HIGH FREQUENCY RESOLVENT ESTIMATES FOR THE MAGNETIC LAPLACIAN ON NON COMPACT MANIFOLDS - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2024

HIGH FREQUENCY RESOLVENT ESTIMATES FOR THE MAGNETIC LAPLACIAN ON NON COMPACT MANIFOLDS

Résumé

We consider the Schrödinger operator with a magnetic perturbation on non compact manifolds with infinite volume. We prove optimal estimates for the resolvent operator at high frequencies in Besov-type spaces. In the general trapping case we obtain the usual exponential blow-up, while when the resolvent is localised on the manifold end, away from possible trapped trajectories, we obtain the optimal bound by the inverse square root of the spectral parameter.
Fichier principal
Vignette du fichier
magnetic paper v1.pdf (543.05 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04513013 , version 1 (20-03-2024)

Identifiants

  • HAL Id : hal-04513013 , version 1

Citer

Viviana Grasselli. HIGH FREQUENCY RESOLVENT ESTIMATES FOR THE MAGNETIC LAPLACIAN ON NON COMPACT MANIFOLDS. 2024. ⟨hal-04513013⟩
67 Consultations
45 Téléchargements

Partager

More