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HIGH FREQUENCY RESOLVENT ESTIMATES FOR THE MAGNETIC
LAPLACIAN ON NON COMPACT MANIFOLDS

VIVIANA GRASSELLI

Abstract. We consider the Schrödinger operator with a magnetic perturbation on non
compact manifolds with infinite volume. We prove optimal estimates for the resolvent op-
erator at high frequencies in Besov-type spaces. In the general trapping case we obtain the
usual exponential blow-up, while when the resolvent is localised on the manifold end, away
from possible trapped trajectories, we obtain the optimal bound by the inverse square root
of the spectral parameter.
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1. Introduction

In this work we prove estimates for the limiting value of the resolvent of a Laplace-Beltrami
operator with lower order perturbations. This operator describes the energy of a system of
two quantum particles subject to an electric, as well as a magnetic potential. These limiting
resolvents are central objects in the study of the dynamics of the system thanks to the relation
given by Stone’s formula [15, Theorem VII.13]. Indeed, let Pm the magnetic Laplacian we
will consider. We will define precisely this operator in Section 1.2. By selfadjointness of Pm,
its resolvent (Pm − z)−1 is well defined when z ∈ C \ R. The limit at the boundary of its
domain is then

s- lim
ε′→0

(Pm − λ2 + iε′)−1,

where s- lim denotes the limit in the strong operator topology. By Stone’s formula

eitPm =
1

2iπ

∫ ∞

0

eitλ s- lim
ε→0

((Pm − λ2 + iε)−1 − (Pm − λ2 − iε)−1) dλ,

1
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hence we can study the dynamics of the Schrödinger evolution via the limiting resolvents.
Here, we consider a system on a non compact manifold with infinite volume which is a long
range perturbation of a conical or hyperbolic end, and we study the resolvent in the high
frequency regime, that is for λ large.

The main feature of this work is that we include a perturbation of order one in the Laplce-
Beltrami operator, which models the presence of a mangetic field.

Since we are considering a singular limit for the resolvent, we can not study this quantity
in the topology of bounded L2 spaces, where the norm of the limit would blow up. However,
we remark that to study the operator (Pm − λ2 + iε′)−1 is equivalent to solving the equation
(Pm−λ2+iε′)u = f when ε′ tends to zero, which is a problem linked to the Fourier transform
restriction properties, as one can see directly by solving for u in (−∆− λ2)u = f . Since the
restriction of the Fourier transform to a surface is well defined in weighted L2 spaces, this
topology represents a suitable setting in which to study limiting resolvents. In this work,
by considering Besov-type spaces (defined in Section 1.3), we will be able to go beyond the
usual restrictions on the weights imposed by this approach.

The aim is to obtain estimates for large λ in all generality, without assumptions on the
geodesic flow, to which the resolvent is sensitive in the case of λ large. Without geodesic
information we expect an exponential loss in the estimates, contrary to the the polynomial
blowup coming from the low frequencies [16]. This is indeed what we will obtain: the resolvent
on the entire manifold has an exponential bound and the cutoff resolvent near infinity has a
polynomial decay. This is due to the fact that outside of a sufficiently large compact region
there is no trapping effect and hence no loss in the estimates.

We now give some notions to state our result. The manifold M that we consider is of the
form

M ≃
diffeo

K ∪ (R,+∞)× S (1.1)

with K a compact region and an unbounded region (R,+∞) × S of product form with a
product metric. The main examples one must keep in mind for (R,+∞)×S are a long range
perturbation of a cone or of an hyperbolic manifold, as described in Examples 1.8 and 1.9.

On the manifold M we consider Pm, the Laplace-Beltrami operator with perturbations of
order one and zero decaying at infinity respectively like

1

r2+
,

1

r0+
, r ∈ (R,+∞). (1.2)

The main result is the following. Precise definitions are postponed to the end of this
introduction.

Theorem 1.1. Let (M,GM) a non compact Riemannian manifold, satisfying (1.1) and Pm

the perturbed Laplace-Beltrami operator satisfying (1.2). Let ∥ · ∥H1,B∗
>R
, ∥ · ∥B>R

weighted
norms on the manifold end (R,+∞) × S (defined in Section 1.3). Let R < R1 < R2. For
any u ∈ H2(M), λ ≫ 1 and for any ε′ > 0 there exists a constant C > 0, independent of λ
and ε′, such that

∥u∥2H1(M\(R1,+∞)×S) + ∥u∥2H1,B∗
>R

≤O(eλC)∥(Pm − λ2 + iε′)u∥2L2(M\(R2,+∞)×S))

+O(eλC)∥(Pm − λ2 + iε′)u∥2B>R
.
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In the proof of the result we will see that the contribution of the exponential terms O(eλC)
is due only to norms on compact regions of the manifold. We therefore obtain a corollary for
the cutoff resolvent.

Corollary 1.2. Under the assumptions of the previous theorem, there exists R3 > R such
that for χ, smooth cutoff supported on (R3,+∞)×S, and for any ε′ > 0, for any u ∈ H2(M)
it holds

∥χu∥B∗
>R

≤ O(λ−1)∥(Pm − λ2 + iε′)u∥B>R
.

In particular, for any µ > 0 it holds

∥χr−1/2−µ(Pm − λ2 + iε)−1r−1/2−µχ∥L2→L2 = O(λ−1).

In these results, we notably include a magnetic potential and obtain optimal high frequency
estimates which were previously restricted to the unperturbed case: either without geometric
perturbation [7], or without the magnetic one [6]. In particular, for the cutoff resolvent we
obtain in the corollary the same behavior of the free case. Moreover, we apply to the geometric
case the Besov-type norms defined in Section 1.3, which were originally introduced in the
euclidean case [2, 3, 7]. These norms are defined with weights decaying like r−1/2, instead of
r−1/2−µ, µ > 0 as one needs to consider in weighted L2 spaces [1, Section 4].

On top of considering a more general operator with differential perturbations and Besov-
type norms with sharper weights, in this work we revisit some of the arguments in [6] trying to
give a rather complete exposition of the whole strategy. We also remark that we combine the
Carleman approach, which is robust enough to be adapted to our perturbed case, to the use
of Besov-type norms that, as we mentioned, were introduced for more classical Hamiltonians.

In the theorem we obtain a uniform exponential bound on the resolvent of the Laplace-
Beltrami operator with an order one perturbation. Having this type of resolvent estimate
can be applied, as in [18] or [6], to prove that there is a strip of exponential size around the
positive real axis which is free of resonances. In other words, this tells us that resonances
can not accumulate exponentially fast and hence gives a lower bound on their width. For
complex resonances their imaginary part gives the rate of decay of a solution associated to
resonant initial data, hence the width of a resonance carries dynamical information. For
example, in [5] the existence of a resonance free strip is applied to prove logarithmic time
decay of solutions of the wave equation.

To treat the limiting resolvents, we will not use Mourre theory, which is more well suited for
the case of low frequencies (λ≪ 1). Indeed, this technique can be used in the high frequency
regime under additional assumptions on the geodesic flow, which we do not make here. The
main strategy is the same as in [6] which in turn is inspired by the works of Burq ([4], [5]):
we divide the manifold in two parts, a bounded region and an infinite end, and we treat the
two separately. In the compact region we use are Carleman estimates, which are stable by
order one perturbations and hence suitable for our operator Pm. In the unbounded region
we do not use any complex theory, but we rather exploit the equation (Pm − λ2 + iε′)u = f
and bound the solution u by the source term f . We will use simple identities like

Im(Bu,Cu) = (u,
[B,C]

2i
u), Re(Bu,Cu) =

(
BC + CB

2
u, u

)
for B,C symmetric operators.
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Remark 1.3. For the estimates on the unbounded region M \K we use a slightly different
approach than in [6]. In particular the strategy used to treat this region (Section 2) is frequency
independent, in the sense that the proof holds for intermediate and high frequencies. In this
section we replace the smallness of a semiclassical parameter h = λ−1 with the decay of the
radial variable. In the last section, when combining the two regions, we will need to assume
λ≫ 1.

The paper is organized as follows: we conclude the Introduction with some definitions,
in Section 2 we treat the unbounded region, in Section 3 we show how to use Carleman
estimates to treat the compact region, in Section 4 we use an argument presented first in [5]
to conclude with the proofs of Theorem 1.1 and Corollary 1.2.

1.1. Definition of the geometric framework. Let S a compact n − 1 dimensional Rie-
mannian manifold, around a point ω ∈ S we will denote by θ ∈ Rn−1 the local coordinates.
We will equip S with two different metrics (S, g) and (S, g(r)). We will use the product
manifold

((R,+∞)× S, dG) dG = dr2 + l(r)−2g(r)

to model the infinite ends of our manifold M .
We consider a Riemannian manifold M , a compact set K ⊂M and a diffeomorphism Ω

Ω :M \K → (R,+∞)× S

such that the metric on M is given by

GM := Ω∗(G) = Ω∗(dr2 + l(r)−2g(r))

for some smooth function l : (R,+∞) → R+ verifying

− l
′(r)

l(r)
≥ c

r
, − l

′(r)

l(r)
∈ L∞((R,+∞)× S). (1.3)

Remark 1.4. Integrating the inequality in (1.3) we obtain

l(r) ≲
1

r
(1.4)

hence l(r) → 0 as r → ∞. Then l′ is bounded for large enough r and the L∞ condition in
(1.3) implies |l′(r)|r ∈ L∞((R,+∞)× S).

Remark 1.5. With an abuse of notation we will write G for both the metric on the product
(R,+∞)× S and the manifold end M \K.

Remark 1.6. Let k∗ ∈ N. We will denote by ϕ a smooth cutoff on (R,+∞) for which we
will assume supp ϕ ⊂ (2k

∗+3R,+∞). Such a function can be identified via Ω with a cutoff on
M \K of the form χ = ϕ ◦ Ω.

We assume that g(r), the angular metric, is a long range perturbation of a fixed metric in
the following sense.

Let f a function of r with values in the space of sections Γ(T p
q (S)):

f : (R,+∞) → Γ(T p
q (S))

r 7→ f(r),
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represented, with respect to a basis of the tensor product (⊗Tω(S))p ⊗ (⊗T ∗
ω(S))

q, by the
coefficients f i1,...ip

j1,...,jq
(r, θ) around a point ω. We define a topology on Γ(T p

q (S)) given by the
seminorms

Npq
m,J(f) =

∑
|α|≤m

∥∂αf i1,...ip
j1,...,jq

∥L∞(J)

with J a compact subset of the coordinate patch on Rn−1.

Definition 1.7. Let f : (R,+∞) → Γ(T p
q (S)) a smooth function and ν ∈ R, then f ∈ S−ν if

Npq
m,J(∂

l
rf(r)) ≲ ⟨r⟩−ν−l for any m, l ∈ N, Jcompact set.

For fixed r, g(r) is a metric on S and we have the smooth family of metrics

g : (R,+∞) → Γ(T 0
2 (S))

r 7→ g(r)

where Γ(T 0
2 (S)) are the sections of the tensor bundle T 0

2 (S) = T ∗(S)⊗ T ∗(S) and g(r, ω) is
a bilinear form on the tangent space Tω(S).

Given the topology defined on Γ(T 0
2 (S)), we assume

g(r)− g ∈ S−ν for some ν > 0. (1.5)

We point out two examples of infinite end the reader should keep in mind throughout this
work. All the assumptions we make on l are satisfied by these two examples.

Example 1.8 (Asymptotically conical end). In the particular case of a fixed metric g(r) = g
and l(r) = r−1 we obtain on (R,+∞)× S the following metric

dr2 + r2g

which is an exact conic end. If we replace g with a perturbation of it, g(r), we obtain

dr2 + r2g(r),

which is an asymptotically conical end.
When g is the metric on the sphere Sn−1 we obtain a long range perturbation of the euclidean

space Rn.

Example 1.9 (Asymptotically hyperbolic end). Taking l(r) = e−r and again g(r) = g, if we
equip (R,+∞)× S with the metric

dr2 + e2rg

we obtain an hyperbolic end. If we take a perturbed metric g(r) we have

dr2 + e2rg(r)

an asymptotically hyperbolic end.

Remark 1.10. The asymptotically conical end presented in Example 1.8 includes the so-
called scattering metrics, terminology introduced by Melrose [14] and used in several works
(for example [13], [9], [10], [17], [11]). Scattering metrics are a particular case of the metric
in Example 1.8 when g(r) is the Taylor expansion of a smooth metric around zero.

Analogously, the asymptotically hyperbolic end of Example 1.9 includes the type of non
compact manifolds modeled as the interior of a compact manifold via a boundary defining
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function, similarly to the scattering manifolds just mentioned (see for example [8, Chapter
5]). Again, a metric such as the one defined in [8] can be obtained by Example 1.9 replacing
g(r) with the Taylor expansion of a smooth metric around zero.

Remark 1.11. Let −∆g(r) the Laplace-Beltrami operator on (S, g(r)), where the metric is
given by the matrix (gj,k(r, θ))j,k, that is

g(r) = gj,k(r, θ)dθjdθk.

Here we consider the Laplace-Beltrami operator defined from a quadratic form via the Friedrich
extension. We recall its expression in local coordinates

−
n−1∑
j,k=1

1

|g(r, θ)|
Dθj

(
|g(r, θ)|gj,k(r, θ)Dθk

)
, Dθj =

1

i
∂θj

where |g(r, θ)| := det(gj,k(r, θ))
−1/2
j,k and (gj,k(r, θ))j,k = (gj,k(r, θ))

−1
j,k . We define

w(r, θ) =
|g(r, θ)|
|g(θ)|

, (1.6)

which is of the form
w(r, θ) = 1 + w̃(r, θ) with w̃ ∈ S−ν . (1.7)

Since dg(r) = w(r, θ)dg, we can use w to conjugate −∆g(r), then w
1
2 (−∆g(r))w

− 1
2 will be

symmetric with respect to the measure induced by the fixed metric g.

1.2. The magnetic operator. We consider A a vector field on M , thanks to the diffeomor-
phism Ω, we can identify its restriction to M \K with a map taking values in the product
space R× Tω(S). Namely

A :M \K → T 1
0 (M) ≃ R× T (S)

p 7→ A(p) ≃ A(Ω(p)) = A(r, ω) ∈ R× Tω(S).

In a coordinate patch around (r, ω) we will denote the components of A as

(A0(r, θ), AS(r, θ)) = (A0(r, θ), A1(r, θ), . . . An−1(r, θ)).

We assume A0 ∈ S−ν and

rνl−2(r)Aj, r
ν+1l−2(r)∂rAj ∈ L∞((R,+∞)× S). (1.8)

We also introduce the notation

Ã0(r, θ) := A0(r, θ), Ãi(r, θ) := l−2(r)
n−1∑
j=1

gi,j(r, θ)Aj(r, θ), (1.9)

hence by the previous assumption

rνÃj ∈ L∞((R,+∞)× S)

for all j = 0, . . . , n− 1.
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Notation 1. Let DG = (Dr,
1
i
l(r)2∇g(r)) = (1

i
∂r,

1
i
l(r)2∇g(r)) and ⟨·, ·⟩G the scalar product,

between two vectors, induced by the metric G while (·, ·)dG denotes the scalar products on
L2((R,+∞)× S, dG).

With (·, ·)drdg we will denote the scalar products on L2((R,+∞)×S, drdg) and ∥ · ∥L2(drdg)

will be the induced L2 norm.
We will also consider the scalar product and relative L2 norm on a bounded region of

(R,∞) × S, in doing so we will always consider the one induced by the measure drdg and
we will specify the region by denoting them like (·, ·)L2(·) and ∥ · ∥L2(·).

Let V a multiplicative potential in the symbol class

V ∈ S−ν , ν > 0.

The perturbed Laplace-Beltrami operator on (M,GM) can be defined via a quadratic form.
On the manifold endM\K, where we have an isometry with ((R,+∞)×S, dG), it agrees with
the one defined by the following quadratic form on smooth compactly supported functions

q(u, v) =((DG − A)u, (DG − A)v)dG + (u, V v)dG

=

∫
(⟨(DG − A)u, (DG − A)v⟩G + uV v)l(r)1−ndrdg(r). (1.10)

The operator defined by this quadratic form is symmetric with respect to the scalar product
induced by the measure dG = l(r)1−ndrdg(r). After integration by parts and conjugation by
eiF = l(r)

1−n
2 w1/2 near infinity we obtain an operator

h2P̃g = h2(Dr − A0)
2 +M(r) + h2Vm (1.11)

with h = λ−1 for some λ > 0 where Vm is a multiplicative potential including V and an
effective potential and

M(r) := h2l2(r)(1 + T (r)), (1.12)
with T (r) a differential operator of order two in the angular variables. More precisely,

T (r) : = w1/2(−∆̃g(r))w
−1/2 (1.13)

= w1/2 1

|g(r, θ)|

n−1∑
i,j=1

(Di − Ãi)
(
|g(r, θ)|gi,j(r, θ)(Dj − Ãj)

)
w−1/2.

We underline that the operator −∆̃g(r) is the Laplace-Beltrami operator −∆g(r) in which we
have incorporated the perturbation by A.

Remark 1.12. Conjugating by eiF = l(r)
1−n
2 w1/2 has a double effect: with l(r)

1−n
2 we pass

from an operator symmetric with respect to dG to one symmetric with respect to drdg; with
w1/2 we pass the symmetry from drdg to drdg. In conclusion, P̃g is symmetric with respect
to the scalar product induced by the measure drdg.

Remark 1.13. The operator M(r) includes the angular terms, so all the components act
differentially only on the angular variable of S, that is θ. In particular for any function s of
r

[M(r), s] = 0.
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A useful property we will use later on is

−M ′(r) ≳
1

r
M(r)(1−O(r−ν))

which we can derive thanks to (1.3), see Lemma 2.4. Here M ′(r) denotes the differential
operators obtained from M by differentiating the coefficients with respect to r.

The potential Vm is of the form

Vm(r, θ) = a(r, θ) + V0(r, θ)

where

a(r, θ) =
(n− 1)2

4

(
l′

l

)2

− (n− 1)

2

(
l′

l

)′

and V0 has the properties

rνV0, r
1+ν∂rV0 ∈ L∞((R,+∞)).

Moreover we make the following assumptions on a

(n− 1)2

4

(
l′

l

)2

=: Λ + a1(r)

with a constant Λ = Λ(l) ≥ 0, a1(r) ≥ 0 such that rνa1(r), r1+νa′1(r) ∈ L∞((R,+∞)) and

(n− 1)

2

(
l′

l

)′

=: a2(r)

is such that rνa2(r), r1+νa′2(r) ∈ L∞((R,+∞)).
With this notation

Vm = Λ+ a1(r) + a2(r) + V0(r, θ) (1.14)

and we can conclude that

rν(Vm − Λ), r1+ν∂rVm ∈ L∞((R,+∞)). (1.15)

We report the two typical cases of Examples 1.8 and 1.9.

Example 1.14. If l(r) = r−s with s ≥ 1 then

Λ = 0, a1(r) =
(n− 1)

2
· s
r2
, a2(r) =

(n− 1)2

4
· s
r2
.

If l(r) = e−r then

Λ =
(n− 1)2

4
, a1 = a2 = 0.

Notation 2. Since Vm − Λ is a decaying potential, without loss of generalization, we define
Pm the perturbed Laplace-Beltrami operator translated by Λ. In this way, near infinity the
operator will be

Pg = P̃g − Λ = h2(Dr − A0)
2 +M(r) + h2(Vm − Λ),

which has a decaying potential Vm −Λ. We recall that Λ depends on l, that is on the choice
of metric, and that in the cases l(r) = r−1 or l(r) = e−r it represents the bottom of the
essential spectrum.
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1.3. Besov-type norms. Let ψ ∈ C∞
0 (R) a non negative bump function with ∥ψ∥∞ ≤ 1

and

ψ(s) =

{
1 for |s| ≤ 1

2
,

0 for |s| ≥ 1.

Set φ(s) := ψ( s
2
)− ψ(s) which is then non negative and

suppφ ⊂ {1
2
< |s| < 2}, ∥φ∥∞ ≤ 2.

We rescale φ dyadically in order to construct a partition of unity

1 = ψ(s) +
∑
k≥0

φ(2−ks).

Remark 1.15. The support of φ(2−ks) is

Dk := [2k−1, 2k+1],

so for fixed s there are only two non vanishing terms in the sum
∑

k≥0 φ(2
−ks) since the

interval [ ln s
ln 2

− 1, ln s
ln 2

+ 1] contains at most 2 integers.

We fix a k∗ ∈ N. To partition only the half line (2k
∗
R,+∞) we start the sum at

k0 :=
lnR

ln 2
+ k∗ + 2,

for which [2k−1, 2k+1] ⊂ (2k
∗
R,+∞) for all k ≥ k0. For r > 2k

∗
R

ψ(r) +
∑
k≥k0

φ(2−kr) =
∑
k≥k0

φ(2−kr) =

{
∈ (0, 1) r ∈ (2k0−1, 2k0 ],

1 r > 2k0 .

We define the following norms of functions on (2k
∗+1R,+∞)× S

∥f∥B>R
:=

∑
k≥k0

∥r1/2f∥L2(drdg,2k−1≤r≤2k+1) (1.16)

and the dual quantity

∥g∥B∗
>R

:= sup
k≥k0

∥r−1/2g∥L2(drdg,2k−1≤r≤2k+1). (1.17)

We also define the shorthand

∥g∥2H1,B∗
>R

:= ∥g∥2B∗
>R

+ ∥h(Dr − A0)g∥2B∗
>R

+ ∥M(r)1/2g∥2B∗
>R
. (1.18)

Remark 1.16. The previous norm is well defined since M(r) is a non negative operator,
hence its square root exists. Despite M(r)1/2 being a non local operator the norm is still well
defined since it is an operator only in the angular variables, hence the non local action is only
on the manifold S and we recall that in the definition of the norm we integrate over all S.

We also define an adapted H1 norm on compact regions of the manifold end, we still use
the angular operator M(r) to define the angular gradient but remove the weights, since we
are in a compact region. For U , a bounded region in (R,+∞)× S, we write

∥f∥2H1(U) = ∥f∥2L2(U) + ∥h(Dr − A0)f∥2L2(U) + ∥M(r)1/2f∥2L2(U)
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where the L2 norms are with respect to the measure drdg.

Remark 1.17. The definition of the norms is independent of the choice of dyadic step, in
other words the norms

∥f∥B>R,m :=
∑

k≥(m−1)+k0

∥r1/2f∥L2(drdg,2k−m≤r≤2k+m), m ≥ 1

are all equivalent. Given this equivalence we will drop the dependence on the index n and
denote by the same symbols ∥ · ∥B>R

and ∥ · ∥B∗
>R

, any norm regardless of the dyadic step in
the definition.

For the same reason, defining

Dk,m := 2k−m ≤ r ≤ 2k+m

we will drop the index m in the notation for Dk,m and simply write Dk and ∥ · ∥L2(drdg,Dk).

Remark 1.18. We just defined norms with respect to the measure drdg, while on the man-
ifold end, the operator as defined in (1.10) is symmetric with respect to the measure dG =
l(r)1−ndrdg(r). We can do this since it is equivalent to bound the norms in which we take
the measure drdg or the corresponding ones defined with respect to the measure dG. Indeed,
the two are linked by the relation

∥v∥L2(dG) = ∥eiFv∥L2(drdg) (1.19)

with

eiF = l(r)
1−n
2 w1/2 = l(r)

1−n
2
|g(r, θ)|1/2

|g(θ)|1/2
.

Notation 3. For the reasons presented in the above remark, all L2 norms and scalar products
considered in Section 2, which treats the manifold end M \ K, will be with respect to the
measure drdg. Likewise, the operator Pg, given by,

Pg = P̃g − Λ = h2(Dr − A0)
2 +M(r) + h2(Vm − Λ),

will be the one used in the computations of Section 2.

Remark 1.19 (B>R, B∗
>R duality). In the computations of the following sections we will

exploit the duality of ∥ · ∥B>R
and ∥ · ∥B∗

>R
in the following way. Let χ ∈ C∞

0 (R) a cutoff in
the interval (1

4
, 4) and such that χ ≡ 1 on (1

2
, 2). Define χk(r) = χ(2−kr), then

χk ≡ 1 on suppφ(2−k·), supp χk ⊂ [2k−2, 2k+2]. (1.20)
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Let ϕ supported in (2k
∗+3R,+∞) = (2k0+1,+∞), which in turn implies suppφ(2−k0·) ∩

supp ϕ = ∅ and

(ϕg, f)drdg =
∑

k≥k0+1

(ϕφ(2−k·)g, f)drdg

=
∑

k≥k0+1

(r−1/2χkϕφ(2
−k·)g, r1/2χkf)drdg

≤
∑

k≥k0+1

∥r−1/2g∥L2(drdg,Dk)∥r
1/2f∥L2(drdg,Dk)

≤∥g∥B∗
>R

∥f∥B>R

≤δ
2
∥g∥2B∗

>R
+

1

2δ
∥f∥2B>R

(1.21)

for some δ ∈ (0, 1).

2. Estimates on M \K

In this section we bound the resolvent on the manifold end. We recall that K ⊂M is the
compact region and the manifold end M \K is diffeomorphic to the product (R,+∞)× S.

From Remark 1.18, we know that in the region M \ K we can equivalently consider the
operator

Pg = h2(Dr − A0)
2 +M(r) + h2(Vm − Λ),

which is symmetric with respect to the scalar product induced by the measure drdg and with
a potential Vm − Λ = O(r−ν) as r → ∞. So in this section we will be interested in solutions
of the equation (Pg − λ2 + iε′)u = f , where we consider λ > λ0 for a fixed positive λ0. After
factorizing λ2 we set

P = h2Pg − 1 + iε. (2.1)
The aim of this section is to bound ∥u∥H1,B∗

>R
by ∥Pu∥B>R

uniformly in λ and ε and up
to some compactly supported remainder terms which will be treated in Section 3. More
precisely we obtain

Proposition 2.1. Fix λ0 > 0. Let u ∈ H2(M), λ > λ0 > 0 and h = λ−1. For any
δ ∈ (0, λ0) ∩ (0, 1) there exist c, c(δ) > 0 and K(δ) ⊂ (R,∞)× S bounded such that

∥u∥2H1,B∗
>R

≤ cδ∥u∥2H1,B∗
>R

+
c

δh2
∥Pu∥2B>R

+ c(δ)∥u∥2H1(K(δ)).

Since the ∥ · ∥H1,B∗
>R

norm contains the contributions of the L2 norm of the function, of
the radial derivative and of the angular derivatives we will proceed in the following way:

• in Section 2.1 we bound the norm ∥M(r)1/2u∥B∗
>R

,
• in Section 2.2 we bound the norm ∥h(Dr − A0)u∥B∗

>R
,

• finally in Section 2.3 we bound the norm ∥u∥B∗
>R

.

Notation 4. In all of this chapter c, C and c(δ) are constants that are allowed to change
from line to line. If an integral norm is denoted with the symbol r ≃ R it means that the
integral is supported in a compact sub interval of (2k∗R,+∞) which may vary but does not
depend on any parameter. On the contrary K(δ) will be a bounded region of (R,∞) × S
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depending on the parameter δ. The symbols ≲,≳ will denote inequalities holding up to a
positive multiplicative constant which is independent of the parameters δ, λ or ε. With the
symbol O(a) we mean that there exists a positive constant c such that O(a) = c · a.

We will use the following elementary identity that holds between two symmetric operators
B,C

Im(Bu,Cu) = (u,
[B,C]

2i
u). (2.2)

2.1. Estimating the angular gradient. In this section we evaluate the norm ∥M(r)1/2u∥B∗
>R

,
more precisely we obtain

Proposition 2.2. Let λ0 > 0 fixed. Let ϕ(r) a smooth cutoff on the interval (2k0+1,+∞),
λ > λ0 > 0 and h = λ−1. For any δ ∈ (0, λ0) ∩ (0, 1) there exist c, c(δ) > 0 and K(δ) ⊂
(R,∞)× S bounded such that

∥M(r)1/2ϕu∥2B∗
>R

≤δc∥u∥2H1,B∗
>R

+
c′

δh2
∥P(ϕu)∥2B>R

+ c(δ)∥u∥2H1(K(δ))

with c, c′ > 0 constants independent of δ.

Remark 2.3. The support of the H1 norm ∥u∥H1(K(δ)) is a compact interval contained in
(R,+∞) with upper bound depending on δ and growing as δ approaches 0. This will not
cause any particular problem since, when applying the results of this section we will fix the
parameter δ and this will determine a fixed (potentially large but bounded) interval for r.

We start by applying (2.2) to Pg and (Dr − A0) which are symmetric with respect to the
measure drdg. By definition of P = h2Pg − 1 + iε

Im((Dr − A0)(ϕu),P(ϕu))drdg =ε((Dr − A0)ϕu, ϕu)drdg + Im((Dr − A0)ϕu, h
2Pgϕu)drdg

=ε((Dr − A0)ϕu, ϕu)drdg + (ϕu,
[(Dr − A0), h

2Pg]

2i
ϕu)drdg

(2.3)

where
1

2i
[(Dr − A0), h

2Pg] =− 1

2
M ′(r)− 1

2i
[A0,M(r)] +

1

2i
h2Dr(Vm). (2.4)

From Remark 1.13 we recall that (−M ′(r)(ϕu), ϕu)drdg can be bounded from below by
(M(r)(ϕu), ϕu)drdg = ∥M(r)1/2(ϕu)∥2L2(drdg) (up to some additional terms). More precisely,
we have

Lemma 2.4. Let (·, ·)dg the scalar product on L2(S, g) and φ ∈ L2(S, dg), then

(φ,−∂rM(r)φ)dg ≳
1

r
∥M(r)1/2φ∥2L2(dg)(1−O(r−ν)).

Recall the definition of M(r)

M(r) = h2l2(r)(1 + T (r)), T (r) = w1/2(−∆̃g(r))w
−1/2.

We can prove Lemma 2.4 thanks to the following equivalence of norms.
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Lemma 2.5. Let φ ∈ L2(S, dg), then for r > R

∥(1 + T (r))1/2φ∥L2(dg) ≃ ∥(1− ∆̃g(r))
1/2φ∥L2(dg),

that is the quotient between the right and left hand sides is bounded from above and from
below.

Proof. We can rewrite T (r) as

1 + T (r) =1− ∆̃g(r) + w1/2[−∆̃g(r), w
−1/2] (2.5)

=(1− ∆̃g(r))
1/2(1 + S(r))(1− ∆̃g(r))

1/2

where
S(r) := (1− ∆̃g(r))

−1/2w1/2[−∆̃g(r), w
−1/2](1− ∆̃g(r))

−1/2. (2.6)
We have seen in Remark 1.13 that −∆̃g(r) is a differential operator of order two in the
angular variables and is indeed a perturbation of −∆g(r) by lower order terms. In particular
it has an elliptic principal symbol and lower order terms with decaying coefficients. One
can then construct its resolvent via a parametrix with a standard procedure, obtaining that
(1− ∆̃g(r))

−1/2 is a pseudodifferential operator of order minus one in the angular variables.
Moreover, we have

w1/2[−∆̃g(r), w
−1/2] =w1/2[−∆g(r), w

−1/2] + l−2(r)
n−1∑
i=1

Ai
Diw

w

=w1/2[−∆g(r) +∆g, w
−1/2] + w1/2[−∆g, w

−1/2] + l−2(r)
n−1∑
i=1

Ai
Diw

w

where all the terms are differential in the angular variables, of order one or zero and with
O(r−ν) coefficients. This is due to the fact that w−1 is bounded and

w1/2Di,j(w
−1/2) ∈ S−ν , w1/2Di(w

−1/2) ∈ S−ν

together with the boundedness of rνl−2(r)Ai in (1.8). We have obtained

∥S(r)∥L(L2(S,dg)) ≃ r−ν .

Since S(r) is a bounded operator we have

∥(1 + T (r))1/2φ∥2L2(dg) =((1 + S(r))(1− ∆̃g(r))
1/2φ, (1− ∆̃g(r))

1/2φ)dg

≤∥1 + S(r)∥L(L2(S))∥(1− ∆̃g(r))
1/2φ∥2L2(dg)

≲∥(1− ∆̃g(r))
1/2φ∥2L2(dg).

We conclude using the lower bound (S(r)v, v)dg ≥ −∥S(r)∥L(L2(S,dg))∥v∥2L2(dg) in

∥(1 + T (r))1/2φ∥2L2(dg) =∥(1− ∆̃g(r))
1/2φ∥2L2(dg) + (S(r)(1− ∆̃g(r))

1/2φ, (1− ∆̃g(r))
1/2φ)dg

≥∥(1− ∆̃g(r))
1/2φ∥2L2(dg)(1− ∥S(r)∥L(L2(S,dg)))

and recalling that for large enough r

1− ∥S(r)∥L(L2(S,dg)) > c > 0

with c independent of r.
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□

Proof of Lemma 2.4. By definition of M

M ′(r) =h22l′(r)l(r)(1 + T (r)) + h2l2(r)T ′(r)

=2
l′(r)

l(r)
M(r) + h2l2(r)T ′(r).

Thanks to −l′(r)/l(r) ≳ r−1 then

(φ,−∂rM(r)φ)dg =(φ,−2
l′(r)

l(r)
M(r)φ)dg + (φ,−h2l2(r)T ′(r)φ)dg

≳
2

r
∥M(r)1/2φ∥2L2(dg) + (φ,−h2l2(r)T ′(r)φ)dg. (2.7)

Using the expression in (2.5) to compute T ′(r) we have

T ′(r) = ∂r(−∆̃g(r)) + ∂r(w
1/2[−∆̃g(r), w

−1/2]).

From the arguments in the proof of the previous lemma, differentiating in r the coefficients
of w1/2[−∆̃g(r), w

−1/2] yields a differential operator of order one in the angular variables with
coefficients of order O(r−ν−1). Moreover (−∆̃g(r)) has coefficients whose expressions contain
gi,j(r, θ) and Ãi. By definition of Ãi we compute

∂rÃi =− 2l−2(r)
l′(r)

l(r)

∑
i,j

gi,j(r, θ)Aj + l−2(r)
∑
i,j

∂rgi,j(r, θ)Aj

+ l−2(r)
∑
i,j

gi,j(r, θ)∂rAj,

where
rνl−2(r)Aj, r1+ν∂rgi,j(r, θ), r1+νl−2(r)∂rAj

are bounded functions. Then, thanks again to −l′(r)/l(r) ≳ r−1 we can bound from below
the derivative of Ãi

−∂rÃi ≳ − 1

rν+1
b0(r, θ)

for some b0 ∈ L∞((R,+∞)×S). Since ∂rgi,j(r, θ) ∈ S−ν−1 we can conclude that −∂r(−∆̃g(r))
is a differential operator of order two whose coefficients can be bounded from below by
−r−ν−1b(r, θ) for some bounded b. We can then lower bound the scalar product

(φ,−h2l2(r)T ′(r)φ)dg ≳ − 1

rν+1
(φ, T2h

2l2(r)φ)dg,

where T2 is a differential operator of order two in the angular variables with bounded co-
efficients. It contains the contributions of rν+1∂r(−∆̃g(r)) and rν+1∂r(w

1/2[−∆̃g(r), w
−1/2]).

Then from
(1− ∆̃g(r))

−1/2T2(1− ∆̃g(r))
−1/2 ∈ L(L2(S, dg)) (2.8)
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we obtain

−(φ, h2l2(r)T ′(r)φ)dg ≳− 1

rν+1
∥hl(r)(1− ∆̃g(r))

1/2φ∥2L2(S,dg)

≃− 1

rν+1
∥M(r)1/2φ∥2L2(dg)

up to some constant given by the norm of the operator in (2.8) and thanks to Lemma 2.5. The
norm of (2.8) depends on r, however we can obtain a fixed constant by taking the supremum
over all r, since the coefficients of T2 are bounded in this variable. We conclude by using this
lower bound in (2.7) which yields

(φ,−∂rM(r)φ)dg ≳
1

r
∥M(r)1/2φ∥2L2(dg)(1−O(r−ν)).

□

We recall identities (2.3) and (2.4), which yield

Im((Dr − A0)(ϕu),P(ϕu))drdg =ε((Dr − A0)ϕu, ϕu)drdg +
1

2
(ϕu,−M ′(r)ϕu)drdg

− 1

2i
(ϕu, [A0,M(r)](ϕu))drdg +

1

2i
(ϕu, h2Dr(Vm)ϕu)drdg.

(2.9)

The function M(r)1/2ϕu is supported in supp ϕ ⊂ (2k0+1,+∞), we apply Lemma 2.4 in this
region

(ϕu,−M ′(r)ϕu)drdg ≳
∫ ∞

2k0+1

1

r
(1−O(r−ν))∥M(r)1/2ϕu∥2L2(dg)dr

=∥r−1/2M(r)1/2ϕu∥2L2(drdg) − ∥r−1/2O(r−ν/2)M(r)1/2ϕu∥2L2(drdg).

For any k ≥ k0

∥r−1/2M(r)1/2ϕu∥L2(drdg) ≥ ∥r−1/2M(r)1/2ϕu∥L2(drdg,Dk)

where we recall Dk = [2k−1, 2k+1] (in particular [2k0−1, 2k0+1]∩ (2k0+1,+∞) = ∅, [2k0 , 2k0+2]∩
(2k0+1,+∞) ̸= ∅ and [2k−1, 2k+1] ⊂ (2k0+1,+∞) for all k ≥ k0 + 2 ). We have then obtained

(ϕu,−M ′(r)ϕu)drdg ≳ sup
k≥k0

∥r−1/2M(r)1/2ϕu∥2L2(drdg,Dk)

− ∥r−1/2O(r−ν/2)M(r)1/2ϕu∥2L2(drdg)

=∥M(r)1/2ϕu∥2B∗
>R

− ∥r−1/2O(r−ν/2)M(r)1/2ϕu∥2L2(drdg)

which implies, thanks to (2.9),

∥M(r)1/2ϕu∥2B∗
>R

≲ Im((Dr − A0)(ϕu),P(ϕu))drdg − ε((Dr − A0)ϕu, ϕu)drdg

+
1

2
|(ϕu, [A0,M(r)]ϕu)drdg|+

1

2
(ϕu, h2Dr(Vm)ϕu)drdg

+ ∥r−1/2O(r−ν/2)M(r)1/2ϕu∥2L2(drdg). (2.10)

In order to prove Proposition 2.1 we will need a series of intermediate lemmas to bound each
term in (2.10). Notably, Proposition 2.1 is obtained directly from the following inequalities.
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Lemma 2.6. Let λ0 > 0 fixed. Let ϕ(r) a smooth cutoff on the interval (2k0+1,+∞),
λ > λ0 > 0 and h = λ−1. Let δ ∈ (0, λ0) ∩ (0, 1). The following inequalities hold

i)

|Im((Dr − A0)(ϕu),P(ϕu))drdg| ≤
δ

2
∥u∥2H1,B∗

>R
+

1

2δh2
∥P(ϕu)∥2B>R

,

ii)

|ε((Dr − A0)ϕu, ϕu)drdg| ≤ δc∥u∥2B∗
>R

+
c

δh2
∥P(ϕu)∥2B>R

,

iii)
|(ϕu, [A0,M(r)]ϕu)drdg| ≤ δc∥u∥2H1,B∗

>R
+ c(δ)∥u∥2H1(K(δ)),

iv)
|(ϕu, h2Dr(Vm)ϕu)drdg| ≤ δc∥u∥2H1,B∗

>R
+ c(δ)∥u∥2L2(K(δ))

We postpone the proofs of the present inequalities to the next section.

Proof of Proposition 2.2. Let δ < λ0 as in the statement of Proposition 2.2. Thanks to
Lemma 2.6

∥M(r)1/2ϕu∥2B∗
>R

≲cδ∥u∥2H1,B∗
>R

+
c′

δh2
∥P(ϕu)∥2B>R

+ c(δ)∥u∥2H1(K(δ))

+ ∥r−ν/2r−1/2M(r)1/2ϕu∥2L2(drdg).

We use the partition of unity φ(2−k·) to decompose the following L2 norm

∥r−ν/2r−1/2M(r)1/2ϕu∥L2(drdg) ≤
∑

k≥k0+1

∥r−ν/2r−1/2χkM(r)1/2ϕu∥L2(drdg)

where we recall χk ≡ 1 on the support of φ(2−k·). We can write k in the form k = k0+m+1
with m ≥ 0, then on the support of χk we have r = O(2m) (i.e. r = c2m for a positive
constant c) and hence

r−ν/2 = O(2−νm/2).

We choose m∗ = m∗(δ) ≥ 0 such that
∑

m≥m∗ 2−mν/2 < δ, we can then conclude the proof
since

∥r−1/2O(r−ν/2)M(r)1/2ϕu∥2L2(drdg) ≲
∑
m≥0

k=k0+1+m

2−mν∥r−1/2M(r)1/2ϕu∥2L2(drdg,Dk)

≲
m∗∑
m=0

k=k0+1+m

2−mν∥r−1/2M(r)1/2ϕu∥2L2(drdg,Dk)

+
∑

m≥m∗

k=k0+1+m

2−mν∥r−1/2M(r)1/2ϕu∥2L2(drdg,Dk)

≲ (δ∥M(r)1/2ϕu∥2B∗
>R

+ c(δ)∥M(r)1/2ϕu∥2L2(drdg,K(δ)))

≲ cδ∥u∥2H1,B∗
>R

+ c(δ)∥u∥2H1(K(δ)),

where the norm on the compact set K(δ) contains all the contributions of the sum for m
from zero to m∗. □
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The following lemma allows us to evaluate the commutator between P and ϕ which will
yield our final bound.

Lemma 2.7. Let λ0 > 0 fixed. Let ϕ(r) a smooth cutoff on the interval (2k0+1,+∞),
λ > λ0 > 0 and h = λ−1. Then

∥P(ϕu)∥B>R
≤∥Pu∥B>R

+ ch2∥u∥H1(r≃R),

for a constant c depending on R and on the size of the interval {r : ϕ(r) ∈ (0, 1)}.

We recall that M(r)1/2 commutes with functions of r. Applying the previous result and
Proposition 2.2 we find that for any δ ∈ (0, λ0) there exists c(δ) > 1 such that

∥M(r)1/2u∥2B∗
>R

≤ c′

δh2
∥Pu∥2B>R

+ δc∥u∥2H1,B∗
>R

+ c(δ)∥u∥2H1(K(δ)) (2.11)

for constants c, c′ > 0 independent of δ.

Proof of Lemma 2.7. Since ϕ is a function of r only

[P , ϕ] = [h2Pg, ϕ] = [h2(Dr − A0)
2, ϕ] = h2(D2

r(ϕ) + 2Dr(ϕ)Dr − 2A0Dr(ϕ))

with Dr(ϕ), D
2
r(ϕ) ∈ C∞

0 ((2k0+1,+∞)). In particular in the norm

∥P(ϕu)∥B>R
≤∥Pu∥B>R

+ ∥[P , ϕ]u∥B>R

≤∥Pu∥B>R
+ ∥+

∑
k≥k0

∥h2r1/2(D2
r(ϕ)− 2A0Dr(ϕ))u∥L2(drdg,Dk)

+
∑
k≥k0

∥h2r1/22Dr(ϕ)Dru∥L2(drdg,Dk)

the sums only have a finite number on non vanishing terms, since the supports of Dr(ϕ) and
D2

r(ϕ) intersect only a finite number of intervals [2k−1, 2k+1]. There exists α > 0 (depending
on the fixed size of the interval {r : ϕ(r) ∈ (0, 1)}) such that in the above L2 norms

r ≤ 2k0+α+1 = 2k
∗+αR.

Hence bounding r1/2 by R1/2 and the functions Dr(ϕ), D
2
r(ϕ), A0 by their L∞ norms, we have

the statement:

∥P(ϕu)∥B>R
≲∥Pu∥B>R

+ h2(∥u∥L2(r≃R) + ∥Dru∥L2(r≃R)).

□

2.1.1. Auxiliary lemmas. In this subsection we prove the inequalities stated in Lemma 2.6.
We recall that everywhere in this section ϕ is a smooth cutoff on the interval (2k0+1,∞) and
which is equal to one on (2k0+2,∞), where k0 is a fixed integer (see Section 1.3).

We start with the first result which we obtain simply by duality of the norms.

Lemma 2.8. Let δ ∈ (0, 1),

|Im((Dr − A0)(ϕu),P(ϕu))drdg| ≤
δ

2
∥u∥2H1,B∗

>R
+

1

2δh2
∥P(ϕu)∥2B>R

.

Proof. We multiply and divide by h2r1/2 and since supp (Dr − A0)(ϕu) ⊂ supp ϕu we can
reason by duality as in (1.21). □
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For ε((Dr−A0)ϕu, ϕu)drdg we will bound separately ε∥ϕu∥L2(drdg) and ε∥h(Dr−A0)(ϕu)∥L2(drdg).
We consider

(ϕu,P(ϕu))drdg = iε(ϕu, ϕu)drdg − ∥ϕu∥2L2(drdg) + (ϕu, h2Pg(ϕu))drdg,

where (ϕu, h2Pg(ϕu))drdg is real since Pg is symmetric with respect to the measure drdg.
Hence from

Im(ϕu,P(ϕu))drdg = ε∥ϕu∥2L2(drdg)

we can prove again by duality of the norms

Lemma 2.9. Let δ ∈ (0, 1), then

ε∥ϕu∥2L2(drdg) ≤
δ

2
∥u∥2B∗

>R
+

1

2δ
∥P(ϕu)∥2B>R

.

Proof. The proof is analogous to Lemma 2.8. □

On the other hand, taking the real part we use the relation

(ϕu, h2Pg(ϕu))drdg = Re(ϕu,P(ϕu))drdg + ∥ϕu∥2L2(drdg) (2.12)

to prove the following.

Lemma 2.10. For any δ ∈ (0, 1), then

ε∥h(Dr − A0)(ϕu)∥2L2(drdg) ≤δc∥u∥2B∗
>R

+
1

δ
c∥P(ϕu)∥2B>R

with c > 0 independent of δ.

Proof. By definition of Pg = h2(Dr − A0)
2 +M(r) + h2(Vm − Λ)

(ϕu, h2Pg(ϕu))drdg =∥h(Dr − A0)(ϕu)∥2L2(drdg) + ∥M(r)1/2(ϕu)∥2L2(drdg)

+ (ϕu, h2(Vm − Λ)(ϕu))drdg.

hence from (2.12)

ε∥h(Dr − A0)(ϕu)∥2L2(drdg) ≤εRe(ϕu,P(ϕu))drdg + ε∥ϕu∥2L2(drdg)

− ε(ϕu, h2(Vm − Λ)ϕu))drdg. (2.13)

Again by the duality in (1.21)

ε|Re(ϕu,P(ϕu))drdg| ≤
εδ

2
∥u∥2B∗

>R
+

ε

2δ
∥P(ϕu)∥2B>R

while ε∥ϕu∥2L2(drdg) can be bounded via Lemma 2.9, which we also use in

|ε(ϕu, h2(Vm − Λ)ϕu)drdg| ≤h2ε∥Vm − Λ∥∞∥ϕu∥2L2(drdg).

□

With Lemmas 2.9 and 2.10 we bound the term ε((Dr − A0)ϕu, ϕu)drdg.

Lemma 2.11. For any µ ∈ (0, 1) such that µ < λ0

|ε((Dr − A0)ϕu, ϕu)drdg| ≤µc∥u∥2B∗
>R

+
c

µh2
∥P(ϕu)∥2B>R

for some c > 0 independent of h and µ.
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Proof. Applying Lemmas 2.9 and 2.10 with δ = hµ ∈ (0, 1) we have

|ε((Dr − A0)ϕu, ϕu)drdg| ≤
ε

2h
∥h(Dr − A0)(ϕu)∥2L2(drdg) +

ε

2h
∥ϕu∥2L2(drdg)

≤µc∥u∥2B∗
>R

+
c

µh2
∥P(ϕu)∥2B>R

where c, given by the previous lemmas, is bounded uniformly in h. □

We now need to bound the term

(ϕu, [A0,M(r)]ϕu)drdg = (ϕu, h2l2(r)[A0, T (r)]ϕu)drdg

In the proof of Lemma 2.5 we remarked some useful properties on T (r) in particular that

T (r) = −∆̃g(r) + w1/2[−∆̃g(r), w
−1/2]

where −∆̃g(r) is the sum of −∆g(r) with lower order perturbations, and w1/2[−∆̃g(r), w
−1/2]

is a differential operator of order one with coefficients decaying like O(r−ν).

Lemma 2.12. For any δ ∈ (0, 1) there exist c, c(δ) > 0 such that

|(ϕu, [A0,M(r)]ϕu)drdg| ≤δc∥u∥2H1,B∗
>R

+ c(δ)∥u∥2H1(K(δ)).

Proof. We need to evaluate the commutator of A0 with −∆g(r) and with differential operators
of order one in the angular variables whose coefficients decay radially. First of all

[A0,−∆g(r)]

is a differential operator of order one with coefficients in S−ν , since A0 ∈ S−ν .
As we pointed out in the proof of Lemma 2.5, (1−∆̃g(r))

−1/2 is a pseudodifferential operator
of order minus one in the angular variables. Then

∥rν [A0,−∆g(r)](1− ∆̃g(r))
−1/2∥L(L2(drdg)) = O(1). (2.14)

Moreover, the commutator of A0 with a differential operator of order one with bounded
coefficients is going to be a function in S−ν and hence

∥rν [A0,−∆̃g(r) +∆g(r)]∥L(L2(drdg)) = O(1) (2.15)

and

∥rν [A0, w
1/2[−∆̃g(r), w

−1/2]]∥L(L2(drdg)) = O(1). (2.16)

Recalling l(r) ≲ r−1

|(ϕu, h2l2(r)[A0,−∆g(r)]ϕu)drdg| ≤ |(r−νr−1/2ϕu, h2r−1/2rν [A0,−∆g(r)]l(r)ϕu)drdg|

≤
∑

k≥k0+1

(|r−1/2−νφ(2−kr)χkϕu|, |h2r−1/2rν [A0,−∆g(r)]l(r)χkϕu|)drdg

where we introduce χk, functions which are equal to one on the support of φ(2−k·). Write
k ≥ k0 in the form

k = k0 +m+ 1 m = m(k) ≥ 0

recalling that supp χk = [2k−2, 2k+2], inequality

r−1 ≤ 2−k02−m+1 (2.17)
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holds on the support of χk. Inserting (1− ∆̃g(r))
−1/2 and recalling (2.14)

|(ϕu, h2l2(r)[A0,−∆g(r)]ϕu)drdg| ≲ h
∑
m≥0

k=k0+1+m

(
2−mν+ν∥r−1/2u∥L2(drdg,Dk)

· ∥r−1/2hl(1− ∆̃g(r))
1/2ϕu∥L2(drdg,Dk)

)
≲ h

∑
m≥0

k=k0+1+m

(
2−mν+ν∥r−1/2u∥L2(drdg,Dk)

· ∥r−1/2M(r)1/2ϕu∥L2(drdg,Dk)

)
where we used Lemma 2.5 in the last inequality. We can choose m∗ = m∗(δ) such that∑

m≥m∗ 2−mν < δ in order to bound the tail of the series by the B∗
>R norms, while the

remaining terms will be norms supported on compact intervals (depending on m∗(δ))

|(ϕu, h2l2(r)[A0,−∆g(r)]ϕu)drdg| ≲hδ(∥u∥2B∗
>R

+ ∥M(r)1/2ϕu∥2B∗
>R

)

+ hc(δ)(∥u∥2L2(K(δ)) + ∥M(r)1/2ϕu∥2L2(K(δ)))

≲hδ∥u∥2H1,B∗
>R

+ hc(δ)(∥u∥2L2(K(δ)) + ∥M(r)1/2ϕu∥2L2(K(δ)))

Here the constant c(δ) includes the sum
∑m∗

m=0 2
−mν , hence it is a constant which grows as δ

approaches 0.
Thanks to (2.15) and (2.16) we can proceed analogously to bound

|(ϕu, h2l2(r)[A0,−∆̃g(r) +∆g(r)]ϕu)drdg|

and
|(ϕu, h2l2(r)[A0, w

1/2[−∆̃g(r), w
−1/2]]ϕu)drdg|

where this time we do not need to insert (1− ∆̃g(r))
−1/2 since the commutators are of order

zero. This yields

|(ϕu, h2l2(r)[A0,−∆̃g(r) +∆g(r)]ϕu)drdg| ≲hR−ν(δ∥u∥2B∗
>R

+ c(δ)∥u∥2L2(K(δ)))

and

|(ϕu, h2l2(r)[A0, w
1/2[−∆̃g(r), w

−1/2]]ϕu)drdg| ≲hR−ν(δ∥u∥2B∗
>R

+ c(δ)∥u∥2L2(K(δ)))

which conclude the proof.
□

We conclude the section with the proof of the last item in 2.6.

Lemma 2.13. For any δ ∈ (0, 1) there exists c, c(δ) > 0 such that

|(ϕu, h2Dr(Vm)ϕu)drdg| ≤δc∥u∥2H1,B∗
>R

+ c(δ)∥u∥2L2(K(δ)).
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Proof. We proceed similarly to the previous proof. We write k ≥ k0 in the form k = k0+m+1
for m = m(k) ≥ 0 and since r1+νDr(Vm) is bounded thanks to (1.15) we first have

|(ϕu, h2Dr(Vm)ϕu)drdg| ≤h2
∑

k≥k0+1

|(r−νφ(2−k·)r−1/2χkϕu, r
1+νDr(Vm)r

−1/2χkϕu)drdg|

≲h22νR−ν
∑
m≥0

k=k0+1+m

2−mν∥r−1/2u∥2L2(drdg,Dk)

where we have used as in (2.17) that r ≤ O(2−m). Choosing m∗ = m∗(δ) such that∑
m≥m∗ 2−mν < δ we have the statement

|(ϕu, h2Dr(Vm)ϕu)drdg| ≲h22νR−ν(δ∥u∥2B∗
>R

+ c(δ)∥u∥2L2(K(δ))).

□

2.2. Estimating the radial derivative. In this section we give estimates on the radial
part of the H1, B∗

>R norm, that is ∥h(Dr − A0)u∥B∗
>R

. More precisely we prove

Proposition 2.14. For any δ ∈ (0, 1) there exist c(δ) > 0 and K(δ) ⊂ (R,+∞)×S bounded
such that

∥h(Dr − A0)u∥2B∗
>R

≤cδ∥u∥2H1,B∗
>R

+ c′
1

δh2
∥Pu∥2B>R

+ c(δ)∥u∥2H1(r≃R) + ∥u∥2H1(K(δ)).

We start again by considering the imaginary part of a scalar product. Let a a function of
r only. We apply property (2.2) to the symmetric operators Pg and

a(Dr − A0) + (Dr − A0)a

2
= a(Dr − A0) +

a′

2i
.

This yields

Im

(
a(Dr − A0) + (Dr − A0)a

2
u,Pu

)
drdg

=ε

(
a(Dr − A0) + (Dr − A0)a

2
u, u

)
drdg

+

(
u,

1

2i
[
a(Dr − A0) + (Dr − A0)a

2
, h2Pg]u

)
drdg

,

(2.18)

where we remark that[
a(Dr − A0) + (Dr − A0)a

2
, h2(Dr − A0)

2

]
=[a, h2(Dr − A0)

2](Dr − A0) +
1

2i
[a′, h2(Dr − A0)

2]

is a differential operator of order two with coefficients depending on a, a′, a′′, a′′′. In particular[
a(Dr − A0) + (Dr − A0)a

2
, h2(Dr−A0)

2

]
= 2a′′h2(Dr − A0)− 2

a′

i
h2(Dr − A0)

2 +
1

2i
h2a′′′

=− 2

i
Dr(a

′)h2(Dr − A0)−
2

i
a′h2(Dr − A0)

2 +
1

2i
h2a′′′

=− 2

i
h(Dr − A0)(a

′h(Dr − A0)) +
1

2i
h2a′′′,
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so that if we were to integrate the commutator against u, as in (2.18),

(u,
1

2i

[
a(Dr − A0) + (Dr − A0)a

2
, h2(Dr − A0)

2

]
u)drdg =(u, h(Dr − A0)(a

′h(Dr − A0))u)drdg

− h2

4
(u, a′′′u)drdg

=∥(a′)1/2h(Dr − A0)u∥2L2(drdg)

− h2

4
(u, a′′′u)drdg, (2.19)

provided that a′ is non negative.
Choosing a such that a′ is a cutoff on a dyadic interval the previous identity provides us

with ∥h(Dr − A0)u∥L2(drdg,Dk) which are the norms that constitute ∥h(Dr − A0)u∥B∗
>R

.
Given this remark we consider ak the primitive of χ2

k, we recall that χk is supported on
[2k−2, 2k+2] and equal to one on the support of φ(2−k·). Choosing a = ak in (2.18) and using
(2.19)(
u,

1

2i
[
ak(Dr − A0) + (Dr − A0)ak

2
, h2Pg]u

)
drdg

=(u, h2(Dr − A0)(a
′
k(Dr − A0))u)drdg

− h2

4
(u, a′′′k u)drdg

+ (u,−1

2
akM

′(r)u)drdg

− (u,
1

2i
ak[A0,M(r)]u)drdg

+
1

2i
(u, h2akDr(Vm)u)drdg

≥∥χkh(Dr − A0)u∥2L2(drdg)

− h2

4
(u, χ′′

ku)drdg − (u,
1

2i
ak[A0,M(r)]u)drdg

+ (u,
1

2i
h2akDr(Vm)u)drdg (2.20)

where (u,−akM ′(r)u)drdg ≥ 0 thanks to Lemma 2.4 and the non negativity of ak. Addition-
ally

0 ≤ ak(r) =

∫
χ2
k(s)ds =

∫ 2k+2

2k−2

χ2
k(s)ds ≤

15

4
2k (2.21)

and without loss of generality we can assume

supp ak ⊂ [2k−2,+∞),

since suppχk ⊂ [2k−2, 2k+2].

Remark 2.15. We recall that∑
l≥k0

φ(2−lr) = 1 on (2k0 ,+∞)
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and supp ak ⊂ [2k−2,+∞) ⊂ [2k0 ,+∞) for any k ≥ k0 + 2 on top of the fact that χl ≡ 1 on
the support of φ(2−l·). For all k ≥ k0 + 2 we can then write

(ak·, ·)drdg ≤
∑
l≥k0

(φ(2−lr)ak·, ·)drdg ≤ (χk0ak·, χk0·)drdg +
∑

l≥k0+1

(φ(2−lr)χlak·, χl·)drdg (2.22)

On the other hand supp ak0+1 ⊂ [2k0−1,+∞) and∑
k≥k0

χ2
k ≥ 1 on [2k0−1,+∞),

hence we also have

(ak0+1·, ·)drdg ≤((χk0 + χk0+1)ak0+1·, (χk0 + χk0+1)·)drdg
+

∑
k≥k0+2

(φ(2−kr)χkak0+1·, χk·)drdg

since supp χk ⊂ (2k0 ,+∞) for all k ≥ k0 + 2.

Remark 2.16. To obtain (2.20) we have used the following expressions for the commutators
with M(r) and Vm − Λ:[

a(Dr − A0) + (Dr − A0)a

2
,M(r)

]
= a

M ′(r)

i
− a[A0,M(r)],

[
a(Dr − A0) + (Dr − A0)a

2
, h2(Vm − Λ)

]
= h2aDr(Vm).

Going back to expression (2.18) and given the contribution of (2.20) we have found

∥hχk(Dr − A0)u∥2L2(drdg) ≲Im

(
ak(Dr − A0)u+

a′k
2i
u,Pu

)
drdg

− ε

(
ak(Dr − A0) + (Dr − A0)ak

2
u, u

)
drdg

+
h2

4
(u, χ′′

ku)drdg + (u,
1

2i
ak[A0,M(r)]u)drdg

− (u,
1

2i
h2akDr(Vm)u)drdg

=Im

(
ak(Dr − A0)u+

χ2
k

2i
u,Pu

)
drdg

− εRe(aku, (Dr − A0)u)drdg

+
h2

4
(u, (χ2

k)
′′u)drdg + (u,

1

2i
ak[A0,M(r)]u)drdg

− (u,
1

2i
h2akDr(Vm)u)drdg, (2.23)

where we have used the relation

Re(Bu,Cu) =

(
BC + CB

2
u, u

)
(2.24)
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for B,C symmetric.
We recall that the B∗

>R norm is defined as a supremum over all dyadic intervals, hence
we need to bound the quantity hχk(Dr − A0)u uniformly in k for all k ≥ k0 + 1. To prove
Proposition 2.14 we use a series of inequalities that we collect here and that are proven in
the following subsection.

Lemma 2.17. Let k ≥ k0 + 1 of the form k = k0 +m+ 1 for some m = m(k) ≥ 1 then for
any δ ∈ (0, 1) we have the following inequalities:

i) ∑
l≥k0+1

Im

(
φ(2−lr)χl|(Dr − A0)u|,χl|Pu|

)
drdg

+ |Im
(
χ2
k

2i
u,Pu

)
drdg

|

≤ c

h2δ
∥Pu∥2B>R

+ cδ∥u∥2H1,B∗
>R
,

ii)

ε|Re(aku, (Dr − A0)u)drdg| ≤O(2m)(δc∥u∥2B∗
>R

+
1

δh
c∥Pu∥2B>R

)

+O(2m)
c

δ
∥u∥H1(r≃R),

iii)

|h
2

4
(u, (χ2

k)
′′u)drdg| ≤ δc∥u∥2B∗

>R
+ c∥u∥2L2(K(δ)),

iv) ∑
l≥k0+1

(φ(2−lr)χl|u|,
1

2i
χl|[A0,M(r)]u|)drdg ≲(cδ∥u∥2H1,B∗

>R
+ c(δ)∥u∥2H1(K(δ))),

v) ∑
l≥k0+1

(φ(2−lr)χl|u|,
1

2i
h2χl|Dr(Vm)u|)drdg ≲ (cδ∥u∥2H1,B∗

>R
+ c(δ)∥u∥2H1(K(δ))).

Proof of Proposition 2.14. Given the support of χk, we will bound the norm ∥ · ∥B∗
>R,2

and hence we will need to consider the supremum over all k ≥ k0 + 1 (see Remark 1.17).
Write

k = k0 + 1 +m, m = m(k) ≥ 0

then on the support of χk

R−1 ≥ r−12m+k∗

and

R−1∥hχk(Dr − A0)u∥2L2(drdg) ≥ O(2m)∥r−1/2hχk(Dr − A0)u∥2L2(drdg). (2.25)



HIGH FREQUENCY RESOLVENT OF THE MAGNETIC LAPLACIAN 25

Dividing by R the right hand side of (2.23) we have

O(2m)∥r−1/2hχk(Dr − A0)u∥2L2(drdg) ≲|R−1Im

(
ak(Dr − A0)u+

χ2
k

2i
u,Pu

)
drdg

|

+ |R−1εRe(aku, (Dr − A0)u)drdg|

+ |R−1h
2

4
(u, (χ2

k)
′′u)drdg|+ |R−1(u,

1

2i
ak[A0,M(r)]u)drdg|

+ |R−1(u,
1

2i
h2akDr(Vm)u)drdg|. (2.26)

We divide the proof in two steps.
(1) Consider ak with k ≥ k0 + 2. Thanks to Remark 2.15 for all k ≥ k0 + 2 we can use

inequality (2.22). Take for example the first term in the right hand side of (2.26),
inserting the partition of unity we obtain

|R−1Im

(
ak(Dr − A0)u+

χ2
k

2i
u,Pu

)
drdg

| ≲ Im(akχk0|(Dr − A0)u|, χk0|Pu|)drdg

+
∑

l≥k0+1

Im
(
akφ(2

−lr)χl|(Dr − A0)u|, χl|Pu|
)
drdg

+ |Im
(
χ2
k

2i
u,Pu

)
drdg

|

≲O(2m)Im(χk0|(Dr − A0)u|, χk0|Pu|)drdg
+O(2m)

∑
l≥k0+1

Im
(
φ(2−lr)χl|(Dr − A0)u|, χl|Pu|

)
drdg

+ |Im
(
χ2
k

2i
u,Pu

)
drdg

|

≲O(2m)∥u∥2H1(r≃R) +O(2m)∥Pu∥2B>R

+O(2m)
c

h2δ
∥Pu∥2B>R

+O(2m)cδ∥u∥2H1,B∗
>R
,

where we used item i) of Lemma 2.17. We can then eliminate the unbounded factor
O(2m) (coming from the bound ak ≤ O(2k)) with the one on the left hand side of
(2.26). Doing the same with all the other terms in the right hand side of (2.26) and
applying the inequalities in Lemma 2.17 we conclude that for all k ≥ k0 + 2

∥r−1/2hχk(Dr − A0)u∥2L2(drdg) ≤cδ∥u∥2H1,B∗
>R

+ c
1

δh2
∥Pu∥2B>R

+ c(δ)∥u∥2H1(r≃R) + ∥u∥2H1(K(δ)). (2.27)

(2) Let k = k0 + 1, we recall that for ak0+1 we have the following bound

(ak0+1·, ·)drdg ≤((χk0 + χk0+1)ak0+1·, (χk0 + χk0+1)·)drdg
+

∑
k≥k0+2

(φ(2−kr)χkak0+1·, χk·)drdg.
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We can then repeat the same argument as in the previous step and obtain

∥r−1/2hχk0+1(Dr − A0)u∥2L2(drdg) ≤cδ∥u∥2H1,B∗
>R

+ c
1

δh2
∥Pu∥2B>R

+ c(δ)∥u∥2H1(r≃R) + ∥u∥2H1(K(δ)). (2.28)

Thanks to (2.27) and (2.28) we have the desired bound on

sup
k≥k0+1

∥r−1/2χkh(Dr − A0)u∥2L2(drdg)

and we conclude the proof.
□

2.2.1. Auxiliary lemmas. In this section we provide the results needed in Lemma 2.17.

Lemma 2.18. For any δ ∈ (0, 1) there exists c > 0 such that∑
l≥k0+1

Im

(
φ(2−lr)χl|(Dr − A0)u|, χl|Pu|

)
drdg

≤ c

h2δ
∥Pu∥2B>R

+ cδ∥u∥2H1,B∗
>R

and

|Im
(
χ2
k

2i
u,Pu

)
drdg

| ≤ c

δ
∥Pu∥2B>R

+ cδ∥u∥2H1,B∗
>R
.

Proof. Thanks to the duality of the norms B∗
>R, B>R we can insert the weights r1/2, r−1/2

and h, h−1, then by Cauchy-Schwarz inequality∑
l≥k0+1

Im

(
φ(2−lr)χl|(Dr − A0)u|, χl|Pu|

)
drdg

≤
∑

l≥k0+1

∥r−1/2χkh(Dr − A0)u∥L2(drdg,Dk)

1

h
∥r1/2Pu∥L2(drdg,Dk)

≲∥h(Dr − A0)u∥B∗
>R

1

h
∥Pu∥B>R

≲δ∥h(Dr − A0)u∥2B∗
>R

+
1

h2δ
∥Pu∥2B>R

.

We do the same for the second inequality

|Im
(
χ2
k

2i
u,Pu

)
drdg

| = |Re
(χk

2
r−1/2u, χkr

1/2Pu
)
drdg

| ≲ δ

4
∥u∥2B∗

>R
+

1

4δ
∥Pu∥2B>R

.

□

Lemma 2.19. For any δ ∈ (0, 1) there exists c > 0 such that

ε|Re(aku, (Dr − A0)u)drdg| ≤O(2m)(δc∥u∥2B∗
>R

+
1

δh
c∥Pu∥2B>R

)

+O(2m)
c

δ
∥u∥H1(r≃R).
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Proof. Let ϕ̃ a smooth function which is one on supp ak, we can apply Lemmas 2.9 and 2.10,
which yield

|R−1εRe(aku, (Dr − A0)u)drdg| ≲O(2m)
ε

h
∥ϕ̃u∥L2(drdg)∥h(Dr − A0)(ϕ̃u)∥L2(drdg)

+O(2m)
ε

h
∥ϕ̃u∥L2(drdg)∥Dr(ϕ̃)u∥L2(drdg)

≲O(2m)
1

h
(δc∥u∥2B∗

>R
+

1

δ
c′∥P(ϕ̃u)∥2B>R

)

Choosing δ = hδ′ and applying Lemma 2.7 we conclude

|R−1εRe(aku, (Dr − A0)u)drdg| ≲O(2m)(δ′c∥u∥2B∗
>R

+
c′

δ′h2
∥P(ϕ̃u)∥2B>R

)

≲O(2m)(δ′c∥u∥2B∗
>R

+
c′

δ′h2
∥Pu∥2B>R

+
c′

δ′
∥u∥2H1(r≃R)).

□

Lemma 2.20. Let k ≥ k0 + 1 of the form k = k0 +m+ 1 for some m = m(k) ≥ 1, then for
any δ ∈ (0, 1) there exist c > 0 and K(δ) ⊂ (R,+∞)× S bounded such that

|h
2

4
(u, (χ2

k)
′′u)drdg| ≤ δc∥u∥2B∗

>R
+ c∥u∥2L2(K(δ)).

Proof. By definition χk = χ(2−k·), hence

(χ2
k)

′′ = 21−2k(χ′(2−k·))2 + 21−2kχkχ
′′(2−k·)

where 2−2k = O(2−2m) and

|h
2

4
(u, (χ2

k)
′′u)drdg| ≤ h2O(2−2m)(∥χ′∥∞ + ∥χ′′∥∞)∥u∥2L2(drdg,Dk)

.

Let δ ∈ (0, 1), if m is large enough such that O(2−2m) < δ then we directly have

|h
2

4
(u, (χ2

k)
′′u)drdg| ≤ δc∥u∥2B∗

>R
.

Otherwise for all m such that 2−2m > δ the interval Dk is a bounded one, albeit depending
on δ. Hence

|h
2

4
(u, (χ2

k)
′′u)drdg| ≤ c∥u∥2L2(K(δ)).

□

Lemma 2.21. For any δ ∈ (0, 1) there exist c, c(δ) > 0 andK(δ) ⊂ (R,+∞) × S bounded
such that∑

l≥k0+1

(φ(2−lr)χl|u|,
1

2i
χl|[A0,M(r)]u|)drdg ≲(cδ∥u∥2H1,B∗

>R
+ c(δ)∥u∥2H1(K(δ))).

Proof. The proof is analogous to the one of Lemma 2.12.
□
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Lemma 2.22. For any δ ∈ (0, 1) there exist c, c(δ) > 0 andK(δ) ⊂ (R,+∞) × S bounded
such that∑

l≥k0+1

(φ(2−lr)χl|u|,
1

2i
h2χl|Dr(Vm)u|)drdg ≲ (cδ∥u∥2H1,B∗

>R
+ c(δ)∥u∥2H1(K(δ))).

Proof. The proof is analogous to the one of Lemma 2.13. □

2.3. Estimating u. In this section we give bounds on the norm ∥u∥B∗
>R

.
Let χk as defined in (1.20), taking the real part in the following scalar product we have

Re(χ2
ku,Pu)drdg = −∥χku∥2L2(drdg) +Re(χ2

ku, h
2Pgu)drdg.

As in the previous section we write k = k0 +m + 1 for a certain m = m(k) ≥ 0. With this
notation, on the support of χk

2k0−12m ≤ r ≤ 2k0+32m (2.29)

where k0 = lnR
ln 2

+ k∗ + 2 and k∗ is a fixed natural number. In particular

2k
∗+1+mR ≤ r ≤ 2k

∗+5+mR (2.30)

which implies that, for some c > 0, it holds

2mc∥r−1/2χku∥2L2(drdg) ≤R−1∥χku∥2L2(drdg)

≤R−1|Re(χ2
ku, h

2Pgu)drdg| (2.31)

+R−1|(r−1/2χku, r
1/2χkPu)drdg|. (2.32)

The main result of this section is:

Proposition 2.23. For all δ ∈ (0, 1) there exist c, c(δ) > 0 andK(δ) ⊂ (R,+∞)×S bounded
such that

∥u∥2B∗
>R

≤ c′

δh2
∥Pu∥2B>R

+ δc∥u∥2H1,B∗
>R

+ c(δ)∥u∥2H1(r≃R) + ∥u∥2H1(K(δ)).

Proof. For the term in (2.32) we can plainly use the duality of the norms B∗
>R, B>R. In (2.31)

we have a term made of several parts. First we consider the one involving h2(Dr − A0)
2,

using (2.24)

Re(χ2
ku, h

2(Dr − A0)
2u)drdg =(u,

h2

2

(
χ2
k(Dr − A0)

2 + (Dr − A0)
2χ2

k

)
u)drdg

=(u, h2(Dr − A0)(χ
2
k(Dr − A0))u)drdg − h2(u, (χ2

k)
′′u)drdg

Since (2.30) holds on the support of χk we also have for some positive constant c

R−1 ≤ c2mr−1

and hence

|R−1Re(χ2
ku, h

2(Dr − A0)
2u)drdg| ≲2m∥h(Dr − A0)u∥2B∗

>R
+ h2R−1|(u, (χ2

k)
′′u)drdg|

≲2m(
c

δh2
∥Pu∥2B>R

+ δc∥u∥2H1,B∗
>R

+ c(δ)∥u∥2H1(r≃R) + ∥u∥2H1(K(δ))) (2.33)
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thanks to Proposition 2.14 and Lemma 2.20. Applying (2.11) we also obtain

|R−1(χku, χkM(r)u)drdg| ≲2m∥r−1/2M(r)1/2u∥L2(drdg,Dk)

≤2m(
c

δh2
∥Pu∥2B>R

+ δc∥u∥2H1,B∗
>R

+ c(δ)∥u∥2H1(K(δ))). (2.34)

Finally, we can exploit the decay of Vm − Λ given by (1.15) and obtain

R−1|(χku, χkh
2(Vm − Λ)u)drdg| ≲2m|(r−1/2χku, r

−1/2−νχkh
2u)drdg|

≲2m−mνh2∥r−1/2u∥2L2(drdg,Dk)
.

Now for any δ ∈ (0, 1) there exists an m∗ = m∗(δ) ≥ 0 such that for all m ≥ m∗ we have
2−mν < δ. Hence the previous inequality, if k is large enough to satisfy m(k) ≥ m∗, renders

R−1|(χku, χkh
2(Vm − Λ)u)drdg| ≲ 2mδc∥u∥2B∗

>R
. (2.35)

Otherwise, the scalar product is bounded by the L2 norm of u over a compact interval of r,
depending on δ. Thanks to (2.33), (2.34) and (2.35) we have

2m∥r−1/2χku∥2L2(drdg) ≲2m(
c

δh2
∥Pu∥2B>R

+ δc∥u∥2H1,B∗
>R

+ c(δ)∥u∥2H1(r≃R) + ∥u∥2H1(K(δ)))

for any k ≥ k0 + 1 which yields the statement.
□

3. Estimates in the compact region: unique continuation

By the result of Proposition 2.1 in the previous section we have

∥u∥2H1,B∗
>R

≤ cδ∥u∥2H1,B∗
>R

+
c

δh2
∥Pu∥2B>R

+ c(δ)∥u∥2H1(drdg,K(δ)).

with K(δ) a bounded region in (R,+∞)× S. Now fix δ0 such that cδ0 < 1, then

∥u∥2H1,B∗
>R

≤ c

δ0h2
∥Pu∥2B>R

+ c(δ0)∥u∥2H1(K(δ0))
, (3.1)

that is we can bound the H1, B∗
>R norm of u (which is a norm on the manifold end) by the

operator P = h2Pg − 1 + iε up to a compactly supported term.
In this section we show how to bound the H1 norm on a compact region of the manifold

by applying unique continuation results.

Notation 5. We define the notation

XR := (R,+∞)× S ≃M \K

and in general
Xa := (a,+∞)× S

so that K(δ0) ⊂ XR, more precisely K(δ0) ⊂ X2k∗R Let a > R such that K(δ0) ⊂ Xa and
without loss of generality we can assume K(δ0) ⊂ Xa \Xa+2.

The main result of this section is
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Proposition 3.1. Fix λ0 > 0. Let u ∈ H2(M), λ > λ0 > 0, h = λ−1 and a > R such that
K(δ0) ⊂ Xa \Xa+2. There exist γ0 ∈ (0, 1) and U bounded region of X2k∗R = (2k

∗
R,+∞)×S

such that

∥u∥H1(M\X
2k

∗
R
) ≤ O(eλ/γ0)(∥(Pm − λ2 + iε′)u∥L2(M\Xa+3) + ∥u∥H1(U)).

The following proposition is a direct application of unique continuation.

Proposition 3.2. Let (M0, g0) an n dimensional Riemannian manifold, T the Laplace-
Beltrami operator on M0 and R a differential operator of order one. Let

U0 ⋐ V0 ⋐M0 V ′
0 ⋐ V0 ⋐M0 V 0 ∩ ∂M0 = ∅,

α ∈ (0, 1/2) and z ∈ C with Rez > z0 > 0, |Imz| ̸= 0. Then there exist c(z0) > 0 and
γ0 ∈ (0, 1) such that

∥u∥H1(V ′
0)
≤ c(z0)e

|z|/γ0(∥(T +R− z2)u∥L2(V0) + ∥u∥L2(U0))

for all u ∈ H2(V0).

Proof. Define

M1 = (−1, 1)×M0, σ̃ = (−1 + 2α, 1− 2α)× U0,

σ = (−1, 1)× U0,

U = (−1 + α, 1− α)× V ′
0 ,

Ṽ = (−1 + α/2, 1− α/2)× V0,

V = (−1, 1)× V0,

then U ∩ ∂M1 = ∅, σ̃ is an open subset of U and U ⋐ V ⋐M1. Let us also consider

T − ∂2t +R, v(t,m) = etzu(m) ∈ H2(V )

and f such that (T − ∂2t +R)v = f.
We apply [12, Theorem 9.1] to the sets σ̃, U, Ṽ and the operator T − ∂2t +R. Hence there

exist c > 0 and γ0 ∈ (0, 1) for which

∥v∥H1(U) ≤ c∥v∥1−γ0
H1(Ṽ )

(∥(T − ∂2t +R)v∥L2(Ṽ ) + ∥v∥L2(σ̃))
γ0

≤ c∥v∥1−γ0
H1(V )(∥(T − ∂2t +R)v∥L2(V ) + ∥v∥L2(σ))

γ0 (3.2)

where
(T − ∂2t +R)v = etz(T +R− z2)u(m).

Computing the integrals with respect to t in (3.2) yields

(|z|2∥u∥2L2(V ′
0)
+ ∥∇g0u∥2L2(V ′

0)
+ ∥u∥2L2(V ′

0)
)γ0/2 ≤c eRez + e−Rez

eRez(1−α) − e−Rez(1−α)

(∥(T +R− z2)u∥L2(V0) + ∥u∥L2(U0))
γ0 ,

where we used the relation b1/2−b−1/2 ≤ (b−b−1)1/2 ≤ b1/2+b−1/2 which holds for b ≥ 1. The
left hand side can be bounded from below by O(1)∥u∥γ0H1(V0)

(since min{|z|2, 1} is a strictly
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positive constant). On the other hand since Rez(1 − α) > z0/2 > 0 there exists c′ = c′(z0)
such that eRez(1−α) − e−Rez(1−α) > c′. We conclude that

∥u∥H1(V ′
0)
≤c2e

|z|/γ0

c′(z0)
(∥(T +R− z2)u∥L2(V0) + ∥u∥L2(U0)).

□

With these result we can now prove the main result of this section.

Proof of Proposition 3.1. We apply Proposition 3.2. Choose
U0 ⋐ Xa+2 \Xa+3, V

′
0 =M \Xa+2 V0 =M \Xa+3, M0 =M \Xa+4

and we apply Proposition 3.2 to the function χ0u with

χ0 =


1 on M \X2k∗R

∈ (0, 1) on U = X2k∗R \Xa+2

0 on Xa+2

(3.3)

so that χ0u ≡ 0 on U0 and
K(δ0) ⊂ U. (3.4)

Taking T +R− z2 = Pm − λ2 + iε′ results in

∥u∥H1(M\X
2k

∗
R
) ≤ O(eλ/γ0)(∥(Pm − λ2 + iε′)u∥L2(M\Xa+3) + ∥u∥H1(U)). (3.5)

□

Thanks to (3.4) we can bound the perturbative term in (3.1) by ∥u∥H1(U), so (3.1) becomes

∥u∥2H1,B∗
>R

≤ c

δ0h2
∥Pu∥2B>R

+ c(δ0)∥u∥2H1(U)

and a combination with Proposition 3.1 yields

∥u∥2H1(M\X
2k

∗
R
) + ∥u∥2H1,B∗

>R
≤O(h−2eλ/γ0)∥Pu∥2L2(M\Xa+2)

+O(h−2)∥Pu∥2B>R
+O(eλ/γ0)∥u∥2H1(U). (3.6)

Notation 6. In the previous section we had actually set P = h2Pg − 1+ iε. With an abuse of
notation we use the same symbol to denote the corresponding quantity on the whole manifold,
that is h2Pm − 1 + iε.

The rest of the paper will be devoted to eliminate the perturbative term of exponential
size O(eλ/γ0)∥u∥2H1(U).

4. Estimates on the exponential remainder

In this section we consider λ≫ 1 in
P − λ2 + iε′,

we recall the (slight abuse of) notation

P = h2Pm − 1 + iε

with ε = O(h2) in which now h = λ−1 ≪ 1. The aim of this section is to prove the following
result, which implies Theorem 1.1.
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Theorem 4.1. Let u ∈ H2(M), λ≫ 1, R < a < 2k
∗
R < a+3, then there exists C > 0 such

that

∥u∥2H1(M\X
2k

∗
R
) + ∥u∥2H1,B∗

>R
≤O(λ−2eλC)∥(Pm − λ2 + iε)u∥2L2(M\Xa+3)

+O(λ−2eλC)∥(Pm − λ2 + iε)u∥2B>R
.

More precisely, what we will be able to prove is

∥u∥2L2(M\Xa+3)
+O(eλC)∥u∥2B∗

>R
≤O(λ−2eλC)∥(Pm − λ2 + iε)u∥2L2(M\Xa+3)

+O(λ−2eλC)∥(Pm − λ2 + iε)u∥2B>R
, (4.1)

see Remark 4.7 for further details. By simply considering a function supported sufficiently
far at radial infinity we can then derive Corollary 1.2, that is

Corollary 4.2. Let u ∈ H2(M), λ ≫ 1, R < a < 2k
∗
R < a+ 3 and χ a smooth cutoff such

that χ ≡ 0 on M \Xa+3, χ ≡ 1 on Xa+4. Then

∥χu∥2B∗
>R

≤ O(λ−2)∥(Pm − λ2 + iε)χu∥2B>R
.

In particular
∥r−1/2−µχ(Pm − λ2 + iε)−1χr−1/2−µ∥L2→L2 = O(λ−1)

with µ > 0.

Proof. The B>R → B∗
>R bound follows directly from inequality (4.1) thanks to the support

of χ. To recover the norm in the weighted L2 space we just remark the inclusions

L2
1/2+µ ↪→ B>R, B∗

>R ↪→ L2
−1/2−µ

which can be proved by direct computations. □

As we pointed out above, the main concern is now to take care of the exponentially large
remainder in (3.6). To do so we can exploit the weight φ constructed in [6, Section 2]. In
particular let a > R such that

φ′(r) =
1

λr
r ≥ a. (4.2)

Moreover, φ > γ−1
0 for all r ≥ R + 2 for a parameter γ0 > 0 independent of λ.

Remark 4.3. For r ≥ a we have

φ(r)− φ(a) =
1

λ
ln
(r
a

)
and hence the quantity

eλ(φ(r)−φ(a)) =
r

a
r ≥ a

is independent of λ.

Remark 4.4. The subset U defined in (3.3) is contained in XR+2, so φ > γ−1
0 on U and

therefore

e2λ/γ0∥u∥2H1(U) = ∥eλ(1/γ0−φ)eλφu∥2H1(U) ≤ O(e−cλ)∥eλφu∥H1(U).

We will use the following properties of φ which are due to [6].
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Lemma 4.5 (Lemma 2.1 [6]). Let δ ∈ (0, 1). There exists C > 0 such that following
inequalities hold for λ > λ(δ) ≫ 1 and r > R:

Cλ−1r−1 ≤ φ′,

− φ′φ′′ ≤ Cδr−1

|φ′′| ≤ Cλ1/2r−1φ′, (φ′′)2 ≤ Cλ1/2r−1φ′

|φ′′′| ≤ Cλr−1φ′, |φ′′′| ≤ Cλ1/2r−1,

|φ(4)| ≤ Cλ3/2r−1φ′

We will conclude the proof of Theorem 4.1 thanks to the following proposition.

Proposition 4.6. Let v ∈ H2(XR \Xa+4) such that v = ∂rv = 0 on ∂XR, λ≫ 1 and a > R
such that φ′ = λ−1r−1 for r ≥ a. Then

∥eλ(φ−φ(a))v∥2H1(XR\Xa+3)
≤O(h−2)∥eλ(φ−φ(a))Pv∥2L2(XR\Xa)

+O(h−2)∥Pv∥L2(Xa\Xa+4)

+O(h−2)∥Pv∥2B>R
.

The proof, being quite technical, will be postponed to the end of this section, we first show
how its application allows us to pass from (3.6) to the result in Theorem 4.1.

Let v such that the assumptions of Proposition 4.6 are satisfied and recall K(δ0) ⊂ U . In
particular r > a on K(δ0) and φ′ ≥ 0 implies φ−φ(a) > 0 on K(δ0). Then there is a positive
constant c such that

∥v∥H1(K(δ0)) ≤ e−λc∥eλ(φ−φ(a))v∥H1(K(δ0)) ≤ e−λc∥eλ(φ−φ(a))v∥H1(XR\Xa+2). (4.3)

since K(δ0) ⊂ XR \Xa+2 and hence

e2λφ(a)∥v∥2H1(K(δ0))
≤ e−λc∥eλφv∥2H1(XR\Xa+2)

(4.4)

From Proposition 4.6 we obtain

∥eλφv∥2H1(XR\Xa+3)
≤O(h−2)∥eλφPv∥2L2(XR\Xa)

+O(h−2eλφ(a))∥Pv∥L2(Xa\Xa+4)

+O(h−2eλφ(a))∥Pv∥2B>R
,

nevertheless we can replace the left hand side with ∥eλφv∥2H1(XR\Xa+3)
+ e2λφ(a)∥v∥2H1,B∗

>R
.

Indeed, applying (3.1) to v we have

e2λφ(a)∥v∥2H1,B∗
>R

≤ e2λφ(a)
c

δ0h2
∥Pv∥2B>R

+ c(δ0)e
2λφ(a)∥v∥2H1(K(δ0))

and (4.4) implies we can absorb the remainder term in the left hand side. We have obtained

∥eλφv∥2H1(XR\Xa+3)
+ e2λφ(a)∥v∥2H1,B∗

>R
≤O(h−2)∥eλφPv∥2L2(XR\Xa)

+O(h−2e2λφ(a))∥Pv∥2L2(Xa\Xa+4)

+O(h−2e2λφ(a))∥Pv∥2B>R
. (4.5)
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Proof of Theorem 4.1. We define

χ̃1 =


0 M \Xb1

∈ (0, 1) Xb1 \Xb2

1 Xb2

with R < b1 < b2 < R + 1 such that φ < −c < 0 on [b1, b2] and apply (4.5) to χ̃1u, yielding

∥eλφu∥2H1(Xb2
\Xa+3)

+ e2λφ(a)∥u∥2H1,B∗
>R

≤ O(h−2)∥eλφPu∥2L2(XR\Xa)

+O(h−2e2λφ(a))∥Pu∥2L2(Xa\Xa+4)

+O(h−2e2λφ(a))∥Pu∥2B>R

+O(e−cλ)∥u∥H1(Xb1
\Xb2

).

In this inequality we have another compactly supported remainder term that we wish to
absorb, since the pre-factor is a small one. To do so we need to add a term on the left hand
side that is supported in a region containing Xb1 \Xb2 , for example M \X2k∗R. We can now
use (3.6) and Remark 4.4 to add the contribution of this region

∥eλφu∥2H1(Xb2
\Xa+3)

+ ∥u∥2H1(M\X
2k

∗
R
) + e2λφ(a)∥u∥2H1,B∗

>R

≤O(h−2)∥eλφPu∥2L2(XR\Xa)
+O(h−2)e2λφ(a)∥Pu∥2L2(Xa\Xa+4)

+O(h−2)e2λφ(a)∥Pu∥2B>R
+O(h−2)e2λ/γ0∥Pu∥2L2(M\Xa+3)

+O(e−cλ)∥u∥2H1(Xb1
\Xb2

) +O(e−cλ)∥eλφu∥2H1(Xb2
\Xa+2)

≤O(h−2)∥eλφPu∥2L2(XR\Xa)
+O(h−2)e2λφ(a)∥Pu∥2B>R

+O(h−2)e2λ/γ0∥Pu∥2L2(M\Xa+3)

+O(e−cλ)∥u∥2H1(Xb1
\Xb2

) +O(e−cλ)∥eλφu∥2H1(Xb2
\Xa+2)

. (4.6)

Both terms in (4.6) can be absorbed to the left hand side by ∥u∥2H1(M\X
2k

∗
R
) and

∥eλφu∥2H1(Xb2
\Xa+2)

respectively. First of all, we remark that after absorption of the remainders
this last inequality implies (4.1). Then, thanks to the properties of φ we have

eλ(φ−φ(a)) ≤ 1 on XR \Xa, e2λ/γ0−2λφ(a) ≤ 1

so dividing everything by e2λφ(a)

e−2λφ(a)(∥u∥2H1(M\X
2k

∗
R
) + ∥u∥2H1,B∗

>R
) ≤O(h−2)∥Pu∥2B>R

+O(h−2)∥Pu∥2L2(M\Xa+3)
. (4.7)

This proves the statement since we recall the rescaling

h−1P = h−1(h2Pm − 1 + iε) = λ−1(Pm − λ2 + iε′).

□

Remark 4.7. We can obtain inequality (4.1) directly from the computations in the previous
proof. The right hand side in inequality (4.6) also bounds

∥u∥2L2(X
2k

∗
R
\Xa+3)

+ ∥u∥2L2(M\X
2k

∗
R
) + e2λφ(a)∥u∥2B∗

>R
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and hence we obtain

∥u∥2L2(M\Xa+3)
+ e2λφ(a)∥u∥2B∗

>R
≤O(λ−2)e2λφ(a)∥(Pm − λ2 + iε′)u∥2B>R

+O(λ−2eλC)∥(Pm − λ2 + iε′)u∥2L2(M\Xa+3)

+O(λ−2)∥eλφ(Pm − λ2 + iε′)u∥2L2(XR\Xa)

from which (4.1) follows.

As announced earlier, we conclude the section with the proof of Proposition 4.6. We will
need first the following lemma, which is the equivalent, for a Schrödinger operator with order
one perturbation,of [6, Proposition 2.3]. We nevertheless include the proof at the end of this
section for the sake of clarity and completeness.

Lemma 4.8. Let v ∈ H2(XR \∂Xa) such that v = ∂rv = 0 on ∂XR∪∂Xa, λ≫ 1 and a > R
such that φ′ = λ−1r−1 for r ≥ a. Then

∥(φ′/r)1/2v∥H1(XR\Xa) ≤ O(λ1/2)∥Pφv∥L2(XR\Xa)

where Pφ = eλφPe−λφ.

Proof of Proposition 4.6. Let v as in the statement of Proposition 4.6 and define

χ1 =


1 on M \Xa+3,

∈ (0, 1) on Xa+3 \Xa+4,

0 on Xa+4.

We apply Lemma 4.8 to eλφχ1v which vanishes, together with its radial derivative, on ∂XR∪
∂Xa+4. This yields

∥(φ′/r)1/2eλφχ1v∥H1(XR\Xa+4) ≤ O(h−1/2)∥eλφP(χ1v)∥L2(XR\Xa+4),

where (φ′/r)1/2 ≥ h1/2r−1 on XR \Xa+4 thanks to the inequality φ′ ≥ Cλ−1r−1. Then

∥eλφv∥H1(XR\Xa+3) ≤O(h−1)∥eλφPv∥L2(XR\Xa+4) +O(h−1)∥eλφ[P , χ1]v∥L2(Xa+3\Xa+4)

≤O(h−1)∥eλφPv∥L2(XR\Xa+4) +O(h)eλφ(a+4)∥v∥H1(Xa+3\Xa+4)

since [P , χ1] = [h2(Dr − A0)
2, χ1] is supported on the set {χ1 ∈ (0, 1)} and is an operator of

order one in the radial variable. Dividing by eλφ(a) and thanks to Remark 4.3

∥eλ(φ−φ(a))v∥2H1(XR\Xa+3)
≤O(h−2)∥eλ(φ−φ(a))Pv∥2L2(XR\Xa)

+O(h−2)∥Pv∥2L2(Xa\Xa+4)

+O(1)∥v∥2H1(Xa+3\Xa+4)
.

The norm of v can be bounded by the inequality (3.1) on the region at infinity and recalling
(4.3) we obtain

∥v∥H1(Xa+3\Xa+4) ≤O(h−2)∥Pv∥B>R
+ e−λc∥eλ(φ−φ(a))v∥H1(XR\Xa+2)

from which the statement follows since e−λc∥eλ(φ−φ(a))v∥H1(XR\Xa+2) is an absorbable term.
□
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Proof of Lemma 4.8. The conjugated operator is given by

Pφ = P − (φ′)2 + hφ′′ + 2iφ′hDr − 2iA0φ
′. (4.8)

Let ψ ∈ C∞([R, a]) real valued, we consider the scalar product

Re(ψPφv, v)L2(XR\Xa) = Re

∫ a

R

∫
S

ψPφv v drdg.

By integration by parts

Re(ψh2(Dr − A0)
2v, v)L2(XR\Xa) =Re(ψh(Dr − A0)v, h(Dr − A0)v)L2(XR\Xa)

+Re(h(Dr − A0)v, hDr(ψ)v)L2(XR\Xa).

In this expression we notice

Re(hA0v, hDr(ψ)v)L2(XR\Xa) =Re
1

i

∫ a

R

∫
S

h2A0ψ
′|v|2 drdg = 0

and

Re(hDrv, hDr(ψ)v)L2(XR\Xa) =Re h
2

∫ a

R

∫
S

∂rvψ
′v drdg

=
h2

2

∫ a

R

∫
S

∂r|v|2ψ′ drdg = −(
h2

2
ψ′′v, v)L2(XR\Xa).

Hence we have

Re(ψh2(Dr − A0)
2v, v)L2(XR\Xa) =Re(ψh(Dr − A0)v, h(Dr − A0)v)L2(XR\Xa)

− (
h2

2
ψ′′v, v)L2(XR\Xa). (4.9)

Moreover

Re(ψ2iφ′hDrv, v)L2(XR\Xa) =Re 2h

∫ a

R

∫
S

∂rvvψφ
′ drdg

=h

∫ a

R

∫
S

∂r(|v|2)ψφ′ drdg

=− h

∫ a

R

∫
S

|v|2(ψ′φ′ + ψφ′′) drdg (4.10)

so if we evaluate again the scalar product Re(ψPφv, v)L2(XR\Xa) we have

Re(ψPφv, v)L2(XR\Xa) =Re(ψh(Dr − A0)v, h(Dr − A0)v)L2(XR\Xa)

+ (ψM(r)v, v)L2(XR\Xa)

− ((ψ + ψ(φ′)2 − ψh2(Vm − Λ) + hφ′ψ′ +
h2

2
ψ′′)v, v)L2(XR\Xa).

(4.11)

We define
F (r) := −((M(r)− 1 +W )vr, vr)L2(S) + ∥h(Dr − A0)vr∥2L2(S) (4.12)

where vr = v(r, ·) and
W := h2(Vm − Λ)− (φ′)2 + hφ′′.
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By definition of Pφ we can write

−Pφ = −h2(Dr − A0)
2 −M(r) + (1−W )− 2ihφ′h(Dr − A0)− iε. (4.13)

We need to compute F ′, so

∂r∥h(Dr − A0)vr∥2L2(S) = 2Re(h(Dr − A0)∂rvr, h(Dr − A0)vr)L2(S)

+ 2Re([∂r, h(Dr − A0)]vr, h(Dr − A0)vr)L2(S)

=− 2Re(h(Dr − A0)hDrvr, (∂r − iA0)vr)L2(S) − 2Re(hA′
0vr, h(Dr − A0)vr)L2(S)

=− 2Re(h2(Dr − A0)
2vr, (∂r − iA0)vr)L2(S) − 2Re(h2(Dr − A0)(A0vr), (∂r − iA0)vr)L2(S)

− 2Re(hA′
0vr, h(Dr − A0)vr)L2(S).

After commuting A0 with Dr and noticing that

Re(h2A0(Dr − A0)vr, i(Dr − A0)vr)L2(S) = 0

we obtain

−2Re(h2(Dr − A0)(A0vr), (∂r − iA0)vr)L2(S) =2Re(hA′
0vr, h(Dr − A0)vr)L2(S),

so that the last two terms in ∂r∥h(Dr −A0)vr∥2L2(S) cancel. This gives us the final expression

∂r∥h(Dr − A0)vr∥2L2(S) = −2Re(h2(Dr − A0)
2vr, (∂r − iA0)vr)L2(S).

We can now compute F ′

F ′(r) =2Re((−h2(Dr − A0)
2 −M(r) + (1−W ))vr, ∂rvr)L2(S)

− 2Re(h2(Dr − A0)
2vr,−iA0vr)L2(S)

− ([∂r,M(r)]vr, vr)L2(S) − (W ′vr, vr)L2(S)

and adding the suitable terms

F ′(r) + 2Re(M(r)vr, iA0vr)L2(S) − 2Re((1−W )vr, iA0vr)L2(S)

= 2Re((−h2(Dr − A0)
2 −M(r) + (1−W ))vr, (∂r − iA0)vr)L2(S)

− ([∂r,M(r)]vr, vr)L2(S) − (W ′vr, vr)L2(S)

=− 2Re(Pφvr, (∂r − iA0)vr)L2(S) + 4h−1φ′∥h(Dr − A0)vr∥2L2(S)

+ 2εIm(vr, (∂r − iA0)vr)L2(S)

− ([∂r,M(r)]vr, vr)L2(S) − (W ′vr, vr)L2(S), (4.14)
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where we used (4.13). Integrating against φ′ we find∫ a

R

φ′F ′ dr =− 2Re

∫ a

R

(φ′Pφvr, (∂r − iA0)vr)L2(S) + 4h−1

∫ a

R

(φ′)2∥h(Dr − A0)vr∥2L2(S)dr

+ 2εIm

∫ a

R

(φ′vr, (∂r − iA0)vr)L2(S)dr

−
∫ a

R

φ′([∂r,M ]vr, vr)L2(S)dr −
∫ a

R

(φ′W ′vr, vr)L2(S)dr

− 2Re

∫ a

R

φ′(M(r)vr, iA0vr)L2(S)dr + 2Re

∫ a

R

φ′((1−W )vr, iA0vr)L2(S)dr.

(4.15)

Doing integration by parts, we can rewrite
∫ a

R
φ′F ′ dr in terms of the integral of φ′′F and in

this regard expression (4.11) with ψ = φ′′ gives us∫ a

R

Re(φ′′Pφvr, vr)L2(S)dr =2

∫ a

R

φ′′∥h(Dr − A0)vr∥2L2(S)dr −
∫ a

R

φ′′F dr

−
∫ a

R

((h(φ′′)2 + hφ′φ′′′ +
h2

2
φ(4))vr, vr)L2(S)dr,

where we have used 1− h2(Vm − Λ) + (φ′)2 = 1−W + hφ′′. Using this relation we obtain∫ a

R

φ′F ′ dr =−
∫ a

R

φ′′F dr

=Re

∫ a

R

(φ′′Pφvr, vr)L2(S)dr − 2

∫ a

R

φ′′∥h(Dr − A0)vr∥2L2(S)dr

+

∫ a

R

((h(φ′′)2 + hφ′φ′′′ +
h2

2
φ(4))vr, vr)L2(S)dr. (4.16)

So finally, coupling (4.15) and (4.16)

2

∫ a

R

((2h−1(φ′)2 + φ′′)h(Dr − A0)vr, h(Dr − A0)vr)L2(S) −
∫ a

R

φ′([∂r,M ]vr, vr)L2(S)dr

= 2Re

∫ a

R

(φ′Pφvr, (∂r − iA0)vr)L2(S)dr +Re

∫ a

R

(φ′′Pφvr, vr)L2(S)dr

− 2εIm

∫ a

R

(φ′vr, (∂r − iA0)vr)L2(S)dr

+

∫ a

R

((φ′W ′ + h(φ′′)2 + hφ′φ′′′ +
h2

2
φ(4))vr, vr)L2(S)dr (4.17)

+ 2Re

∫ a

R

φ′(M(r)vr, iA0vr)L2(S)dr − 2Re

∫ a

R

φ′((1−W )vr, iA0vr)L2(S)dr.

(4.18)
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With the exception of the last two terms in (4.18) all the other terms can be treated as in
[6, Proposition 2.3]. For the left hand side we have on one hand

2h−1(φ′)2 + φ′′ ≥ C ′φ
′

r
(4.19)

thanks φ′ = hr−1 and Lemma 4.5, on the other hand

−φ′([∂r,M ]vr, vr)L2(S) ≳
φ′

r
(M(r)vr, vr)L2(S) (4.20)

from Lemma 2.4 on [R, a]. Thus we have the following lower bound on the left hand side

2

∫ a

R

((2h−1(φ′)2 + φ′′)h(Dr − A0)vr, h(Dr − A0)vr)L2(S) −
∫ a

R

φ′([∂r,M ]vr, vr)L2(S)dr

≳2

∫ a

R

∥(φ′/r)1/2h(Dr − A0)v∥L2(S)dr +

∫ a

R

∥(φ′/r)1/2M(r)1/2v∥L2(S)dr

In the right hand side we use the inequality

|φ′′| ≤ Cλ1/2
φ′

r

coming from Lemma 4.5, from which

|Re
∫ a

R

(φ′′Pφvr, vr)L2(S)dr| ≤O(h−1δ−1)

∫ a

R

∥Pφvr∥2L2(S)dr

+O(δ)

∫ a

R

∥(φ′/r)1/2vr∥2L2(S)dr. (4.21)

Moreover r1+νW ′ is bounded from the properties of Lemma 4.5 and the fact that r1+ν∂rVm
is also bounded. This allows to estimate (4.17) by

O(h1/2)

∫ a

R

∥(φ′/r)1/2v∥2L2(S)dr.

For (4.18) we have

|Re
∫ a

R

φ′(M(r)vr,iA0vr)L2(S)dr|

≤
∫ a

R

h|l(r)((φ′/r)1/2M1/2(r)vr, [(1 + T (r))1/2, A0](φ
′/r)1/2vr)L2(S)|dr

≤ O(h)

∫ a

R

∥(φ′/r)1/2M1/2vr∥2L2(S)dr +O(h)

∫ a

R

∥(φ′/r)1/2vr∥2L2(S)dr

(4.22)

since (M1/2(r)vr, iA0M
1/2(r)vr)L2(S) is pure complex and [(1+T )1/2, A0] acts as multiplication

by a bounded function. Moreover in 1 −W = 1 − h2(Vm − Λ) + (φ′)2 − hφ′′ the quantity
1− h2Λ + (φ′)2 − hφ′′ is real and Vm, A0 are bounded, hence

|Re
∫ a

R

φ′((1−W )vr, iA0vr)L2(S)dr| ≤h2
∫ a

R

∥(φ′/r)1/2vr∥2L2(S)dr. (4.23)
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The remaining terms can be bounded by the Cauchy-Schwarz inequality recalling that ε =
O(h2). From (4.19)-(4.23) we have obtained∫ a

R

∥(φ′/r)1/2h(Dr − A0)vr∥2L2(S)dr +

∫ a

R

∥(φ′/r)1/2M1/2vr∥2L2(S)dr

≤ O(h−1δ−1)

∫ a

R

∥Pφvr∥2L2(S)dr +O(δ)

∫ a

R

∥(φ′/r)1/2vr∥2L2(S)dr

for a small parameter δ.
On the other hand applying (4.11) with ψ = r−1φ′, thanks to Lemma 4.5 and the fact that

rν(Vm − Λ) is a bounded function we can recover∫ a

R

∥(φ′/r)1/2vr∥2L2(S)dr ≤
∫ a

R

∥(φ′/r)1/2h(Dr − A0)vr∥2L2(S)dr

+

∫ a

R

∥(φ′/r)1/2M1/2vr∥2L2(S)dr +

∫ a

R

∥Pφvr∥2L2(S)dr.

The statement follows combining the last two inequalities.
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