting both the fitting of observation data and the fulfillment of the governing equations with
boundary and initial conditions. Thus, it is written as a sum of specific losses:

L = LPDE + LI + LD + LN + Ldata (3)

The four first loss terms are computed as the Mean Squared Error (MSE) associated to the PDE residuals,
initial and boundary conditions, evaluated for a space-time sampling of the domain, whereas the last term
is computed as the MSE associated to observation data:

LPDE =
1

NPDE

NPDE∑
i=1

[
∂u

∂t
(xi, ti) +N (u,

∂u

∂x
)(xi, ti)

]2
(4)

LD =
1

ND

ND∑
i=1

[
u(xD

i , ti)− gD(xD
i , ti)

]2
(5)

LN =
1

NN

NN∑
i=1

[
∂u

∂n
(xN

i , ti)− gN (xN
i , ti)

]2
(6)

Ldata =
1

Ndata

Ndata∑
i=1

[u(xi, ti)− u⋆
i ]

2
(7)

Different types of sampling can be employed [7] but a random sampling based on a uniform or latin
hypercube distribution usually performs well.

The evaluations of the derivatives of the solution (network output) with respect to the coordinates
(network inputs), necessary to estimate the loss terms associated to the PDE residuals and the Neumann
conditions, are carried out using automatic differentiation techniques, which are included in most AI
software libraries.

Remark 5. Several authors introduce a weighted sum of the losses to control the balance of the different
terms [7], but we found not mandatory to consider such additional parameters.

Remark 6. The use of exact derivatives is a major difference compared to classical PDE solvers, which
approximate the differential operators to construct the numerical schemes.

Remark 7. This differentiation step necessitates the use of regular activation functions. Thus, some
functions commonly employed in image processing (e.g. Relu) cannot be employed here, due to their lack
of regularity.

Remark 8. The sampling plays a role similar to that of the mesh for classical solvers, since it defines
where the PDE residuals are evaluated. However, sampling is not connected to the definition of the degrees
of freedom. Note also that no approximation of the geometry is achieved during the sampling, contrary
to the meshing step.

2.4 Learning procedure

The minimization of the loss function L is the critical step of the learning task. This is a challenging
optimization problem for the following reasons: i) the dimension of the variable θ can be extremely large
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ii) the non-linearity of the network representation yields non-convex, anisotropic and possibly multimodal
loss functions.

Only gradient-based descent methods can solve such problems involving a large number of variables.
Thus, automatic differentiation techniques are again used to compute the derivative of the loss function
L with respect to the parameters θ.

In machine learning, stochastic gradient methods are usually employed, due to the use of batch pro-
cedures to split large datasets into smaller ones, which introduces randomness in the loss function evalu-
ation. The most commonly employed method is ADAM algorithm, which is a first-order approach based
on adaptive estimates of lower-order moments. However, several authors reported the low convergence
rates obtained using ADAM algorithm to train PINNs, caused by the anisotropy of the loss function [4, 7].
As a consequence, higher-order descent methods, such as L-BFGS algorithm, are usually employed to
accelerate the final convergence after an initial phase carried out using ADAM algorithm, which is more
robust.

Remark 9. L-BFGS algorithm and other quasi-Newton methods rely on the iterative construction of the
Hessian matrix of the loss function and, therefore, do not comply with the use of batch procedures.

Remark 10. The specific form of the loss function, expressed as a sum of terms of different nature, yields
ill-conditioned problems [4]. Essentially, the minimization of all loss terms constitutes a multi-criterion
optimization problem, which is difficult to solve by just summing the criteria.

2.5 Synthesis

PINNs appear finally as a collocation method based on a neural network representation of the solution.
Automatic differentiation plays a critical role, for the computation of the PDE residuals as well as
the descent direction. The resulting procedure is particularly versatile and straightforward to implement,
making the approach especially interesting for model experimentation. A second important characteristic
is the ability of PINNs to handle both data and PDE models, filling the gap between simulation and
experiments. However, PINNs do not rely so far on a safe theoretical basis to guarantee the results in terms
of convergence and accuracy. Especially, the minimization of the loss function remains a difficult task,
often problem dependent, despite the numerous algorithmic extensions proposed by the community [2, 7].

An interesting feature of PINNs is the use of an optimization formulation to solve the PDE system,
yielding a very flexible approach that can be easily and efficiently extended to more complex problems.
In the following sections, we show how to leverage this formulation to construct parametric surrogate
models (see section 3), simulate multi-physic systems (see section 4) or assimilate data in the context of
turbulence (see section 5).

3 Parametric simulation

3.1 Method

The baseline PINNs methodology presented in the previous section can be easily extended to simulate a
problem for a range of physical parameters, yielding a parametric surrogate. As example, we present in
the following subsection the simulation of the flow in a differentially heated square cavity for a range of
viscosity and conduction coefficients. Once the network is trained, any configuration can then be simulated
for a negligible cost. This parametric approach is especially interesting for uncertainty quantification or
design exploration.

The modification to carry out is straightforward since it just consists in introducing the physical
parameters as additional inputs of the network and, consistently, extend the sampling to cover the
domain. As illustration, we introduce a model parameter γ affecting the spatial differential operator in
the problem defined by Eq. 1:

∂u

∂t
+Nγ(u,

∂u

∂x
) = 0 (x, t, γ) ∈ Ω× [0, T ]× [γm, γM ] (8)

The procedure is then modified as follows: γ is added as third input of the network and the evaluation
of the loss terms is achieved for sampling points of extended coordinates (xi, ti, γi). This modification is
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negligible in terms of implementation because the simulation is formulated as an optimization problem,
whose only modification concerns the loss function evaluation. Nevertheless, the computational effort is
obviously increased, due to the enlargement of the sampling.

3.2 Application to heated cavity case

We demonstrate the ability of PINNs to construct such parametric simulations for a natural convection
problem with variations of two fluid coefficients: we consider a steady flow in a squared domain of size
2×2 subject to differentially heated lateral walls. The temperature of the left wall is TL = 1, whereas the
one of the right wall is TR = −1, adiabaticity being imposed for top and bottom walls. The governing
equations are the incompressible Navier-Stokes equations with boyancy and gravity, denoted as NNS :

∂u

∂x
+

∂v

∂y
= 0 (9)

u
∂u

∂x
+ v

∂u

∂y
+

1

ρ

∂p

∂x
− µ

ρ
(
∂2u

∂x2
+

∂2u

∂y2
) = 0 (10)

u
∂v

∂x
+ v

∂v

∂y
+

1

ρ

∂p

∂y
− µ

ρ
(
∂2v

∂x2
+

∂2v

∂y2
)− βgT − g = 0 (11)

u
∂T

∂x
+ v

∂T

∂y
− kf

ρCp
(
∂2T

∂x2
+

∂2T

∂y2
) = 0 (12)

where the velocity is denoted as (u, v), the pressure p and the temperature T . The coefficients charac-
terizing the fluid are the density ρ = 1, the viscosity µ, the expansion coefficient β = 0.1, the thermal
conductivity kf and the heat capacity Cp = 1. The objective is to simulate the flow for a range of
viscosity µ ∈ [0.1, 0.01] and conductivity kf ∈ [0.1, 0.01].

descent step ∂
∂θ L = LNS + LW + LT + LA

LW = 1
NW

∑NW

i=1

[
u(xW

i , yWi )
]2

+
[
v(xW

i , yWi )
]2

LT = 1
NT

∑NT

i=1

[
T (xT

i , y
T
i )− TT

i

]2
LA = 1

NA

∑NA

i=1

[
∂T
∂n (x

A
i , y

A
i )

]2

LNS = 1
NNS

∑NNS

i=1

[
NNS(xi, yi, µi, k

f
i )
]2∂

∂x

∂
∂y

∂2

∂x2

∂2

∂y2

∂
∂n

θ

x

y

µ

kf

u

v

T
p

Figure 2: Parametric simulation for the heated cavity case

The network considered has four inputs (x, y, µ, kf ) and four outputs (u, v, T, p), as depicted in Fig. 2.
It includes 3 hidden layers of 50 neurons, with hyperbolic tangent activation functions α = tanh. The loss
function is the sum of the MSE terms related to the residuals of the governing equations LNS , the no-slip
conditions on the walls LW , the adiabatic conditions on the top and botton walls LA and the imposed
temperature on the left and right walls LT . Note that no observation data is provided for this case.
Regarding the sampling, a latin hypercube distribution of size 2500 is adopted for the spatial domain,
as shown in Fig. 3. Additionnally, the range of variation of the coefficients ν and kf is discretized with
4 equidistributed values. Thus, the complete sampling based on a tensorial product counts 2500× 4× 4
points. The minimization of the loss function is achieved using the ADAM algorithm (3,000 epochs,
learning rate 10−3) followed by the L-BFGS algorithm (7,000 epochs).

The solution fields predicted for some parameter values can be seen in Fig. 4. For the case (ν, kf ) =
(0.05, 0.05), a separate network has been trained independently to assess the efficiency of the parametric
model. As shown in Fig. 5, a satisfactory agreement is observed between the fields obtained from the
parametric model and the single-parameter model.
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Figure 3: Sampling for the cavity case.

Figure 4: Predictions for different parameter values (parametric simulation): µ = 0.1 and kf = 0.1 (top),
µ = 0.05 and kf = 0.05 (middle), µ = 0.01 and kf = 0.01 (bottom)
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Figure 5: Prediction for µ = 0.05 and kf = 0.05 (single-parameter simulation )
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4 Multidisciplinary couplings

4.1 Method

The coupling of different disciplines, encountered for instance in aero-thermal or aero-structural problems,
is generally a difficult task because of the presence of phenomena characterized by different spatial and
temporal scales and by different mathematical natures (e.g. hyperbolic vs elliptic). As a consequence,
each discipline is simulated by using a specific mesh, time step and numerical method, yielding a tedious
coupling procedure at the interface.

In contrast, the PINNs formulation allows a straightforward implementation for coupled systems:
each discipline is predicted by its own network, thus permitting to adjust the network complexity to
the concerned physics, whereas a global loss function gathers the contributions of the different PDEs,
boundary conditions, possible data, as well as coupling conditions. By minimizing this global loss, one
solves simultaneously the different physics and their coupling. Of particular interest is the avoidance of
any fixed-point algorithm to ensure the convergence of the coupling conditions, which would necessitate
to implement an additional iterative loop. Note also that all coupling conditions are accounted simulta-
neously and it is not necessary to devise a specific strategy (e.g. Dirichlet-Neumann method) to establish
the coupling.

In the following section, a typical implementation is detailed in the contexte of a conjugate heat
transfer problem.

4.2 Application to conjugate heat transfer

The two-dimensional computational domain is composed of a fluid part Ωf and a solid part Ωs, delimited
by a coupling interface I, as depicted in Fig. 6. Regarding the fluid, we consider a channel with imposed
velocity (parabolic distribution with maximum uin = 1) and temperature Tin = 0.2 at inlet Γin, whereas
a flow rate conservation is imposed at outlet Γout. A no-slip condition is prescribed at the walls Γw and
I. Adiabaticity conditions are imposed at the walls Γw.

Γin

Γw

Γout

Γw

Ωf

2

0.5

Γw Γw

Γhot

I

Ωs 0.5

1

Figure 6: Conjugate heat transfer problem

The flow is governed by incompressible Navier-Stokes equations with thermal transport 9-12, but
neglecting the gravity effects. The fluid coefficients are ρ = 1, µ = 0.01, kf = 0.025 and Cp = 1.
Regarding the solid, the temperature Thot = 1 is fixed at the bottom boundary Γhot, whereas adiabaticity
is imposed on side walls Γw. The temperature field in the solid is governed by the heat transfer equation,
denoted as NHT :

ks(
∂2T

∂x2
+

∂2T

∂y2
) = 0 (13)

where ks = 1 is the conductivity coefficient in the solid. At the interface I between fluid and solid
domains, a two-condition coupling is adopted, expressing the continuity of the temperature and thermal
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flux:

T |f = T |s (14)

kf
∂T

∂n

∣∣∣∣
f

= ks
∂T

∂n

∣∣∣∣
s

(15)

The simulation relies on two networks, with two inputs (x, y), and respectively four outputs (u, v, T, p)
for the fluid one and a single output T for the solid one, as shown in Fig. 7. The networks count
respectively three hidden layers of 50 neurons and three hidden layers of 20 neurons, both of them
employing the hyperbolic tangent activation function.

Lc1 = 1
Nc

∑Nc

i=1

[
T (xc

i , y
c
i )|f − T (xc

i , y
c
i )|s

]2
Lc2 = 1

Nc

∑Nc

i=1

[
kf ∂T

∂n

∣∣
f
(xc

i , y
c
i )− ks ∂T

∂n

∣∣
s
(xc

i , y
c
i )
]2 L = Lf + Ls + Lc

descent step
∂

∂θf

Lf = LNS + LW + Luin
+ Lq + LTin

+ LA

LW = 1
NW

∑NW

i=1

[
u(xW

i , yWi )
]2

+
[
v(xW

i , yWi )
]2

Luin
= 1

Nin

∑Nin

i=1

[
u(xin

i , yini )− uin

]2
Lq =

[
1

Nout

∑Nout

i=1 u(xout
i , youti )− qout/Γout

]2
LTin

= 1
Nin

∑Nin

i=1

[
T (xin

i , yini )− Tin

]2
LA = 1

NA

∑NA

i=1

[
∂T
∂n (x

A
i , y

A
i )

]2

LNS = 1
NNS

∑NNS

i=1 [NNS(xi, yi)]
2

∂
∂x

∂
∂y

∂2

∂x2

∂2

∂y2

∂
∂n

θf

x

y

u

v

T
p

fluid model

coupling

Ls = LHT + Lhot + LA

descent step ∂
∂θs

Lhot =
1

Nhot

∑Nhot

i=1

[
T (xhot

i , yhoti )− Thot

]2LA = 1
NA

∑NA

i=1

[
∂T
∂n (x

A
i , y

A
i )

]2

LHT = 1
NHT

∑NHT

i=1 [NHT (xi, yi)]
2

∂
∂x

∂
∂y

∂2

∂x2

∂2

∂y2

∂
∂n

θs

x

y T

solid model

Figure 7: Coupled simulation for the conjugate heat tranfer problem

The domains are sampled using respectively 1600 and 225 points. For the fluid part, the training
requires the computation of the loss term related to the Navier-Stokes equations LNS , the no-slip condition
at the wall LW , the inlet condition for the velocity Luin

, the outlet condition for the flow rate Lq, the
adiabaticity condition LA and the imposed temperature at inlet LTin . For the solid part, one has to
evaluate the loss terms related to the heat transfer equation LHT , the adiabaticity condition LA and the
imposed temperature at the hot boundary Lhot. Moreover, the coupling conditions are implemented as
two additional loss terms LC1

and LC2
expressing the MSE of the conditions 14-15. These terms use

the predictions of both networks. The global loss is finally evaluated by sommation of all the terms and
differentiated with respect to the parameters of each network θf and θs. The update of the two networks
can then be achieved independently. As clearly shown in Fig. 7, a single iterative loop is performed to
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solve simultaneously the physics related to the fluid and solid, as well as the coupling conditions. The
training is performed using the ADAM algorithm for 50,000 epochs (learning rate 0.001) followed by the
BFGS algorithm for 2000 epochs. Note that other optimization strategies can be considered to update
the networks [1].

Figure 8: Temperature predicted: left PINNs, right Finite-Element method

The temperature field obtained using the PINNs approach is compared to the one resulting from a
Finite-Element computation based on FreeFEM software1, as shown in Fig 8. The agreement is satis-
factory, however some discrepancies can be observed at the coupling interface. The temperature and
heat flux at the interface are plotted in Fig. 9 and compared to the FreeFEM reference. As seen, the
two coupling conditions are correct along the interface, except at the origin where the network is not
able to capture the flux discontinuity, due to the regularity of the activation function employed. Finally,
some metrics are computed on a fine cartesian grid of size 100× 100, to assess the error for the solution
fields (with respect to FreeFEM results), the PDE residuals and boundary conditions. As can be seen in
Tab. 1 and 2, the error is low, except for the residuals of the heat transfer equation for the fluid, which
is localized in the vicinity of the origin, as already discussed.
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Figure 9: Temperature (left) and heat flux (right) at the interface

1https://freefem.org/
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Temperature 6.6× 10−6

Velocity (u) 1.0× 10−5

Velocity (v) 7.3× 10−6

No-slip 3.4× 10−7

Inlet 3.1× 10−8

Outlet 2.9× 10−12

Adiabaticity 1.3× 10−5

Heat eq. 7.9× 10−3

Continuity eq. 7.1× 10−6

Momentum x eq. 1.2× 10−5

Momentum y eq. 7.0× 10−6

Table 1: MSE for the physical fields, boundary conditions and PDE residuals for the fluid domain

Temperature 2.2× 10−6

Dirichlet 5.1× 10−8

Adiabaticity 1.4× 10−5

Heat eq. 1.1× 10−5

Table 2: MSE for the physical fields, boundary conditions and PDE residuals for the solid domain
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5 Data assimilation

5.1 Method

The ability of PINNs to handle both physical models and data, as well as their formulation as an op-
timization problem, make them especially well adapted to the resolution of data assimilation or inverse
problems. In this context, some physical parameters of the problem γ are unknown and one aims at
estimating their values by minimizing the distance between the solution predicted u(γ) and some obser-
vation data u⋆. Thus, for the system governed by Eq. 8, for which γ plays now the role of the unknown
parameter, this can be expressed as an optimization problem contrained by PDEs:

minJ (γ) =
1

2
∥u− u⋆∥2 s.t.

∂u

∂t
+Nγ(u,

∂u

∂x
) = 0 (16)

Boundary and initial conditions are omitted here for the sake of readability. The classical way to solve
such a problem is to embed the resolution of the physical system in an optimization loop, including
an adjoint method to estimate the gradient of J with respect to γ and perform a descent step. This
approach is quite expensive because several PDE systems (state and adjoint) have to be solved in an
iterative fashion.

Again, the specific formulation of PINNs allows to simplify the implementation and solve simultane-
ously the physics and the data assimilation problem, avoiding thus to introduce a second optimization
loop. More precisely, the functional J (γ) is added in the loss function and its gradient is computed
by automatic differentiation, as other loss terms. Then, the value of γ is updated by a descent step,
as the network parameters θ. Therefore, the two optimization problems (determination of the network
parameters and unknown physical parameters) are solved simulataneously.

In the following section, we apply this paradigm to solve a data assimilation problem involving tur-
bulent flows.

5.2 Application to backward facing step

We consider the Reynolds-Averaged Navier-Stokes (RANS) equations for incompressible flows, with the
Boussinesq hypothesis, denoted as NRANS :

∂U

∂x
+

∂V

∂y
= 0 (17)
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with P̃ = P + 2
3ρK, where (U, V ) represent the components of the mean velocity, P the mean pressure,

νt the turbulent kinematic viscosity and K the turbulent kinetic energy. The resolution of (U, V, P )
necessitates to introduce a turbulence closure to estimate νt and K. However, it is well known that
turbulence models are limited in their range of application, therefore we aim at using PINNs to solve
a data assimilation problem, based on observations of mean velocity profiles, to predict the turbulent
viscosity field without introducing a turbulence model.

The flow over a backward facing step is considered as test-case, at moderate Reynolds number
Re = 5100, for which experimental and Direct Numerical Simulation (DNS) data are available. This
configuration has already been studied using PINNs[5] and thus comparisons can be drawn regarding the
results. The step height is h = 0.051, the channel height is 6h and its length 23h, the step being located
at x = 3h. We consider data collected at four sections located at x = 0, x = 7, x = 13 and x = 22, the
mean velocity U⋆

i at 22 observation points for each section being actually used.
The network here counts two inputs (x, y), four outputs (U, V, P̃ , ν̃) and five hidden layers with

{8, 16, 32, 16, 8} neurons. Note that we solve the problem for P̃ directly because there is no way to
distinguish P from K. The network used is far smaller than the one employed in [5], which counts five
layers of 128 neurons. We enforce the positivity of the turbulent viscosity by setting νt = ν̃2, which plays
the role of the unknown field for the inverse problem. The training is achieved by minimizing the global
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descent step ∂
∂θ L = LRANS + LW + Ldata

LW = 1
NW
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[
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]2

+
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]2
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Figure 10: Data assimilation problem for the backward facing step case

loss function, composed of the MSE related to the RANS equations LRANS , the no-slip conditions at
the wall LW and the MSE related to the data Ldata, as depicted in Fig 10. We do not use additional
terms to impose oulet boundary condition or velocity at the top boundary, contrary to [5], yielding a
very simple implementation. The loss terms related to RANS equations and no-slip conditions are based
on samplings of size 8000 and 2750 points respectively, according to a Latin Hypercube distribution, as
seen in Fig. 11. The training is achieved using using ADAM algorithm (5,000 epochs) followed by BFGS
algorithm (15,000 epochs).

Figure 11: Sampling and data sections

Figure 12: Evolution of the loss terms

The convergence of the training process is shown in Fig. 12. As seen, the use of a BFGS optimizer
is critical for an efficient minimization of the loss function, ADAM algorithm being unable to achieve a
significant reduction. The positivity enforcement of νt has been found necessary for a fast and reliable
convergence. The solution fields obtained are depicted in Fig. 13. To assess the accuracy of these results,
the DNS velocity profiles at sections x = 9 and x = 18, which are not included in the training set, are
compared to those predicted by PINNs method in Figs. 14. As seen, these profiles are correctly inferred
by the network. The correlation profiles u′v′, computed from the turbulent viscosity field thanks to
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the Boussinesq hypothesis are compared to the ones obtained from DNS (see Figs. 15). A satisfactory
agreement is observed, similar to those found in the literature using simulations based on standard
tubulence closures.

Figure 13: Solution U (top left), V (top right), P̃ (bottom left) and νt (bottom right)

Figure 14: Velocity profile at x = 9 (left) and x = 18 (right)

Figure 15: Correlation profile at x = 9 (left) and x = 18 (right)
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6 Discussion

The above sections demonstrate the potentiality of PINNs to solve some non-classical PDE problems. In
this section, we aim at analysing more in depth the accuracy and robustness of the proposed method. In
this perspective, the data assimilation problem presented in the previous section is considered as test-
case and some statistical analyses are carried out. Some parameters of the method are modified and,
for each case, ten trials are performed using different initializations of the network parameters θ. Three
error metrics are then estimated for the PDE residuals, the data fitting and the turbulent correlations
inference, using sampling points and data not included in the training.

The results obtained using different sampling sizes are shown in Fig. 16. As expected, an increase
of the sampling size reduces the Root Mean-Square Error (RMSE) related to the residuals, in terms of
average and variance. Note that the errors related to the data fitting and the correlations inference are
not so much impacted. Consequently, a very fine sampling is not necessary to solve the inverse problem.

Figure 16: Error w.r.t. sampling size

The results obtained using different data sizes are shown in Fig. 17. As seen, increasing the data size
yields a decrease of the data fitting error and correlations inference error. However, the improvement
obtained using 1088 data points is rather small compared to the error obtained using only 88 points. The
case with 88⋆ points corresponds to a configuration where no data point is located in the recirculation
area. As shown, a significant error increase is reported, which underlines the necessity to select carefully
the data used for the training.

Figure 17: Error w.r.t. sampling size

The choice of the optimizer used to minimize the loss function is a critical parameter, as shown
in Fig. 18. Here, we compared the results obtained using ADAM only (20,000 epochs) against those
using ADAM (5,000 epochs) followed by a quasi-Newton algorithm (15,000 epochs). BFGS and L-BFGS
correspond to the implementations found in TensorFlow Probability 0.21 (Hager-Zhang line search),
whereas BFGS⋆ corresponds to our own implementation based on Armijo-Goldstein line search. As seen,
ADAM alone yields poor results and our implementation of BFGS performs far better than the one
implemented in TensorFlow library. It shows that results can strongly depend on algorithmic details of
the optimizer.

The results obtained using different network shapes and sizes are shown in Fig. 19. We test different
numbers of layers, between 3 and 7, and different numbers of neurons per layer, between 8 and 64.
The ”diamond” corresponds to {8, 16, 32, 16, 8} neurons and the ”butterfly” to {32, 16, 8, 16, 32} neurons
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Figure 18: Error w.r.t. optimization algorithm

(auto-encoder structure). It appears that satisfactory results can be obtained with all the configurations
tested. A small number of layers provides better results regarding the residuals, but the resolution of the
inverse problem performs better for deeper networks.

Figure 19: Error w.r.t. network shape and size

Finally, the impact of the choice of the activation function is shown in Fig. 20. Four different functions
are tested and satisfactory results are obtained with all except the sigmoid function. A possible reason
could be related to the positivity of the function.

Figure 20: Error w.r.t. activation functions
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7 Conclusion

The three examples presented in this work show that the PINNs can be interesting as a complementary
tool, for tasks for which conventional approaches are not very effective, such as parametric modeling,
multidisciplinary coupling or data assimilation.

However it should be underlined that, even if the implementation of PINNs is quite straightforward,
several painful trials are usually necessary to tune the different numerical parameters and obtain finally
satisfactory results. This puts in light the lack of understanding in the training, yielding a lack of control
in terms of accuracy and robustness. This work indicates that the critical step is the optimization strategy
employed for the loss minimization and, therefore, further studies have to be conducted regarding this
topic.
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