Confined Poisson extensions - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2024

Confined Poisson extensions

Résumé

This paper follows on from our previous work, where we introduced the notion of \emph{confined extensions}, and our purpose is to widen the context in which such extensions appear. We do so in the setup of Poisson suspensions: we take a $\sigma$-finite measure-preserving dynamical system $(X, \mu, T)$ and a compact extension $(X \times G, \mu \otimes m_G, T_\phi)$, then we consider the corresponding Poisson extension $((X \times G)^*, (\mu \otimes m_G)^*, (T_\phi)_*) \overset{}{\to} (X^*, \mu^*, T_*)$. Our results give two different conditions under which that extension is confined. Finally, to show that those conditions are not void, we give an example of a system $(X, \mu, T)$ and a cocycle $\phi$ so that the compact extension $(X \times G, \mu \otimes m_G, T_\phi)$ has an infinite ergodic index.
Fichier principal
Vignette du fichier
Poisson_extension.pdf (425.29 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04511868 , version 1 (19-03-2024)

Identifiants

  • HAL Id : hal-04511868 , version 1

Citer

Séverin Benzoni, Emmanuel Roy, Thierry de la Rue. Confined Poisson extensions. 2024. ⟨hal-04511868⟩
82 Consultations
35 Téléchargements

Partager

More